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SOLVING LARGE-SCALE NONLINEAR PROGRAMMING
PROBLEMS THOUGH CONSTRAINT PARTITIONING∗

YOU XU AND YIXIN CHEN †

Abstract.
We present a novel constraint-partitioning approach for solving continuous nonlinear optimiza-

tion based on augmented Lagrange method. In contrast to previous work, our approach is based on
a new constraint partitioning theory and can handle global constraints. We employ a hyper-graph
partitioning method to recognize the problem structure. We prove global convergence under assump-
tions that are much more relaxed than previous work and solve problems as large as 40,000 variables
that other solvers such as IPOPT [11] cannot solve.
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1. Introduction. Nonlinear optimization is an important problem that has
abundant applications in science and engineering. In this paper, we study nonlin-
ear programming problems formulated as follows:

P : min
x

f(x), (1.1)

subject to h(x) = 0 and g(x) ≤ 0,

where f : Rn → R, h : Rn → Rm and g : Rn → Rr are twice continuously differentiable
functions. We denote by F = {x ∈ Rn : g(x) ≤ 0, h(x) = 0} the feasible set that
we assume nonempty, by Gc and Lc the set of global solutions and the set of local
solutions of Problem P . We further define C = {h(x), g(x)} as the constraints set and
X = {xi, i = 1, . . . , n} as the variable set. Since “large-scale” is a vague term, in this
paper, it refers to a large n and m+ r.

Algorithm presented in this paper are designed to solve P by solving a sequence of
specially constructed smaller-scale (in both variable number and constraint number)
constrained nonlinear optimization problems which can be solved in parallel. By using
partition, we aims to make the problem solver more scalable.

1.1. Observation of the problem structure. Our key observation is that
most application-based NLPs have structured and localized arrangements of con-
straints. To formalize our observation and exploit the sparse nature of nonlinear
optimization problems, we introduce the definition of related variable set.

Definition 1.1. For a given close form function f , the related variable set V (f)
is a set of variables involved in the close-form function f .

Here is a concrete example. An NLP problem has five variables {x1, . . . , x5}. The
objective function f is 2x1 + sin(x2)−x4x5. Thus, V (f) is {x1, x2, x4, x5}. This defi-
nition of related variable set of a function can be easily generalized to the a set of func-
tions. For example. V (f1, f2, ..., fn) is defined as the union of V (f1), V (f2), . . . .V (fn).
For a general nonlinear optimization problem P , we define the variable set V as the
related variable set of this problem where V = V (f, g, h)1. In the mean while, we
define all the constraints as set C = {g, h}.

∗This work was supported by Department of Energy
†Department of Computer Science, Washington University (chen@cse.wustl.edu).
1This definition is only valid for the functions that have a close form representation. This is

well-defined as we do not deal with other type of functions in this paper.
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Based on the definition of related variable set, we can number all constraints and
variables and denote them by c1, c2, . . . , cm and x1, x2, . . . , xn. To visualize this idea,
we plot a relationship graph using constraints’ indies as row and variables’ indies as
column. A dot is printed on (i, j) if and only if xj ∈ V (ci).

bratu3d.eps trimloss.eps

Fig. 1.1. Constraint-Variable relationship for Bratu3D and Trimloss

Figure 1a shows the constraint-variable relationship graph of a problem in CUTE
library [3], Bratu3D problem. The coefficient matrix of Bratu3D is a well-known
symmetric sparse matrix [4]. The corresponding relationship graph is also sparse,
symmetric and has strong locality. Figure 1b again shows the constraint-variable
relationship graph of a problem in CUTE library, Trimloss problem. It’s a convex
square root formulation of a non-convex MINLP arising from trim loss minimization
in paper industry [3]. It is also sparse. For any given constraint, it is only related to
a small set of variables.

Figure 1a, 1b and plenty of other problems in both CUTE library [3] and other
application show that for nonlinear optimization problems, constraints are usually
localized to a small set of variables, and this is usually because the spatial or temporal
nature of the problem, as constraints are usually local spatial or temporal restrictions.
Therefore, one intuitive idea is to reorder or regroup constraints and variables such
that all constraints in one group are only related to a small set of variables. We use
the term “partition” to denote such a regrouping procedure.

