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Abstract. We consider the problem of global minimization of rational functions on IRn (unconstrained case),
and on an open, connected, semi-algebraic subset of IRn, or the (partial) closure of such a set (constrained
case). We show that in the univariate case (n = 1), these problems have exact reformulations as semidefinite
programming (SDP) problems, by using reformulations introduced in the PhD thesis of Jibetean [6]. This
extends the analogous results by Nesterov [13] for global minimization of univariate polynomials.

For the bivariate case (n = 2), we obtain a fully polynomial time approximation scheme (FPTAS) for the
unconstrained problem, if an a priori lower bound on the infimum is known, by using results by De Klerk and
Pasechnik [1].

For the NP-hard multivariate case, we discuss semidefinite programming-based relaxations for obtaining
lower bounds on the infimum, by using results by Parrilo [15], and Lasserre [12].

1. Introduction

In this paper we study semidefinite programming relaxations of the problem of mini-
mizing a rational objective function over some feasible set. Formally, we consider

p∗ := inf
x∈S,q(x)�=0

p(x)

q(x)
, (1)

where p(x), q(x) are relatively prime polynomials (no common factors) with real
coefficients and S ⊆ IRn is an open connected set or the (partial) closure of such a
set.

Rational functions play an important role in engineering design, since Padé
approximation of data using rational functions is usually an attractive alternative to
polynomial approximation. Another type of application is in H2 model reduction; see
Jibetean and Hanzon [7].

Note that we do not assume that the infimum is attained (or is finite).
We will further restrict the feasible set S to the two special cases where:

– S = IRn (unconstrained minimization of rational functions);
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– S is a semi-algebraic set, i.e. defined by finitely many polynomial inequalities (poly-
nomially constrained minimization of rational functions). In this case we will also
assume that S is the closure of some open bounded set.

In these cases, problem (1) is already an NP-hard problem, with the exception of a
few special cases (like n = 1).

1.1. Possible solution approaches

Techniques from real algebraic geometry The first order optimality conditions of prob-
lem (1) can be written as a system of polynomial equations, which can in turn be solved
using techniques from real algebraic geometry. A modern review of techniques for solv-
ing polynomial equations is the book by Sturmfels [23]. The difficulty is that the solution
of the first order optimality conditions provides no information if the infimum is not
attained in problem (1). In the case of a polynomial objective function, it is possible to
use symbolic perturbation of the objective function in order to ensure that the infimum of
the perturbed problem is attained, and then to take the limit as the perturbation parameter
goes to zero (see e.g. Hanzon and Jibetean [3]). We do not know of similar techniques in
the literature for rational objective functions. Moreover, the abovementioned techniques
may involve linear algebra with prohibitively large matrices, even for relatively small
values of n and the degrees of p and q; see Parrilo and Sturmfels [16].

Global optimization techniques Several global optimization codes are available for
problems like (1), but Lipschitz continuity is usually required in order to guarantee
global convergence, which does not hold in general for rational functions. Moreover,
some problem instances involving 10 variables and as many constraints already pose
problems for state-of-the-art solvers.

Convex relaxation Convex relaxation aims to give a tight lower bound on p∗. A popular
modern technique is to use semidefinite programming (SDP) to obtain such relaxations.
Kojima and Tunçel [8] have formulated a hierarchy of semi-infinite SDP relaxations that
yield the convex hull of a quite general class of nonconvex sets, but in the authors’ own
words this method is ‘mainly of theoretical interest’. Discrete (finite) variants of this
method (see Kojima and Tunçel [9]), have been implemented by Takeda et. al [24], but
the computational results are somewhat disappointing. One should mention, though, that
the general methodology by Kojima and Tunçel in [8] apply to more general nonconvex
sets than semi-algebraic ones.

Nesterov [13] has shown that the case n = 1 of problem (1) can be reformulated
exactly as an SDP if q(x) ≡ 1. In another seminal work, Lasserre [12] has derived a
hierarchy of SDP relaxations such that the optimal values converge asymptotically to p∗,
if q(x) ≡ 1 and S is a compact semi-algebraic set that meets some technical condition.
These relaxations seem to be more promising from a computational point of view than
those in [8], and have now been implemented in the software Gloptipoly [4]. This soft-
ware is quite useful in solving small scale optimization problems involving polynomials
to global optimality (see [4]).
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The aim of this paper is to generalize the above mentioned results by Nesterov and
Lasserre to include rational objective functions.

