21,504 research outputs found

    Graph Estimation From Multi-attribute Data

    Full text link
    Many real world network problems often concern multivariate nodal attributes such as image, textual, and multi-view feature vectors on nodes, rather than simple univariate nodal attributes. The existing graph estimation methods built on Gaussian graphical models and covariance selection algorithms can not handle such data, neither can the theories developed around such methods be directly applied. In this paper, we propose a new principled framework for estimating graphs from multi-attribute data. Instead of estimating the partial correlation as in current literature, our method estimates the partial canonical correlations that naturally accommodate complex nodal features. Computationally, we provide an efficient algorithm which utilizes the multi-attribute structure. Theoretically, we provide sufficient conditions which guarantee consistent graph recovery. Extensive simulation studies demonstrate performance of our method under various conditions. Furthermore, we provide illustrative applications to uncovering gene regulatory networks from gene and protein profiles, and uncovering brain connectivity graph from functional magnetic resonance imaging data.Comment: Extended simulation study. Added an application to a new data se

    MALA-within-Gibbs samplers for high-dimensional distributions with sparse conditional structure

    Get PDF
    Markov chain Monte Carlo (MCMC) samplers are numerical methods for drawing samples from a given target probability distribution. We discuss one particular MCMC sampler, the MALA-within-Gibbs sampler, from the theoretical and practical perspectives. We first show that the acceptance ratio and step size of this sampler are independent of the overall problem dimension when (i) the target distribution has sparse conditional structure, and (ii) this structure is reflected in the partial updating strategy of MALA-within-Gibbs. If, in addition, the target density is blockwise log-concave, then the sampler's convergence rate is independent of dimension. From a practical perspective, we expect that MALA-within-Gibbs is useful for solving high-dimensional Bayesian inference problems where the posterior exhibits sparse conditional structure at least approximately. In this context, a partitioning of the state that correctly reflects the sparse conditional structure must be found, and we illustrate this process in two numerical examples. We also discuss trade-offs between the block size used for partial updating and computational requirements that may increase with the number of blocks

    A computational framework for infinite-dimensional Bayesian inverse problems: Part II. Stochastic Newton MCMC with application to ice sheet flow inverse problems

    Full text link
    We address the numerical solution of infinite-dimensional inverse problems in the framework of Bayesian inference. In the Part I companion to this paper (arXiv.org:1308.1313), we considered the linearized infinite-dimensional inverse problem. Here in Part II, we relax the linearization assumption and consider the fully nonlinear infinite-dimensional inverse problem using a Markov chain Monte Carlo (MCMC) sampling method. To address the challenges of sampling high-dimensional pdfs arising from Bayesian inverse problems governed by PDEs, we build on the stochastic Newton MCMC method. This method exploits problem structure by taking as a proposal density a local Gaussian approximation of the posterior pdf, whose construction is made tractable by invoking a low-rank approximation of its data misfit component of the Hessian. Here we introduce an approximation of the stochastic Newton proposal in which we compute the low-rank-based Hessian at just the MAP point, and then reuse this Hessian at each MCMC step. We compare the performance of the proposed method to the original stochastic Newton MCMC method and to an independence sampler. The comparison of the three methods is conducted on a synthetic ice sheet inverse problem. For this problem, the stochastic Newton MCMC method with a MAP-based Hessian converges at least as rapidly as the original stochastic Newton MCMC method, but is far cheaper since it avoids recomputing the Hessian at each step. On the other hand, it is more expensive per sample than the independence sampler; however, its convergence is significantly more rapid, and thus overall it is much cheaper. Finally, we present extensive analysis and interpretation of the posterior distribution, and classify directions in parameter space based on the extent to which they are informed by the prior or the observations.Comment: 31 page

    Joint state-parameter estimation of a nonlinear stochastic energy balance model from sparse noisy data

    Get PDF
    While nonlinear stochastic partial differential equations arise naturally in spatiotemporal modeling, inference for such systems often faces two major challenges: sparse noisy data and ill-posedness of the inverse problem of parameter estimation. To overcome the challenges, we introduce a strongly regularized posterior by normalizing the likelihood and by imposing physical constraints through priors of the parameters and states. We investigate joint parameter-state estimation by the regularized posterior in a physically motivated nonlinear stochastic energy balance model (SEBM) for paleoclimate reconstruction. The high-dimensional posterior is sampled by a particle Gibbs sampler that combines MCMC with an optimal particle filter exploiting the structure of the SEBM. In tests using either Gaussian or uniform priors based on the physical range of parameters, the regularized posteriors overcome the ill-posedness and lead to samples within physical ranges, quantifying the uncertainty in estimation. Due to the ill-posedness and the regularization, the posterior of parameters presents a relatively large uncertainty, and consequently, the maximum of the posterior, which is the minimizer in a variational approach, can have a large variation. In contrast, the posterior of states generally concentrates near the truth, substantially filtering out observation noise and reducing uncertainty in the unconstrained SEBM

    Hamiltonian Monte Carlo Acceleration Using Surrogate Functions with Random Bases

    Full text link
    For big data analysis, high computational cost for Bayesian methods often limits their applications in practice. In recent years, there have been many attempts to improve computational efficiency of Bayesian inference. Here we propose an efficient and scalable computational technique for a state-of-the-art Markov Chain Monte Carlo (MCMC) methods, namely, Hamiltonian Monte Carlo (HMC). The key idea is to explore and exploit the structure and regularity in parameter space for the underlying probabilistic model to construct an effective approximation of its geometric properties. To this end, we build a surrogate function to approximate the target distribution using properly chosen random bases and an efficient optimization process. The resulting method provides a flexible, scalable, and efficient sampling algorithm, which converges to the correct target distribution. We show that by choosing the basis functions and optimization process differently, our method can be related to other approaches for the construction of surrogate functions such as generalized additive models or Gaussian process models. Experiments based on simulated and real data show that our approach leads to substantially more efficient sampling algorithms compared to existing state-of-the art methods
    • …
    corecore