For some problems, partitioning strategies are straightforward. Take the “Dis-
tribution of Electrons on a Sphere” (ELEC) problem in COPS benchmark [5] as
an example. Given np electrons, find the equilibrium state distribution (of minimal
Coulomb potential) of the electrons positioned on a conduction sphere. The problem
can be formulated as

min f(x, y, z) =
np−1∑
i=1

np∑
j=i+1

((xi − xj)2 + (yi − yj)2 + (zi + zj)2)−
1
2 , (1.2)

s.t. x2
i + y2

i + z2
i = 1, i = 1, . . . , np (1.3)

In this problem, all constraints are highly localized and only related to three vari-
ables which are the 3-D coordinates for electron. Since all constraints are localized to
three related variables, when other variables are fixed, we can minimize the objective
function for every three variables subject to related constraints without affecting other
variables and constraints. Moreover, this minimization strategy has the potential to
be implemented in parallel. This simple yet elegant strategy is surprisingly useful as
we will show the detailed result in section 5.
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Generally, for large scale NLP problems, localized arrangement of constraints
and variables provides opportunities for reducing the computational cost. In the next
section, we will show how to partition constraints and how to constraints that are not
localized.

1.2. The constraint partitioning approach. Starting from a simple case,
let’s first give a formal definition of block separable constraint partition, which covers
the constraint structures like in ELEC.

Definition 1.2. For a given nonlinear optimization problem P with constraints
C = {ci(x)}, a subset S of P(C) is a block separable constraint partitioning if and only
if S is a partition of C and V (S) is a partition of X. Thus, ∀Pi, Pj in S, Pi ∩Pj = ∅,⋃
Pi = C and V (Pi) ∩ V (Pj) = ∅,

⋃
V (Pi) = V.

For this case, we propose a strategy that can solve the original problem via re-
solving constraints once per partition. However, more often than not, there are some
constraints that related to variables in different groups and there is no way to avoid.
Again let’s take a problem in CUTE library for example. The EIGMINB problem
in CUTE is to find the eigvector of a given symmetric matrix A, that is, to find a
unit vector q and scalar d such that Aq = dq for which d is least. This problem is
formulated with a constraint ‖q‖ = 1 which evolves all but one variable d. Other
constraints also evolve both q and d. This constraints’ structure prevents the block
separable constraint partitioning proposed above. To handle this under our partition
framework, we introduce the concept of general constraint partition as

Definition 1.3. For a given nonlinear optimization problem P with constraints
ci(x), a subset S ′ of P(ci) is a general constraint partitioning if S ′ is a partition of
{ci} with m+1 parts and {V (S ′j), j = 1, . . . ,m,m ∈ Z+} is a partition of X. Based
on these two definitions, we proposed a problem partitioning and resolving framework
to solve general NLP problems.

We first analyze the problem structure and find general constraint partition with
m+ 1 loosely coupled groups. According to our definition, all the constraints within
the same group in first m groups are only related to a small portion of variables and
any constraints that in different groups do not share any variable. Therefore, all the
variables are hereby be partitioned into the first m non-intersect groups. The only
difference between the definition of general constraint partition and block separable
constraint partition is that we allow the m+ 1th group of constraints that are related
to variables across different variable partitions. This relaxation gives us the flexibly to
handle problems like EIGMINB where some constraints are related to all variables and
there is no way to partition constraints into m independent groups with independent
related variables. In the EIGMINB example, By putting constraint ‖q‖ = 1 to the m+
1st group, other constraints are now can be rearranged as an block separable partition.
In this paper, we name all constraints reside in the m +1st group as global constraints.
To the contract, all the constraints in the first m groups are correspondingly defined
as local constraint. In section 3, we propose a constraints resolving strategy using a
novel exact penalty theory proposed in [1] to solve nonlinear optimization problems
and make full use of the local constraints. Our methods consists of two parts: 1)
to exploit the problem structure and constraints locality to get general constraint
partition, 2) iteratively solve smaller scale problems and ensure the solution quality
via global constraint resolving.