Jibetean [5] considered a particular SDP relaxation of problem (1) in the uncon-
strained case (S = IRn). We will also extend this approach to a hierarchy of SDP relax-
ations that converge to the infimum under suitable assumptions, by using a methodology
due to Parrilo [15].

1.2. Outline of this paper

We first show in Section 2 that if p∗ > −∞, then q cannot change sign on S. As a
consequence, one can assume without loss of generality that q(x) ≥ 0 for all x ∈ S.
Under this assumption one has

p∗ = sup {α : p(x) − αq(x) ≥ 0, ∀x ∈ S} .

This reformulation involves the nonnegativity condition of the polynomial p(x)−αq(x).
(We view this as a polynomial in the variables x with an unknown parameter α.) In Sec-
tion 3 we therefore discuss how a sufficient condition for nonnegativity, namely the sums
of squares condition, can be written as a system of linear matrix inequalities (LMI’s).
This leads us to SDP relaxations of problem (1) in Sections 4 and 5. In Section 4 we
treat the unconstrained case S = IRn and treat the special univariate (n = 1) and bivar-
iate (n = 2) cases separately. In Section 5 we treat the constrained case where S is a
semi-algebraic set. Once again, the univariate case is treated separately.

1.3. Notation

We will use the following (more-or-less standard) notation throughout the paper:

– IR[x1, . . . , xn]: polynomials defined on IRn with real coefficients;
– For f ∈ IR[x1, . . . , xn], we write f (x) = ∑

β aβxβ , where β := [β1, . . . , βn] is a

nonnegative integer vector, and xβ := x
β1
1 . . . x

βn
n ; also |β| := ∑n

i=1 βi ;
– Pn,d : elements of IR[x1, . . . , xn] of (total) degree at most d that are nonnegative on

IRn;
– �2

n,d = {
r ∈ Pn,d : r = ∑

i r2
i for some ri ∈ IR[x1, . . . , xn] ∀i

}
; We will refer to

�2
n,d as the ‘sum of squares (s.o.s.) cone of degree at most d’; �2

n,∞ will refer to the

union ∪d∈IN�2
n,d .

2. Problem reformulation

We start by giving a reformulation of problem (1) that only involves polynomials (in
stead of rational functions). The proof — taken from the PhD thesis of Jibetean [6] —
is included for the sake of completeness.
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Theorem 1. Let a(x), b(x) be relatively prime polynomials and B an open ball in IRn.
One has a(x)b(x) ≥ 0, ∀x ∈ B, if and only if one of the two following statements holds:

• a(x) ≥ 0, b(x) ≥ 0 ∀x ∈ B,

• a(x) ≤ 0, b(x) ≤ 0 ∀x ∈ B.

Proof. Assume that a changes sign on B, therefore there must exist an irreducible factor
of a, denoted a1, which changes sign on B.

We follow the proof of Lemma 6.14 of [10]. We want to prove that f = a1 divides
g = b. We know that f changes sign in B, that is there exist two points x̃, x̂ ∈ B such
that f (x̃) > 0 and f (x̂) < 0. Let us make a suitable change of coordinates such that
f (y, z1) < 0 < f (y, z2) where y ∈ IRn−1, z1, z2 ∈ IR. This can be achieved by consid-
ering a system of coordinates for which one axis passes through x̂ and x̃.After the change
of coordinates, B becomes the ball B̃. Let G = IR[x1, . . . , xn−1] and F the quotient
ring of G. View f and g as polynomials in xn in the ring G[xn] ⊂ F [xn]. Suppose that
f does not divide g in G[xn](= IR[x1, . . . , xn]). We know that f remains irreducible
in F [xn] and f does not divide g also in F [xn]. Since F [xn] is a principal ideal domain,
there exist ρ, γ ∈ F [xn] such that fρ +gγ = 1. Write ρ = ρ0/h and γ = γ0/h, where
ρ0, γ0 ∈ G[xn] and 0 �= h ∈ G. Then fρ0 + gγ0 = h. Choose a neighborhood V of
y in IRn−1 such that V × {z1}, V × {z2} ⊂ B̃ and f (V, z1) < 0 < f (V, z2). For any
v ∈ V , f (v, z1) < 0 < f (v, z2) implies that f (v, bv) = 0 for some bv between z1 and
z2. Actually, since f (x)g(x) ≥ 0 we have g(V, z1) ≤ 0 ≤ g(V, z2) and there exists a
bv where both f (v, bv) = 0 and g(v, bv) = 0. Therefore fρ0 + gγ0 = h implies that
h(v) = 0, ∀v ∈ V and so h(x1, . . . , xn−1) vanishes on a non-empty open set in IRn−1.

