12,893 research outputs found

    Real-Time Motion Planning of Legged Robots: A Model Predictive Control Approach

    Full text link
    We introduce a real-time, constrained, nonlinear Model Predictive Control for the motion planning of legged robots. The proposed approach uses a constrained optimal control algorithm known as SLQ. We improve the efficiency of this algorithm by introducing a multi-processing scheme for estimating value function in its backward pass. This pass has been often calculated as a single process. This parallel SLQ algorithm can optimize longer time horizons without proportional increase in its computation time. Thus, our MPC algorithm can generate optimized trajectories for the next few phases of the motion within only a few milliseconds. This outperforms the state of the art by at least one order of magnitude. The performance of the approach is validated on a quadruped robot for generating dynamic gaits such as trotting.Comment: 8 page

    Domain Decomposition for Stochastic Optimal Control

    Full text link
    This work proposes a method for solving linear stochastic optimal control (SOC) problems using sum of squares and semidefinite programming. Previous work had used polynomial optimization to approximate the value function, requiring a high polynomial degree to capture local phenomena. To improve the scalability of the method to problems of interest, a domain decomposition scheme is presented. By using local approximations, lower degree polynomials become sufficient, and both local and global properties of the value function are captured. The domain of the problem is split into a non-overlapping partition, with added constraints ensuring C1C^1 continuity. The Alternating Direction Method of Multipliers (ADMM) is used to optimize over each domain in parallel and ensure convergence on the boundaries of the partitions. This results in improved conditioning of the problem and allows for much larger and more complex problems to be addressed with improved performance.Comment: 8 pages. Accepted to CDC 201

    Constraint interface preconditioning for topology optimization problems

    Get PDF
    The discretization of constrained nonlinear optimization problems arising in the field of topology optimization yields algebraic systems which are challenging to solve in practice, due to pathological ill-conditioning, strong nonlinearity and size. In this work we propose a methodology which brings together existing fast algorithms, namely, interior-point for the optimization problem and a novel substructuring domain decomposition method for the ensuing large-scale linear systems. The main contribution is the choice of interface preconditioner which allows for the acceleration of the domain decomposition method, leading to performance independent of problem size.Comment: To be published in SIAM J. Sci. Com

    Partitioning Procedure for Polynomial Optimization: Application to Portfolio Decisions with Higher Order Moments

    Get PDF
    We consider the problem of finding the minimum of a real-valued multivariate polynomial function constrained in a compact set defined by polynomial inequalities and equalities. This problem, called polynomial optimization problem (POP), is generally nonconvex and has been of growing interest to many researchers in recent years. Our goal is to tackle POPs using decomposition. Towards this goal we introduce a partitioning procedure. The problem manipulations are in line with the pattern used in the Benders decomposition [1], namely relaxation preceded by projection. Stengle’s and Putinar’s Positivstellensatz are employed to derive the so-called feasibility and optimality constraints, respectively. We test the performance of the proposed method on a collection of benchmark problems and we present the numerical results. As an application, we consider the problem of selecting an investment portfolio optimizing the mean, variance, skewness and kurtosis of the portfolio.Polynomial optimization, Semidefinite relaxations, Positivstellensatz, Sum of squares, Benders decomposition, Portfolio optimization

    Augmented Lagrangian Algorithms under Constraint Partitioning

    Get PDF
    We present a novel constraint-partitioning approach for solving continuous nonlinear optimization based on augmented Lagrange method. In contrast to previous work, our approach is based on a new constraint partitioning theory and can handle global constraints. We employ a hyper-graph partitioning method to recognize the problem structure. We prove global convergence under assumptions that are much more relaxed than previous work and solve problems as large as 40,000 variables that other solvers such as IPOPT [11] cannot solve
    • …
    corecore