Definition 1.4. The augmented Lagrange function L of P is:

L(x, λ, c) = f(x) + λh(x) +
c

2
‖h(x)‖2, (1.4)
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where c > 0.
The rest of this paper is organized as following: In section 2, we briefly conclude

the previous work and explained why a constraint partitioning approach is necessary.
In section 3, we introduce our algorithm framework as well as the theoretical proof
to support our approach based on much relaxed assumption. Then we introduce the
system implementation briefly. Finally we get the conclusion that constraint partition
framework is a promising approach in solving NLPs by showing some experimental
results.

2. Related Work.

2.1. Existing parallel methods in optimization. In this section, we sur-
vey existing methods for solving large scale optimization problems in the manner of
partitioning or decompose into subproblems.

Depending on different ways in dealing with constraints and the assumption over
the convexity of the original problem, parallel algorithms for solving constrained op-
timization problems usually falls into three categories.

1. Unconstrained optimization with variable distributed
Algorithms in this category includes parallel variable distribution [6] and parallel

gradient descending [7]. Those algorithm usually exploits the parallel structure in
objective function of the unconstrained optimization problem. Usually, necessary
information like gradients are distributed to p processors where each of them handle
an independent part of variable set.

In parallel variable distribution algorithm, after variables are distributed among
p processors, PVD introduced a ‘forget-me-not’ term to allow the remaining variables
to change in a restricted fashion while solving a subproblem on a processing j with the
primary responsibility for updating its own block of variables. While this idea allows
parallel processor to obtain a better minimum. This algorithm is linearly convergence
towards the global minimal point under the assumption that objective function f is
strongly convex. In parallel gradient distribution algorithm, each processor takes its
own block of variables and corresponding gradient information. One of the important
features of this algorithm is that all subproblems can be solved using different ap-
proaches such as a descent, Newton, quasi-Newton or conjugated gradient algorithm
under the unified framework with convergence proof.

Other decomposition algorithm that are applicable to solve unconstrained opti-
mization problems includes the decomposition algorithm proposed by Tseng [10]. It
assumes that original cost function is separable and convex. Although this condition
is more restrictive than PVD, it can handle linear constraints that are not necessarily
block separable, we will discuss this algorithm later.

Generally, algorithms in solving unconstrained optimization problems in a par-
allel manner motivates us to develop parallel algorithms for constrained cases. The
proposed algorithm is similar to decomposition algorithm in the unconstrained cases
and have the same linear convergence rate. Moreover, we can also handle constrained
cases where the constraints might be nonlinear.

2. Constrained optimization with block-separable constraints.
This category contains various of algorithms as block separable constraints are

naturally eligible for parallel computing. Usually subproblem Pl on processor l is
defined as objective function f with variables other than block l fixed. It also only
contains constraints in the current block l. As in block separable constraints problems,
variables in each part are independent, objective function can be solved by solving
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independent subproblems. The block Jacobi method [8], the updated conjugate sub-
spaces method, the coordinate decent method and the parallel gradient distribution
all fall in this category. As each processor solves its own subsystem and there is no
communication between the processors until the synchronization step, these methods
are highly parallel. Since this strategy neglects the global properties of the whole
system, it might only gain a limited improvement during iteration.

A different family of algorithm that considers global properties includes Parallel
Variable Distribution for convex and non-convex objective functions [6, 9]. Instead of
solving subproblem independently, PVD solves the l-th problem with block variables
as ‘primary’ variables and p − 1 ‘secondary’ variables representing possible step size
that xk can move in block k other than block l while the search direction is pre-defined.

In conclusion, all parallel algorithms in this category shed lights on the develop-
ment of parallel algorithm for general constraints. However, as they all rely on the
assumption of the block separable structure, their applications are highly restricted.
For instance, there are totally 194 large scale problems in CUTE library (with number
of constraints and number of variables larger than 100) that has a sparse constraint-
variable relationship (sparse factor ¡ 0.25). However, only 9 of them, namely, airport,
ncvxqp4, ncvqp5, ncvqp6, static3, steenbra, steenbrb, steenbrd and steenbrf are block
separable. For other sparse problems, although most of the constraints are block sep-
arable, there are some constraints that make the block separable structure impossible
(for example, some constraints can involve all variables such that it can not be put
in a smaller block). This observation motivates us to develop a general method in
handling constraints.