This forces h ≡ 0, a contradiction. Hence a1 = f divides b = g, but this contradicts
the hypothesis that a and b are relatively prime. Hence, a cannot change sign on B. �

Remark 1. In Theorem 1 the condition a(x)b(x) ≥ 0, ∀x ∈ B is equivalent to, and
therefore can be replaced by, a(x)/b(x) ≥ 0, ∀x ∈ B, with b(x) �= 0.

Corollary 1. Let p(x)/q(x) be a rational function with p(x), q(x) relatively prime
polynomials. If q(x) changes sign on B then p∗ := infx∈B p(x)/q(x) = −∞.

Proof. Assume, by way of contradiction, that p∗ > −∞. Then there exists an α ≤ p∗
(α ∈ IR). For every x ∈ B, with q(x) �= 0, we have

p(x)

q(x)
≥ α ⇐⇒ p(x) − αq(x)

q(x)
≥ 0 .

Applying Theorem 1, we deduce that both p(x) − αq(x) and q(x) do not change sign
on B, which contradicts the hypothesis. �

Notice that the converse does not hold in general, as is shown by the example inf |x|≤1

−1
x2

= −∞.
The following corollary is another easy consequence of the last theorem.

Corollary 2. Corollary 1 remains valid if the open ball B is replaced by any open
connected set, or the (partial) closure of such a set.
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Proof. Let S be an open connected set or the (partial) closure of an open set, and
let p(x)/q(x) be a rational function with p(x), q(x) relatively prime polynomials.
If q changes sign on S, then there exists an open ball B ⊂ S such that q changes
sign on B. By Corollary 1 one now has infx∈B p(x)/q(x) = −∞, which implies
infx∈S p(x)/q(x)=−∞. �


We arrive at the following reformulation of problem (1).

Theorem 2. Assume that the set S in problem (1) is an open connected subset of IRn,
or the (partial) closure of such a set.

1. If q changes sign on S, then p∗ = −∞.
2. If q is nonnegative on S, one has

p∗ = sup {α : p(x) − αq(x) ≥ 0, ∀x ∈ S} . (2)

�

We can therefore obtain p∗ in two steps:

1. Decide if q changes sign on S; If S = IRn one can use techniques from [3] or
[16] to find the global minimum of q, and if S is a compact semi-algebraic set then
techniques from [11] or [23] may be used;

[1a] if q changes sign on S, then p∗ = −∞, STOP;
[1b] if q does not change sign but is nonpositive on S, replace q by −q and p

by −p; go to step 2.
2. Now solve (2) to obtain p∗.

In the rest of the paper we will therefore assume without loss of generality that q is
nonnegative on S, and will focus on SDP-based procedures for solving (2) to obtain p∗.

The next example casts some light on the assumptions in Theorem 2.

Example 1.

p∗ = inf
x∈S

p(x)

q(x)
:= inf

x∈S

x1 − x2 + x3 + 1

x1 + x2 + x3 + 1

S := {x ∈ IR3 : x2
2 + x2

3 = 0}.
Here the numerator and denominator in the objective function are relatively prime poly-
nomials. However, when restricted to the feasible set

S := {(x1, 0, 0) | x1 ∈ IR},
which is a ‘thin’ connected set, the rational objective function becomes (x1 + 1)/(x1 +
1) = 1, ∀x1 ∈ IR. Thus, p∗ = 1. On the other hand, q changes sign on S. This shows
that the first part of Theorem 2 no longer holds if one drops the requirement that S must
be an open set or the (partial) closure of such a set.

