4,579 research outputs found

    Multigraded Hilbert Series of noncommutative modules

    Full text link
    In this paper, we propose methods for computing the Hilbert series of multigraded right modules over the free associative algebra. In particular, we compute such series for noncommutative multigraded algebras. Using results from the theory of regular languages, we provide conditions when the methods are effective and hence the sum of the Hilbert series is a rational function. Moreover, a characterization of finite-dimensional algebras is obtained in terms of the nilpotency of a key matrix involved in the computations. Using this result, efficient variants of the methods are also developed for the computation of Hilbert series of truncated infinite-dimensional algebras whose (non-truncated) Hilbert series may not be rational functions. We consider some applications of the computation of multigraded Hilbert series to algebras that are invariant under the action of the general linear group. In fact, in this case such series are symmetric functions which can be decomposed in terms of Schur functions. Finally, we present an efficient and complete implementation of (standard) graded and multigraded Hilbert series that has been developed in the kernel of the computer algebra system Singular. A large set of tests provides a comprehensive experimentation for the proposed algorithms and their implementations.Comment: 28 pages, to appear in Journal of Algebr

    Revisiting the Equivalence Problem for Finite Multitape Automata

    Full text link
    The decidability of determining equivalence of deterministic multitape automata (or transducers) was a longstanding open problem until it was resolved by Harju and Karhum\"{a}ki in the early 1990s. Their proof of decidability yields a co_NP upper bound, but apparently not much more is known about the complexity of the problem. In this paper we give an alternative proof of decidability, which follows the basic strategy of Harju and Karhumaki but replaces their use of group theory with results on matrix algebras. From our proof we obtain a simple randomised algorithm for deciding language equivalence of deterministic multitape automata and, more generally, multiplicity equivalence of nondeterministic multitape automata. The algorithm involves only matrix exponentiation and runs in polynomial time for each fixed number of tapes. If the two input automata are inequivalent then the algorithm outputs a word on which they differ

    Fraction-free algorithm for the computation of diagonal forms matrices over Ore domains using Gr{\"o}bner bases

    Full text link
    This paper is a sequel to "Computing diagonal form and Jacobson normal form of a matrix using Groebner bases", J. of Symb. Computation, 46 (5), 2011. We present a new fraction-free algorithm for the computation of a diagonal form of a matrix over a certain non-commutative Euclidean domain over a computable field with the help of Gr\"obner bases. This algorithm is formulated in a general constructive framework of non-commutative Ore localizations of GG-algebras (OLGAs). We split the computation of a normal form of a matrix into the diagonalization and the normalization processes. Both of them can be made fraction-free. For a matrix MM over an OLGA we provide a diagonalization algorithm to compute U,VU,V and DD with fraction-free entries such that UMV=DUMV=D holds and DD is diagonal. The fraction-free approach gives us more information on the system of linear functional equations and its solutions, than the classical setup of an operator algebra with rational functions coefficients. In particular, one can handle distributional solutions together with, say, meromorphic ones. We investigate Ore localizations of common operator algebras over K[x]K[x] and use them in the unimodularity analysis of transformation matrices U,VU,V. In turn, this allows to lift the isomorphism of modules over an OLGA Euclidean domain to a polynomial subring of it. We discuss the relation of this lifting with the solutions of the original system of equations. Moreover, we prove some new results concerning normal forms of matrices over non-simple domains. Our implementation in the computer algebra system {\sc Singular:Plural} follows the fraction-free strategy and shows impressive performance, compared with methods which directly use fractions. Since we experience moderate swell of coefficients and obtain simple transformation matrices, the method we propose is well suited for solving nontrivial practical problems.Comment: 25 pages, to appear in Journal of Symbolic Computatio
    • …
    corecore