3. Constrained optimization with general constraints.
As mentioned above, about 95% of the large scale sparse optimization problems

in CUTE fall in to this category. The partitioning approaches for solving problems in
these category can be classified as two families. The first one is to divide constraints
into different processors and solve subproblems with less (and therefore easier) con-
straints. Parallel Constraint Distribution and Parallel proximal minimization are two
representative approaches. Since for each subproblem, it involves the same number of
variables as the original problem, they do not exploit the parallel and sparse nature
of nonlinear optimization problems.

The other family is to handle the global constraints explicitly as an item in bi-
ased function and only handle block separable constraints explicitly. However, for
general nonlinear convex optimization problems where constraints can be nonlinear
and non-block separable, no numeric result was reported yet. Previously PVD [6] and
PVDCO [9] both proposed this idea without further discussing. In this paper, we will
report some preliminary numeric results in solving large scale nonlinear optimization
problems.

2.2. Existing partitioning methods. In this section we briefly survey the
existing methods in partitioning and solving large-scale nonlinear optimization prob-
lems.

Moreover, for nonlinear optimization problem general constraints, in the previous
work, the block separable structure is a prior. However, in the real world problem,
the constraints’ structure needs to be analyzed to extract non-block separable con-
straints and partitioning the constraints into blocks. In this paper we first proposed
a automatic partitioning method differ than some previous work that use a certain
index [?] or bi-part graph partitioning.
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3. Algorithm Framework. We assume that in all the cases below, objective
function f and constraints h are all continuous and differentiable. We consider an
NLP problem with general constraint partitioning as

min f(x)
subject to Ht

1(x) = 0
H2(x) = 0,

where Ht
1(1 ≤ t ≤ m) and H2 combined together is a general constraint partitioning.

Unlike the traditional unconstrained optimization method which transforms all
the constraints to a part of the unconstrained objective function, we only transform
H2 to objective while maintaining H1(x) still as constraints as P ′:

min f(x) + λH2(x) +
1
2
‖H2(x)‖2

subject to Ht
1(x) = 0.

P ′ now has block separable constraints.
For problem P ′, we will later prove in Lemma 2 that the solution of P when c is

sufficiently large is indeed the solution to the original problem P . The discussion in
Chapter 2.4 of [1] shed the light on the proof. The basic idea is to use find a partition
of x as

x = [x1, x2]

and denote x2 by x1 via system H2(x1, x2) = 0. Therefore, the local minimal of P ′ in
augmented Lagrange iteration is equivalent to the unconstrained cases. The rational
behind this is that the constrained problem can be solved quite satisfy and possibly
even more easily that the problem of unconstrained minimization of the ordinary
augmented Lagrangian [1]. The other reason is that we can solve the problem in a
partitioned manner by solving even smaller subproblems.

Now that we have problem P ′, the challenge is to solve P ′ efficiently via the
augmented Lagrange iteration. Parallel variable distribution with constraints is a
good way to solve it, but instead of employing the SQP method to solve subproblems,
we directly call existing solvers to find the KKT point for subproblems and do not
care too much about the underlying method in solving subproblems.

First we define subproblem Pt as

Pt : min f(xt) (3.1)
subject to Ht

1(xt) = 0 (3.2)

where xt = V (Ht
1) is a subset of x and f(xt) = f(x) where all variables except in

xt are fixed to a value. That is, subproblem xt only aims to optimize the objective
function on a small partition of variables instead of the complete variable space x.
Depends on the number of the partition and the size of the partition, the subproblem
can be significantly smaller than the original problem. Given the fact that general
nonlinear optimization problem is NP-complete, the time required in solving a smaller
subproblem can be exponentially smaller than solving the original problem.

In practice, there are two ways to utilize the solution of the subproblems. One
way to to solve all subproblems one by one and use the variable value updating from



7

the previous subproblem as the fixed value in the next iteration. In this manner,
we prove the result that every accumulation point generate by this procedure is the
stationary point of the original problem. Moreover, if every time the subproblem
solver yields the strict minimal value, then the accumulation point is the strict local
minimal.