Moreover, one has

sup {α : p(x) − αq(x) ≥ 0 ∀x ∈ S}
= sup {α : x1 + 1 − α(x1 + 1) ≥ 0 ∀x1 ∈ IR}
= 1 = p∗.
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In other words, the reformulation (2) is valid for this example, even though it does not
meet the conditions of Theorem 2. �


The reformulation in Theorem 2 (see (2)) involves the nonnegativity condition

p(x) − αq(x) ∈ Pn,d

where d = max{deg(p), deg(q)}. This brings us to the theory of nonnegative polyno-
mials and their representations.

3. Nonnegativity vs. sums of squares

3.1. Nonnegativity on IRn

Not all nonnegative polynomials can be written as sums of squares of other polynomials.
Formally, one only has

�2
n,d = Pn,d

in the following three cases:

– n = 1, i.e. nonnegative univariate polynomials may be written as sums of squares;
– d = 2, i.e. nonnegative quadratic polynomials are sums of squares;
– n = 2 and d = 4, i.e. nonnegative bivariate polynomials of degree at most 4 are

sums of squares.

Note that Pn,d = ∅ if d is odd. For n = 2 and d = 6 one already has �2
n,d �= Pn,d . For

an excellent review of these historical results which date back to Hilbert’s 17th problem,
see Reznick [21].

S.o.s. representable polynomials are of interest from a computational point of view,
since they can be represented via LMI’s. Formally, one can model the constraintf ∈ �2

n,d

via LMI’s as follows.

Theorem 3. One has f ∈ �2
n,2d if and only if

f (x) = x̃T
n,dMx̃n,d , (3)

where x̃n,d = [1, x1, x2, . . . , x2
1 , x1x2, . . . , xd

n ]T is the canonical basis for the real n-
variate polynomials of degree at most d , and M is a positive semidefinite matrix of size(
n+d
d

)× (
n+d
d

)
. �


Equating the corresponding coefficients on the left and right hand side of equation (3)
yields the following reformulation of the theorem.

Corollary 3. One has f := ∑
β aβxβ ∈ �2

n,2d if and only if

aβ =
∑

i+j=β

Mij

where M is a positive semidefinite matrix of size
(
n+d
d

)× (
n+d
d

)
with rows and columns

indexed by all nonnegative integer vectors β satisfying
∑n

i=1 βi ≤ d. �
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The bivariate case For the cone of nonnegative bivariate polynomials, De Klerk and
Pasechnik [1] have used an old lemma by Hilbert to show that

f ∈ P2,2d ⇔ ∃g ∈ �2,s such that fg ∈ �2
2,2d+s ,

where s = � 3
2d2�.

Thus, the authors show that for a given f ∈ IR[x1, x2] of degree 2d, one can answer
the question ‘is f ∈ Pn,2d?’ by deciding if the corresponding system of LMI’s has a
non-zero solution. Formally, the result is as follows.

Theorem 4 (De Klerk–Pasechnik [1]). Given f (x) := ∑
β aβxβ ∈ IR[x1, x2] of de-

gree 2d, one has f ∈ Pn,2d if and only if the following system of LMI’s has a non-zero
solution:

∑

i+j+k=β

aiM
(1)
jk =

∑

i+j=β

M
(2)
ij ∀β ∈ ZZ2

+ such that |β| ≤ 2d + 3d2,

where M(1) � 0 of size (s1 × s1) and M(2) � 0 of size (s2 × s2),

s1 :=
(

2 + � 3
2d2�

� 3
2d2�

)

, s2 :=
(

2 + �2d + 3
2d2�

�2d + 3
2d2�

)

.

The solution of this system of LMI’s yields the decomposition fg = h with g ∈ �2
2, 3

2 d2

and h ∈ �2
2,2d+ 3

2 d2 , by setting

g(x) := x̃T
2,s1

M(1)x̃2,s1 , h(x) := x̃T
2,s2

M(2)x̃2,s2 . (4)

�


3.2. Nonnegativity on a semi-algebraic set

We first state two classical theorems that characterize nonnegative univariate polyno-
mials on a line segment or a half-line. See Powers and Reznick [17] and the references
therein for more background on these results.

