1,163 research outputs found

    Solving a robust airline crew pairing problem with column generation

    Get PDF
    In this study, we solve a robust version of the airline crew pairing problem. Our concept of robustness was partially shaped during our discussions with small local airlines in Turkey which may have to add a set of extra flights into their schedule at short notice during operation. Thus, robustness in this case is related to the ability of accommodating these extra flights at the time of operation by disrupting the original plans as minimally as possible. We focus on the crew pairing aspect of robustness and prescribe that the planned crew pairings incorporate a number of predefined recovery solutions for each potential extra flight. These solutions are implemented only if necessary for recovery purposes and involve either inserting an extra flight into an existing pairing or partially swapping the flights in two existing pairings in order to cover an extra flight. The resulting mathematical programming model follows the conventional set covering formulation of the airline crew pairing problem typically solved by column generation with an additional complication. The model includes constraints that depend on the columns due to the robustness consideration and grows not only column-wise but also row-wise as new columns are generated. To solve this dicult model, we propose a row and column generation approach. This approach requires a set of modifications to the multi-label shortest path problem for pricing out new columns (pairings) and various mechanisms to handle the simultaneous increase in the number of rows and columns in the restricted master problem during column generation. We conduct computational experiments on a set of real instances compiled from a local airline in Turkey

    Simultaneous column-and-row generation for large-scale linear programs with column-dependent-rows

    Get PDF
    In this paper, we develop a simultaneous column-and-row generation algorithm that could be applied to a general class of large-scale linear programming problems. These problems typically arise in the context of linear programming formulations with exponentially many variables. The defining property for these formulations is a set of linking constraints, which are either too many to be included in the formulation directly, or the full set of linking constraints can only be identified, if all variables are generated explicitly. Due to this dependence between columns and rows, we refer to this class of linear programs as problems with column-dependent-rows. To solve these problems, we need to be able to generate both columns and rows on-the-fly within an efficient solution approach. We emphasize that the generated rows are structural constraints and distinguish our work from the branch-and-cut-and-price framework. We first characterize the underlying assumptions for the proposed column-and-row generation algorithm. These assumptions are general enough and cover all problems with column-dependent-rows studied in the literature up until now to the best of our knowledge. We then introduce in detail a set of pricing subproblems, which are used within the proposed column-and-row generation algorithm. This is followed by a formal discussion on the optimality of the algorithm. To illustrate the proposed approach, the paper is concluded by applying the proposed framework to the multi-stage cutting stock and the quadratic set covering problems

    Simultaneous column-and-row generation for large-scale linear programs with column-dependent-rows

    Get PDF
    In this paper, we develop a simultaneous column-and-row generation algorithm for a general class of large-scale linear programming problems. These problems typically arise in the context of linear programming formulations with exponentially many variables. The defining property for these formulations is a set of linking constraints. These constraints are either too many to be included in the formulation directly, or the full set of linking constraints can only be identified, if all variables are generated explicitly. Due to this dependence between columns and rows, we refer to this class of linear programs as problems with column-dependent-rows. To solve these problems, we need to be able to generate both columns and rows on the fly within an efficient solution method. We emphasize that the generated rows are structural constraints and distinguish our work from the branch-and-cut-and-price framework. We first characterize the underlying assumptions for the proposed column-and-row generation algorithm and then introduce the associated set of pricing subproblems in detail. The proposed methodology is demonstrated on numerical examples for the multi-stage cutting stock and the quadratic set covering problems

    Efficiency and Robustness in Railway Operations

    Get PDF

    A simulation scenario based mixed integer programming approach to airline reserve crew scheduling under uncertainty

    Get PDF
    Airlines operate in an uncertain environment for many reasons, for example due to the efects of weather, traffic or crew unavailability (due to delay or sickness). This work focuses on airline reserve crew scheduling under crew absence and journey time uncertainty for an airline operating a single hub and spoke network. Reserve crew can be used to cover absent crew or delayed connecting crew. A fixed number of reserve crew are available for scheduling and each requires a daily standby duty start time. Given an airline's crew schedule and aircraft routings we propose a Mixed Integer Programming approach to scheduling the airline's reserve crew. A simulation of the airline's operations with stochastic journey time and crew absence inputs and without reserve crew is used to generate disruption scenarios for the MIPSSM formulation (Mixed Integer Programming Simulation Scenario Model). Each disruption scenario corresponds to a record of all of the disruptions in a simulation for which reserve crew use would have been beneficial. For each disruption in a disruption scenario there is a record of all reserve crew that could have been used to solve or reduce the disruption. This information forms the input to the MIPSSM formulation, which has the objective of finding the reserve schedule that minimises the overall level of disruption over a set of scenarios. Additionally, modifications of the MIPSSM are explored, and a heuristic solution approach and a reserve use policy derived from the MIPSSM are introduced. A heuristic based on the proposed Mixed Integer Programming Simulation Scenario Model or MIPSSM outperforms a range of alternative approaches. The heuristic solution approach suggests that including the right disruption scenarios is as important as ensuring that enough disruption scenarios are added to the MIPSSM

    A simulation scenario based mixed integer programming approach to airline reserve crew scheduling under uncertainty

    Get PDF
    Airlines operate in an uncertain environment for many reasons, for example due to the efects of weather, traffic or crew unavailability (due to delay or sickness). This work focuses on airline reserve crew scheduling under crew absence and journey time uncertainty for an airline operating a single hub and spoke network. Reserve crew can be used to cover absent crew or delayed connecting crew. A fixed number of reserve crew are available for scheduling and each requires a daily standby duty start time. Given an airline's crew schedule and aircraft routings we propose a Mixed Integer Programming approach to scheduling the airline's reserve crew. A simulation of the airline's operations with stochastic journey time and crew absence inputs and without reserve crew is used to generate disruption scenarios for the MIPSSM formulation (Mixed Integer Programming Simulation Scenario Model). Each disruption scenario corresponds to a record of all of the disruptions in a simulation for which reserve crew use would have been beneficial. For each disruption in a disruption scenario there is a record of all reserve crew that could have been used to solve or reduce the disruption. This information forms the input to the MIPSSM formulation, which has the objective of finding the reserve schedule that minimises the overall level of disruption over a set of scenarios. Additionally, modifications of the MIPSSM are explored, and a heuristic solution approach and a reserve use policy derived from the MIPSSM are introduced. A heuristic based on the proposed Mixed Integer Programming Simulation Scenario Model or MIPSSM outperforms a range of alternative approaches. The heuristic solution approach suggests that including the right disruption scenarios is as important as ensuring that enough disruption scenarios are added to the MIPSSM

    Approaches to Incorporating Robustness into Airline Scheduling

    Get PDF
    The airline scheduling process used by major airlines today aims to develop opti- mal schedules which maximize revenue. However, these schedules are often far from \optimal" once deployed in the real world because they do not accurately take into account possible weather, air tra c control (ATC), and other disruptions that can occur during operation. The resulting ight delays and cancellations can cause sig- ni cant revenue loss, not to mention service disruptions and customer dissatisfaction. A novel approach to addressing this problem is to design schedules that are robust to schedule disruptions and can be degraded at any airport location or in any region with minimal impact on the entire schedule. This research project suggests new methods for creating more robust airline schedules which can be easily recovered in the face of irregular operations. We show how to create multiple optimal solutions to the Aircraft Routing problem and suggest how to evaluate robustness of those solutions. Other potential methods for increasing robustness of airline schedules are reviewed.NASA grant NAG1-218
    corecore