———————————–
In practice, since stage search are performed in parallel on each subspace, for a

given starting point x0, every stage tries to solve subproblem Pt on subspace Xi. We
denote the solution on stage t by xt0 and the distance vector from xt0 to x0 by dk.
Since each solution is collected through parallel stage search, different strategies can
be used to put the solution together as the next point moving from x0. We might use
cubic spline interpolation which is similar to SQP method. In this paper, we simply
choose next point as x = (x0 + d1 + d2 + dt + . . . + dN ). If f(x) < f(x0), we adopt
x as the next starting point in the parallel stage search. Otherwise we pick di where
di = arg min f(x0 + di). Therefore, the parallel stage search will always find a new
point to reduce the function value unless every fxt

0
in stage search equals to f(x0).

We will prove later that similar to the result in ??, the procedure in Figure ??
generates fixed points that are necessary but not sufficient to satisfy ??. Hence,
in [?] and [?], constraint partitioned simulated annealing are used to escape from
infeasible local minimal of the l1-penalty function. However, in certain cases, we can
proof that the stationary point obtained by our search process is actually the feasible
point and thus the local minimum of the objective function in according to the ESPC
condition. One of the trivial example is that the objective function f is linear and
there is no global constraints. To optimize a linear function f =

∑n
i=1 ωixi without

global constraints is equivalent to optimized N subproblems with partitioned local
constraints and partitioned linear objection function

∑
jinVt

ωjxj separately. In the
next section we will further formalize this result based on block separable constraint
partitioning framework.

3.1. The convergence of our algorithm. In this section we present a proof
of global convergence of the partitioning and resolving algorithm of Figure 3 when
applied to problem P . We start from the simplest cases where Problem P has block
separable constraint partition. These problems are without global constraints. This
category contains lots of problem such as AIRPORT in CUTE, ELEC in COPS and
have significant application in real world. We shall make use of the following as-
sumptions on Problem P and establish some lemmas based on problems with block
separable constraint partition. Later we will show how to solve problems with general
constraint partition in the framework of block separable constraint partition.

Standard Assumption
Assumption 1. The feasible set F is compact on Rn (This implies non-emptiness).
Assumption 2. The objective function f takes a finite number of values on Lc
Assumption 3. The EMFCQ (extended Mangasarian-Fromowitz constraint quali-

fication) holds, namely, ∇hj(x), j = 1, . . . , r are linearly independent and there exists
a z ∈ Rn such that

∇gi(x)
′
z < 0, i ∈ I+(x),

∇hj(x)
′
z = 0, j = 1, . . . , r.

It can be noted that EMFCQ implies the MFCQ that the gradients of the active
inequality constraints and the gradients of the equality constraints are positive-linearly
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independent at an optimal point x∗ for the original problem. It’s obvious that this
condition also implies the MFCQ condition for each subproblem at each stage search
phase.

Consider a set of Problem PI ⊂ P :

PI : min
x∈RN

f(x), (3.3)

subject to h(x) = 0 and g(x) ≤ 0,

with block separable constraint partition where constraint set {h(x)} and {g(x)} can
be partitioned into N groups with non-intersective related variable set. We try to
find local minima of PI by iteratively solving a series of subproblems Pt defined as

Pt : min
xt∈Ft

f(xt), (3.4)

where t indicates the index of constraint partitions.
Assume Problem PI has compact feasible set F . Since PI has block separable

constraint partition, F can be decomposed as F1 × F2 × . . . × Ft. Thus, if every xt
is a solution to Pt, namely, xt ∈ Ft, we have x = (x1, . . . , xN ) ∈ F . Hence, x is a
feasible solution to PI .

Thus, the only concern is optimality. To prove this, we make an assumption
that at every stage, the solution to subproblem PI satisfies the necessary KKT con-
dition. We prove the below two lemma that solution sequence generated by stage
search algorithm has accumulative point and those accumulative points satisfy KKT
condition.

Lemma 1 For Problem P with block separable constraint partition and an non-
trivial objective function f ∈ C1 with tight lower bound f∗ in compact feasible set
F , the point sequences visited by parallel stage search algorithm has accumulative
points.

