3,190 research outputs found

    Improved algorithm for computing separating linear forms for bivariate systems

    Get PDF
    We address the problem of computing a linear separating form of a system of two bivariate polynomials with integer coefficients, that is a linear combination of the variables that takes different values when evaluated at the distinct solutions of the system. The computation of such linear forms is at the core of most algorithms that solve algebraic systems by computing rational parameterizations of the solutions and this is the bottleneck of these algorithms in terms of worst-case bit complexity. We present for this problem a new algorithm of worst-case bit complexity \sOB(d^7+d^6\tau) where dd and τ\tau denote respectively the maximum degree and bitsize of the input (and where \sO refers to the complexity where polylogarithmic factors are omitted and OBO_B refers to the bit complexity). This algorithm simplifies and decreases by a factor dd the worst-case bit complexity presented for this problem by Bouzidi et al. \cite{bouzidiJSC2014a}. This algorithm also yields, for this problem, a probabilistic Las-Vegas algorithm of expected bit complexity \sOB(d^5+d^4\tau).Comment: ISSAC - 39th International Symposium on Symbolic and Algebraic Computation (2014

    Symbolic-Numeric Tools for Analytic Combinatorics in Several Variables

    Full text link
    Analytic combinatorics studies the asymptotic behaviour of sequences through the analytic properties of their generating functions. This article provides effective algorithms required for the study of analytic combinatorics in several variables, together with their complexity analyses. Given a multivariate rational function we show how to compute its smooth isolated critical points, with respect to a polynomial map encoding asymptotic behaviour, in complexity singly exponential in the degree of its denominator. We introduce a numerical Kronecker representation for solutions of polynomial systems with rational coefficients and show that it can be used to decide several properties (0 coordinate, equal coordinates, sign conditions for real solutions, and vanishing of a polynomial) in good bit complexity. Among the critical points, those that are minimal---a property governed by inequalities on the moduli of the coordinates---typically determine the dominant asymptotics of the diagonal coefficient sequence. When the Taylor expansion at the origin has all non-negative coefficients (known as the `combinatorial case') and under regularity conditions, we utilize this Kronecker representation to determine probabilistically the minimal critical points in complexity singly exponential in the degree of the denominator, with good control over the exponent in the bit complexity estimate. Generically in the combinatorial case, this allows one to automatically and rigorously determine asymptotics for the diagonal coefficient sequence. Examples obtained with a preliminary implementation show the wide applicability of this approach.Comment: As accepted to proceedings of ISSAC 201

    On The Applications of Lifting Techniques

    Get PDF
    Lifting techniques are some of the main tools in solving a variety of different computational problems related to the field of computer algebra. In this thesis, we will consider two fundamental problems in the fields of computational algebraic geometry and number theory, trying to find more efficient algorithms to solve such problems. The first problem, solving systems of polynomial equations, is one of the most fundamental problems in the field of computational algebraic geometry. In this thesis, We discuss how to solve bivariate polynomial systems over either k(T ) or Q using a combination of lifting and modular composition techniques. We will show that one can find an equiprojectable decomposition of a bivariate polynomial system in a better time complexity than the best known algorithms in the field, both in theory and practice. The second problem, polynomial factorization over number fields, is one of the oldest problems in number theory. It has lots of applications in many other related problems and there have been lots of attempts to solve the problem efficiently, at least, in practice. Finding p-adic factors of a univariate polynomial over a number field uses lifting techniques. Improving this step can reduce the total running time of the factorization in practice. We first introduce a multivariate version of the Belabas factorization algorithm over number fields. Then we will compare the running time complexity of the factorization problem using two different representations of a number field, univariate vs multivariate, and at the end as an application, we will show the improvement gained in computing the splitting fields of a univariate polynomial over rational field

    On the complexity of computing with zero-dimensional triangular sets

    Get PDF
    We study the complexity of some fundamental operations for triangular sets in dimension zero. Using Las-Vegas algorithms, we prove that one can perform such operations as change of order, equiprojectable decomposition, or quasi-inverse computation with a cost that is essentially that of modular composition. Over an abstract field, this leads to a subquadratic cost (with respect to the degree of the underlying algebraic set). Over a finite field, in a boolean RAM model, we obtain a quasi-linear running time using Kedlaya and Umans' algorithm for modular composition. Conversely, we also show how to reduce the problem of modular composition to change of order for triangular sets, so that all these problems are essentially equivalent. Our algorithms are implemented in Maple; we present some experimental results

    An Elimination Method for Solving Bivariate Polynomial Systems: Eliminating the Usual Drawbacks

    Full text link
    We present an exact and complete algorithm to isolate the real solutions of a zero-dimensional bivariate polynomial system. The proposed algorithm constitutes an elimination method which improves upon existing approaches in a number of points. First, the amount of purely symbolic operations is significantly reduced, that is, only resultant computation and square-free factorization is still needed. Second, our algorithm neither assumes generic position of the input system nor demands for any change of the coordinate system. The latter is due to a novel inclusion predicate to certify that a certain region is isolating for a solution. Our implementation exploits graphics hardware to expedite the resultant computation. Furthermore, we integrate a number of filtering techniques to improve the overall performance. Efficiency of the proposed method is proven by a comparison of our implementation with two state-of-the-art implementations, that is, LPG and Maple's isolate. For a series of challenging benchmark instances, experiments show that our implementation outperforms both contestants.Comment: 16 pages with appendix, 1 figure, submitted to ALENEX 201

    Racah Polynomials and Recoupling Schemes of su(1,1)\mathfrak{su}(1,1)

    Full text link
    The connection between the recoupling scheme of four copies of su(1,1)\mathfrak{su}(1,1), the generic superintegrable system on the 3 sphere, and bivariate Racah polynomials is identified. The Racah polynomials are presented as connection coefficients between eigenfunctions separated in different spherical coordinate systems and equivalently as different irreducible decompositions of the tensor product representations. As a consequence of the model, an extension of the quadratic algebra QR(3){\rm QR}(3) is given. It is shown that this algebra closes only with the inclusion of an additional shift operator, beyond the eigenvalue operators for the bivariate Racah polynomials, whose polynomial eigenfunctions are determined. The duality between the variables and the degrees, and hence the bispectrality of the polynomials, is interpreted in terms of expansion coefficients of the separated solutions

    Computing the topology of a planar or space hyperelliptic curve

    Full text link
    We present algorithms to compute the topology of 2D and 3D hyperelliptic curves. The algorithms are based on the fact that 2D and 3D hyperelliptic curves can be seen as the image of a planar curve (the Weierstrass form of the curve), whose topology is easy to compute, under a birational mapping of the plane or the space. We report on a {\tt Maple} implementation of these algorithms, and present several examples. Complexity and certification issues are also discussed.Comment: 34 pages, lot of figure
    corecore