Theorem 5 (M. Fekete). Let n = 1 and S = [a, b] for some a < b. Any f ∈ IR[x] of
degree d such that f (x) ≥ 0 for all x ∈ S can be decomposed as

f ∈ �2
1,2d + (x − a)(b − x)�2

1,2d−2. �


Theorem 6 (Pólya-Szegö). If S is a half line S = [a, ∞) for some a ∈ IR, then any
f ∈ IR[x] of degree d such that f (x) ≥ 0 for all x ∈ S can be decomposed as

f = �2
1,d + (x − a)�2

1,d−1. �
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We now consider the multivariate case. Assume that S ⊂ IRn is a semi-algebraic set
defined by

S = {
x ∈ IRn : pi(x) ≥ 0 (i = 1, . . . , k)

}
, (5)

where the pi ∈ IR[x1, . . . , xn] are given polynomials.

Assumption 1 S is compact and there exists a

p̄ ∈ �2
n,∞ + p1�

2
n,∞ + · · · + pk�

2
n,∞

such that {x : p̄(x) ≥ 0} is compact.

Theorem 7 (Putinar [19]). Let S be a semi-algebraic set of the form (5) for which
Assumption 1 holds. If a given p0 ∈ IR[x1, . . . , xn] satisfies p0(x) > 0 for all x ∈ S,
then

p0 ∈ �2
n,∞ + p1�

2
n,∞ + · · · + pk�

2
n,∞. �


4. Unconstrained optimization of rational functions: an SDP approach

In this section we treat the unconstrained problem

p∗ := inf
x∈Rn, q(x)�=0

p(x)

q(x)
with p(x), q(x) ∈ IR[x1, . . . , xn] relatively prime. (6)

4.1. The univariate case

The univariate case (n = 1) of problem (6) can be solved in polynomial time, by apply-
ing techniques from real algebraic geometry (see e.g. Parrilo and Sturmfels [16]) to the
reformulation in Theorem 2. Our aim in this section is to show that the univariate case
also has an exact SDP reformulation, which generalizes the analogous result for global
minimization of univariate polynomials by Nesterov [13].

If p and q are univariate polynomials then the condition

p(x) − αq(x) ≥ 0 ∀x ∈ IR

is equivalent to

p(x) − αq(x) ∈ �2
1,2d ,

where 2d = max{deg(p), deg(q)}. Applying Theorem 2, and using �2
1,d = P1,2d , we

obtain the following exact SDP formulation of problem (6) in the univariate case.
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Theorem 8. Consider problem (6) with n = 1. For any α ∈ IR, we denote

p(x) − αq(x) :=
∑

β

aβ(α)xβ,

where the coefficients aβ(α) depend affinely on α. One now has

p∗ = sup α

subject to

aβ(α) =
∑

i+j=β

Mij

where M is a positive semidefinite matrix of size (d + 1) × (d + 1). �

Theorem 8 generalizes the result by Nesterov [13] for global minimization of univariate
polynomials. The theorem actually follows from the remarks in §4.3 of Nesterov [13],
if we use the fact that we may assume without loss of generality that q is nonnegative
on IR.

Example 2. Consider the problem of finding p∗, where

p∗ = inf
x∈IR

p(x)

q(x)
:= x2 − 2x

(x + 1)2 .

Here p∗ = −1/3 which is attained at x = 1
2 .

The equivalent SDP problem is: sup α such that

(1 − α)x2 − 2(1 + α)x − α =
[

1
x

]T [
M00 M01
M10 M11

] [
1
x

]

, (7)

for some M � 0.
From (7) we have:

M00 = −α, M01 = M10 = −(1 + α), M11 = 1 − α.

We therefore get the SDP problem

p∗ = min
x∈IR

p(x)

q(x)
= max

α,M
α

such that

M =
[ −α −(1 + α)

−(1 + α) 1 − α

]

� 0.

Note that the optimal value is p∗ = −1/3.
The dual SDP problem is

min −2x12 + x22
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such that

x11 + 2x12 + x22 = 1,

(
x11 x12
x12 x22

)

� 0.

Note that the optimal solution here is the rank one matrix

(
x11 x12
x12 x22

)

= 4

9

(
1 1

2
1
2

1
4

)

= 4

9

(
1 x

x x2

)

if x = 1
2 ,

from which we may extract the optimal solution x = 1
2 where the infimum is attained.

