8,477 research outputs found

    COMPARATOR IDENTIFICATION IN THE CONDITIONS OF BIFUZZY INITIAL DATA

    Get PDF
    When solving a large number of problems in the study of complex systems, it becomes necessary to establish a relationship between a variable that sets the level of efficiency of the system's functioning and a set of other variables that determine the state of the system or the conditions of its operation. To solve this problem, the methods of regression analysis are traditionally used, the application of which in many real situations turns out to be impossible due to the lack of the possibility of direct measurement of the explained variable. However, if the totality of the results of the experiments performed can be ranked, for example, in descending order, thus forming a system of inequalities, the problem can be presented in such a way as to determine the coefficients of the regression equation in accordance with the following requirement. It is necessary that the results of calculating the explained variable using the resulting regression equation satisfy the formed system of inequalities. This task is called the comparator identification task. The paper proposes a method for solving the problem of comparator identification in conditions of fuzzy initial data. A mathematical model is introduced to describe the membership functions of fuzzy parameters of the problem based on functions (L–R) – type. The problem is reduced to a system of linear algebraic equations with fuzzy variables. The analytical relationships required for the formation of a quality criterion for solving the problem of comparator identification in conditions of fuzzy initial data are obtained. As a result, a criterion for the effectiveness of the solution is proposed, based on the calculation of membership functions of the results of experiments, and the transformation of the problem to a standard problem of linear programming is shown. The desired result is achieved by solving a quadratic mathematical programming problem with a linear constraint. The proposed method is generalized to the case when the fuzzy initial data are given bifuzz

    Extending twin support vector machine classifier for multi-category classification problems

    Get PDF
    © 2013 – IOS Press and the authors. All rights reservedTwin support vector machine classifier (TWSVM) was proposed by Jayadeva et al., which was used for binary classification problems. TWSVM not only overcomes the difficulties in handling the problem of exemplar unbalance in binary classification problems, but also it is four times faster in training a classifier than classical support vector machines. This paper proposes one-versus-all twin support vector machine classifiers (OVA-TWSVM) for multi-category classification problems by utilizing the strengths of TWSVM. OVA-TWSVM extends TWSVM to solve k-category classification problems by developing k TWSVM where in the ith TWSVM, we only solve the Quadratic Programming Problems (QPPs) for the ith class, and get the ith nonparallel hyperplane corresponding to the ith class data. OVA-TWSVM uses the well known one-versus-all (OVA) approach to construct a corresponding twin support vector machine classifier. We analyze the efficiency of the OVA-TWSVM theoretically, and perform experiments to test its efficiency on both synthetic data sets and several benchmark data sets from the UCI machine learning repository. Both the theoretical analysis and experimental results demonstrate that OVA-TWSVM can outperform the traditional OVA-SVMs classifier. Further experimental comparisons with other multiclass classifiers demonstrated that comparable performance could be achieved.This work is supported in part by the grant of the Fundamental Research Funds for the Central Universities of GK201102007 in PR China, and is also supported by Natural Science Basis Research Plan in Shaanxi Province of China (Program No.2010JM3004), and is at the same time supported by Chinese Academy of Sciences under the Innovative Group Overseas Partnership Grant as well as Natural Science Foundation of China Major International Joint Research Project (NO.71110107026)

    Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches

    Get PDF
    Imaging spectrometers measure electromagnetic energy scattered in their instantaneous field view in hundreds or thousands of spectral channels with higher spectral resolution than multispectral cameras. Imaging spectrometers are therefore often referred to as hyperspectral cameras (HSCs). Higher spectral resolution enables material identification via spectroscopic analysis, which facilitates countless applications that require identifying materials in scenarios unsuitable for classical spectroscopic analysis. Due to low spatial resolution of HSCs, microscopic material mixing, and multiple scattering, spectra measured by HSCs are mixtures of spectra of materials in a scene. Thus, accurate estimation requires unmixing. Pixels are assumed to be mixtures of a few materials, called endmembers. Unmixing involves estimating all or some of: the number of endmembers, their spectral signatures, and their abundances at each pixel. Unmixing is a challenging, ill-posed inverse problem because of model inaccuracies, observation noise, environmental conditions, endmember variability, and data set size. Researchers have devised and investigated many models searching for robust, stable, tractable, and accurate unmixing algorithms. This paper presents an overview of unmixing methods from the time of Keshava and Mustard's unmixing tutorial [1] to the present. Mixing models are first discussed. Signal-subspace, geometrical, statistical, sparsity-based, and spatial-contextual unmixing algorithms are described. Mathematical problems and potential solutions are described. Algorithm characteristics are illustrated experimentally.Comment: This work has been accepted for publication in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensin

    Interval linear regression analysis based on Minkowski difference – a bridge between traditional and interval linear regression models

    Get PDF
    summary:In this paper, we extend the traditional linear regression methods to the (numerical input)-(interval output) data case assuming both the observation/measurement error and the indeterminacy of the input-output relationship. We propose three different models based on three different assumptions of interval output data. In each model, the errors are defined as intervals by solving the interval equation representing the relationship among the interval output, the interval function and the interval error. We formalize the estimation problem of parameters of the interval function so as to minimize the sum of square/absolute interval errors. Introducing suitable interpretation of minimization of an interval function, each estimation problem is well-formulated as a quadratic or linear programming problem. It is shown that the proposed methods have close relation to both traditional and interval linear regression methods which are formulated in different manners

    A possibilistic approach to latent structure analysis for symmetric fuzzy data.

    Get PDF
    In many situations the available amount of data is huge and can be intractable. When the data set is single valued, latent structure models are recognized techniques, which provide a useful compression of the information. This is done by considering a regression model between observed and unobserved (latent) fuzzy variables. In this paper, an extension of latent structure analysis to deal with fuzzy data is proposed. Our extension follows the possibilistic approach, widely used both in the cluster and regression frameworks. In this case, the possibilistic approach involves the formulation of a latent structure analysis for fuzzy data by optimization. Specifically, a non-linear programming problem in which the fuzziness of the model is minimized is introduced. In order to show how our model works, the results of two applications are given.Latent structure analysis, symmetric fuzzy data set, possibilistic approach.
    corecore