4,970 research outputs found

    Accepting Hybrid Networks of Evolutionary Processors with Special Topologies and Small Communication

    Full text link
    Starting from the fact that complete Accepting Hybrid Networks of Evolutionary Processors allow much communication between the nodes and are far from network structures used in practice, we propose in this paper three network topologies that restrict the communication: star networks, ring networks, and grid networks. We show that ring-AHNEPs can simulate 2-tag systems, thus we deduce the existence of a universal ring-AHNEP. For star networks or grid networks, we show a more general result; that is, each recursively enumerable language can be accepted efficiently by a star- or grid-AHNEP. We also present bounds for the size of these star and grid networks. As a consequence we get that each recursively enumerable can be accepted by networks with at most 13 communication channels and by networks where each node communicates with at most three other nodes.Comment: In Proceedings DCFS 2010, arXiv:1008.127

    Small Universal Accepting Networks of Evolutionary Processors with Filtered Connections

    Full text link
    In this paper, we present some results regarding the size complexity of Accepting Networks of Evolutionary Processors with Filtered Connections (ANEPFCs). We show that there are universal ANEPFCs of size 10, by devising a method for simulating 2-Tag Systems. This result significantly improves the known upper bound for the size of universal ANEPFCs which is 18. We also propose a new, computationally and descriptionally efficient simulation of nondeterministic Turing machines by ANEPFCs. More precisely, we describe (informally, due to space limitations) how ANEPFCs with 16 nodes can simulate in O(f(n)) time any nondeterministic Turing machine of time complexity f(n). Thus the known upper bound for the number of nodes in a network simulating an arbitrary Turing machine is decreased from 26 to 16

    Extended Networks of Evolutionary Processors

    Get PDF
    This paper presents an extended behavior of networks of evolutionary processors. Usually, such nets are able to solve NP-complete problems working with symbolic information. Information can evolve applying rules and can be communicated though the net provided some constraints are verified. These nets are based on biological behavior of membrane systems, but transformed into a suitable computational model. Only symbolic information is communicated. This paper proposes to communicate evolution rules as well as symbolic information. This idea arises from the DNA structure in living cells, such DNA codes information and operations and it can be sent to other cells. Extended nets could be considered as a superset of networks of evolutionary processors since permitting and forbidden constraints can be written in order to deny rules communication

    Networks of Evolutionary Processors: A Survey

    Get PDF

    Parallel Graph Partitioning for Complex Networks

    Full text link
    Processing large complex networks like social networks or web graphs has recently attracted considerable interest. In order to do this in parallel, we need to partition them into pieces of about equal size. Unfortunately, previous parallel graph partitioners originally developed for more regular mesh-like networks do not work well for these networks. This paper addresses this problem by parallelizing and adapting the label propagation technique originally developed for graph clustering. By introducing size constraints, label propagation becomes applicable for both the coarsening and the refinement phase of multilevel graph partitioning. We obtain very high quality by applying a highly parallel evolutionary algorithm to the coarsened graph. The resulting system is both more scalable and achieves higher quality than state-of-the-art systems like ParMetis or PT-Scotch. For large complex networks the performance differences are very big. For example, our algorithm can partition a web graph with 3.3 billion edges in less than sixteen seconds using 512 cores of a high performance cluster while producing a high quality partition -- none of the competing systems can handle this graph on our system.Comment: Review article. Parallelization of our previous approach arXiv:1402.328

    Networks of Evolutionary Processors (NEP) as Decision Support Systems

    Get PDF
    This paper presents the application of Networks of Evolutionary Processors to Decision Support Systems, precisely Knowledge-Driven DSS. Symbolic information and rule-based behavior in Networks of Evolutionary Processors turn out to be a great tool to obtain decisions based on objects present in the network. The non-deterministic and massive parallel way of operation results in NP-problem solving in linear time. A working NEP example is shown

    Hybrid Networks of Evolutionary Processors

    Get PDF
    A hybrid network of evolutionary processors consists of several processors which are placed in nodes of a virtual graph and can perform one simple operation only on the words existing in that node in accordance with some strategies. Then the words which can pass the output filter of each node navigate simultaneously through the network and enter those nodes whose input filter was passed. We prove that these networks with filters defined by simple random-context conditions, used as language generating devices, are able to generate all linear languages in a very efficient way, as well as non-context-free languages. Then, when using them as computing devices, we present two linear solutions of the Common Algorithmic Problem.Ministerio de Ciencia y Tecnología TIC2002-04220-C03-0

    Rule Representation in Distributed Environments with Accepting Networks of Splicing Processors.

    Get PDF
    This paper presents the model named Accepting Networks of Evolutionary Processors as NP-problem solver inspired in the biological DNA operations. A processor has a rules set, splicing rules in this model,an object multiset and a filters set. Rules can be applied in parallel since there exists a large number of copies of objects in the multiset. Processors can form a graph in order to solve a given problem. This paper shows the network configuration in order to solve the SAT problem using linear resources and time. A rule representation arquitecture in distributed environments can be easily implemented using these networks of processors, such as decision support systems, as shown in the paper
    corecore