�


4.2. The bivariate case

We treat the bivariate case (n = 2) of problem (6) separately as well. This problem can
again be solved in polynomial time, by applying techniques from real algebraic geome-
try (see e.g. Parrilo and Sturmfels [16]) to the reformulation in Theorem 2. (In fact, this
observation remains true for any fixed number of variables, i.e. if n = O(1).)

We do not know if the bivariate problem allows an exact SDP reformulation, but
will show that the weaker decision problem ‘Given α ∈ IR, is p∗ ≤ α?’ does allow an
exact SDP reformulation. One can therefore use SDP in conjunction with bisection to
estimate p∗, if an a priori lower bound on p∗ is known.

If p and q are bivariate polynomials and 2d = max{deg p, deg q}, then the condition

p(x) − αq(x) ≥ 0 ∀x ∈ IRn

is equivalent to

(p(x) − αq(x))r(x) ∈ �2
2,2d+ 3

2 d2

for some r ∈ �2
2, 3

2 d2 , by Theorem 4.

We can therefore solve the decision problem: ‘given α ∈ IR, is α ≤ p∗?’, by solving
a system of LMI’s.

Example 3. Consider the problem

p∗ =: inf
x1,x2

x6
1 + x2

2 + x4
2 − 3x2

1x2
2

x2
1 − 2x1x2 + x2

2

:= p(x)

q(x)
.

Note that p∗ ≤ 0 (look at x1 = 1, x2 = −1).
We can prove that ‘α := 0 ≤ p∗’ by considering the bivariate polynomial

p(x) − 0q(x) = p(x) = x6
1 + x2

2 + x4
2 − 3x2

1x2
2 .
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One can now use Theorem 4 to show using SDP that this polynomial is nonnegative on
IR2. The SDP approach (using equation (4)) yields the decomposition

(p(x) − 0q(x))(1 + x2
1 + x2

2 ) =
(
x1x2 − x2x

3
1

)2 +
(
x2

2x1 − x3
1

)2 +
(
x2

2 − x4
1

)2 +

+
(

1

2
x3

2 − 1

2
x2

)2

+
√

3
2
(

1

2
x3

2 + 1

2
x2 − x2x

2
1

)2

∈ �2
2,8.

We conclude that p∗ = 0. �


4.3. The multivariate case

We consider the problem

inf
x∈IRn

, q(x)�=0

p(x)

q(x)
.

This is an NP-hard problem in general. If we assume that the infimum is attained in the
ball

S := {x ∈ IRn : ‖x‖ ≤ R},
for some known parameter R, then we can treat this problem as the constrained problem

inf
x∈S, q(x)�=0

p(x)

q(x)
.

and subsequently use the techniques that will be described in Section 5.2. Note that the
set S meets Assumption 1. Of course, the parameter R will not in general be known a
priori.

An alternative approach was investigated by Jibetean in [5], where the author con-
sidered the SDP-based lower bound obtained by computing

sup
{
α : p(x) − αq(x) ∈ �2

n,d

}
,

where d = max{deg(p), deg(q)}. One can extend this approach by considering a hier-
archy of SDP based lower bounds

p̄(r) := sup

{

α : (p(x) − αq(x))

(

1 +
n∑

i−1

x2
i

)r

∈ �2
n,d+2r

}

, (8)

for r = 0, 1, 2, . . . . Note that the relaxation by Jibetean [5] is obtained when r = 0.
These types of relaxations were first studied in the context of global optimization of poly-
nomials by Parrilo [14, 15]. Under the assumption that the homogeneous form associated
with the polynomial p − p∗q is positive definite on IRn, it follows from a theorem by
Reznick [20] that limr→∞ p̄(r) = p∗. This assumption is difficult to check in practice.
If the assumption does not hold, we still obtain a hierarchy of lower bounds

p̄(r) ≤ p̄(r+1) ≤ p∗ for r = 0, 1, 2, . . . ,

but it may happen that the sequence {p̄(r)} does not converge to p∗.
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Example 4. We consider the problem in Example 3 again. Note that in this case one has
p̄(1) = p∗ ≡ 0, where p̄(1) is defined in (8). �


5. Constrained optimization of rational functions: an SDP approach

In this section we consider the constrained problem

p∗ := inf
x∈S, q(x)�=0

p(x)

q(x)
,

where S ⊂ IRn is a connected semi-algebraic set that satisfies certain additional assump-
tions.

Before we treat the general multivariate case, we again look at the polynomially
solvable univariate case and show that — similar to the unconstrained case — it has an
exact SDP reformulation. This generalizes the analogous result for global minimization
of univariate polynomials on line segments and half-lines by Nesterov [13].

5.1. The univariate case

Consider

p∗ := inf
x∈S, q(x)�=0

p(x)

q(x)
,

where S is an interval S = [a, b], and d = max{deg p, deg q}.
Assuming w.l.o.g. that q(x) ≥ 0 for all x ∈ S, and applying Theorems 2, 5 and 3 in

turn yields

p∗ = sup {α : p(x) − αq(x) ≥ 0 ∀ x ∈ S}
= sup

{
α : p(x) − αq(x) = �2

1,2d + (x − a)(b − x)�2
1,2d−2

}

= sup
{
α : p(x) − αq(x) = x̃T

1,dM1x̃1,d + (x − a)(b − x)x̃T
1,d−1M2x̃1,d−1

}
,

where x̃1,d = [1, x, x2, . . . , xd ]T as before, and M1 and M2 are positive semidefinite
matrices.

Similary to the unconstrained case, we can denote

p(x) − αq(x) :=
∑

β

aβ(α)xβ,

to obtain the exact SDP reformulation:

p∗ = sup
α,M1,M2

α

subject to

aβ(α) =
∑

i+j=β

(M1)ij − ab
∑

i+j=β

(M2)ij + (a + b)
∑

i+j=β−1

(M2)ij −
∑

i+j=β−2

(M2)ij
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where M1, M2 are positive semidefinite matrix variables of size (d + 1) × (d + 1) and
d × d respectively.

Univariate optimization over a half-line [a, ∞) can be reformulated as an SDP prob-
lem in the same way, by using Theorem 6.

5.2. The multivariate case

We now consider the problem

p∗ := inf
x∈S, q(x)�=0

p(x)

q(x)
, (9)

where S is the semi-algebraic set

S := {
x ∈ IRn : gi(x) ≥ 0, i = 1, . . . , m

}
. (10)

This problem is again NP-hard, and we are interested in obtaining lower bounds on p∗
in polynomial time using SDP.

In addition to Assumption 1 we make the following assumption about S:

Assumption 2 S is the closure of some open connected set.

By Theorem 2 we know that — under these assumptions — one has

p∗ = sup {α : p(x) − αq(x) ≥ 0 ∀x ∈ S} .

We show in the next lemma that the inequality can be replaced by strict inequality under
the following assumption.

Assumption 3 The polynomials p and q have no common real roots in S.

Lemma 1. Under Assumption 3 and the assumptions of Theorem 2, one has

p∗ = sup {α : p(x) − αq(x) > 0 ∀x ∈ S} .

Proof. Assume α < p(x)/q(x) for all x ∈ S such that q(x) �= 0. We know that q must
be nonnegative on S in this case. In other words

q(x) �= 0 ⇔ q(x) > 0 if x ∈ S.

We therefore have that

p(x) − αq(x) > 0 for all x ∈ S with q(x) �= 0.

Now we use the assumption that p and q have no common real roots: since p(x)−αq(x)

is nonnegative on S, q(x) = 0 implies p(x) > 0. We therefore have that

α < p(x)/q(x) for all x ∈ S with q(x) �= 0 ⇔ p(x) − αq(x) > 0 for all x ∈ S.

The required result follows. �
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Remark 2. Assumption 3 may be checked in practice by determining whether the poly-
nomial p2 + q2 is strictly positive on S. As before, these conditions may be checked
using techniques from [12] or from real algebraic geometry.

By the theorem of Putinar (Theorem 7), the condition

p(x) − αq(x) > 0 ∀x ∈ S

implies

p(x) − αq(x) ∈ �2
n,∞ +

m∑

j=1

gj (x)�2
n,∞.

Following Lasserre [12], we define a hierarchy of SDP relaxations

p(r) = sup





α : p(x) − αq(x) ∈ �2

n,2r +
m∑

j=1

gj (x)�2
n,2r





, (11)

for r = 1, 2, . . . . Note that the computation of p(r) involves solving an SDP problem of
size polynomial in m, n and in the degrees of p and q for any fixed r .

By Theorem 7, if p∗ > −∞ one will have

lim
r→∞ p(r) = p∗,

as well as p(r) ≤ p(r+1) ≤ p∗ for r = 1, 2, . . . .
We can summarize these results as the following theorem.

Theorem 9. Consider problem (9), where S is a compact semi-algebraic set of the form
(10) that meets Assumptions 1, 2 and 3. If p∗ = −∞, then one has

p(r) = −∞ for all r = 1, 2, . . . ,

where p(r) is defined in (11). If p∗ > −∞, one has

p(r) ≤ p(r+1) ≤ p∗ for all r = 1, 2, . . . ,

as well as limr→∞ p(r) = p∗. �

Example 5. Consider the constrained optimization problem

p∗ := inf
x3

2 + x2
2 (x1 − 1)2 − x2 + 5

x3
2 (x1 − 4)3 (x2 − 5) + (x1 − 1)2

s.t. x4
1 + x4

2 + x4
3 ≤ 100

3x1 + 2x2 − x3 ≥ −3

x2 − x2
1 − x3

3 ≤ 1.

It is straightforward to verify that the feasible set S satisfies all the hypothesis of
Theorem 9.
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We used the program SOSTools [18] to compute the lower bounds p(r) ≤ p∗ in (11)
for r = 1, 2, 3, to obtain

p(1) = 4.76 × 10−7, p(2) = p(3) = 3.707 × 10−3.

By using the optimization solver CONOPT [2] we obtained the KKT point

x1 = −1.674, x2 = 0.247, x3 = −1.526,

with objective value 3.707 × 10−3. This shows that — for this example — one has
p(r) = p∗ for r ≥ 2. It also illustrates the usefulness of the approach for proving global
optimality of a given solution. �

Remark 3. Note that in the univariate case n = 1 we obtain an exact reformulation of
problem (9) without the assumption of compactness.

One can at least avoid the second part of Assumption 1 in Putinar’s theorem, by
replacing the theorem of Putinar by Schmüdgen’s Positivstellensatz [22]. Schmüdgen’s
theorem states that the condition

p(x) − αq(x) > 0 ∀x ∈ S

implies

p(x) − αq(x) ∈ �2
n,∞ +




∑

I⊆{1,... ,m}

∏

i∈I

gi(x)



�2
n,∞.

Here we only assume that S is non-empty, compact, and semi-algebraic of the form (10).
Thus we can define lower bounds for p∗ in a similar way as we did using Putin-

ar’s theorem. The disadvantage is that the representation of positive polynomials via
Schmüdgen’s Positivstellensatz is clearly more complicated than when using Putinar’s
theorem.

6. Conclusions and discussion

In this paper we have extended the results by Nesterov [13], Lasserre [12], and De Klerk
and Pasechnik [1] for global optimimization of polynomial functions to include rational
objective functions. In particular, we have shown that global minimization of univariate
rational functions over a connected subset of IR has a reformulation as a semidefinite
program. In the unconstrained bivariate case we have shown how to use bisection to
obtain a arbitrarily good approximation of the optimal value, thus extending the scope
of the results by De Klerk and Pasechnik [1]. For the multivariate case, we have derived
various semidefinite programming based lower bounds on the infimum, by extending
the methodologies of Lasserre [12], Jibetean [5], and Parrilo [15].

All these extensions relied on a reformulation of the nonnegativity of rational func-
tions in terms of nonnegativity of suitable polynomials, as introduced in the PhD thesis
of Jibetean [6].
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Since the ideas of Lasserre [12] have been implemented in the software GloptiPoly
[4] by Henrion and Lasserre, we hope that our work will lead to an extension of this
software to include rational objective functions in the near future. An important issue
here is how to extract solutions for the original problem (1) from a solution of the SDP
relaxation. In particular, one should investigate whether the extraction procedure used
in the GloptiPoly software can be extended to the more general problem.
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