Proof. As the objective function f is lower bounded and at every stage and
restoration phase never occurs, the parallel stage search algorithm defined in Figure 1
will always generate next point with function value f ′ less than or equals to the current
f . Thus, during the search, f will monotonically decreasing or keep unchanged. As
objective function f is lower bounded, will finally converge to a finite value, say, f∗.

Lemma 2 (Local optimality) For continuous optimization problem P and stan-
dard assumptions holds. If P has block separable constraint partition with N parti-
tions and therefore can be partitioned as Pt in stage search, for a point x∗, if each
x∗|t is the KKT point of subproblem Pt if and only if x∗ is the KKT point of P .

Proof. The Lagrangian function associated with Problem P is the function L :
Rn × Rm × Rr → R defined by

L(x, λ, µ) = f(x) + λ′g(x) + µ′h(x).

Under the assumption of the regularity condition, the Karush-Kuhn-Tucker (KKT)
triplet for Problem P is a triplet (x∗, λ∗, µ∗) ∈ Rn × Rm × Rr → R such that x∗ ∈ F
and

∇xL(x∗, λ∗, µ∗) = 0, (3.5)
λ′g(x∗) = 0, (3.6)

λ ≥ 0. (3.7)
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Similarly, start from the KKT condition for subproblem Pt, we have

∇Vtf(x∗t ) + λ
′

t∇Vtg(x∗t ) + µt∇Vth(x∗t ) = 0 (3.8)

λ
′

t∇Vtg(x∗|t) = 0 (3.9)

λ
′

t ≥ 0 (3.10)

We concatenate all N conditions over subproblem Pt by concatenating all λt and
µt as λ∗ and µ∗. Note that ∇V f(x∗) = (∇Vtf(x∗1, . . . ,∇Vtf(x∗N )T , all N conditions
can be rewrite collectively as

∇x = 0,∇V f(x∗) + λ∗
′
∇V g(x∗) + µt∇Vt

h(x∗) = 0λ′g(x∗) = 0, λ ≥ 0.

where x∗ = (x∗1, . . . , x
∗
1), λ∗ = (λ1, . . . , λN ) and µ1, . . . , µN ).

Remark: The proof of the above Lemma can also be drawn from ESP Theory
developed in [12]. ESP condition is more general than KKT condition as it is capable
for non-continuous programming. wh Lemma 2’. Under our general assumption,
starting from any initial point x0 in Rn, the stationary or accumulative point of our
algorithm satisfies KKT necessary condition.

Proof: We prove this by contradiction. Let’s assume x∗ as the stationary or
accumulative point of algorithm. Since F is compact, x∗ is well defined and x∗ ∈ F .
Under our assumption, MFCQ holds at x∗. Thus, if x∗ does not satisfy KKT necessary
condition, since all gi(x∗) and hj(x∗) are local constraints and are satisfied during the
stage search, the only possibility for x∗ to violate the KKT condition is there doesn’t
exist constant µi > 0 and γj such that

∇f(x∗) +
m∑
i=1

µi∇gi(x∗) +
r∑
j=1

γj∇hj(x∗) = 0.

Thus, ∇f 6= 0, there exists at least one point x∗∗ along the gradient direction of x∗,
such that f(x∗∗) < f(x∗) and g(x∗∗) < 0, h(x∗∗) = 0. We denote p by x∗∗ − x∗ and
further expand p∇f as

p∇f =
n∑
i=1

pi
∂f

∂xi
=

m∑
t=1

pt∇fXt

where pt and fXt
are the vector and gradient projected on space Xt. Thus, at least one

pt∇fXt
< 0. This contradicts our assumption that at x∗, every subproblem already

satisfies KKT condition.
Remark 2. This lemma insures us that our constraint-partitioning framework

will output an local optimal solution for objective functions in C1 if we can solve
every subproblem optimally. It also provides the theoretical proof of partition large
problems into several subproblems and solve them independently when there is no
global constraints. For some large-scale problems in the benchmark such as AIRPORT
and ELEC, we use this approach to separate original problems into smaller parts and
then call the same solver to solve subproblems iteratively until the objective value f
keep unchanged. As shown in Section 5, amazingly it boosts the solving speed up
to 9 times without any other optimization techniques applied to solver as in every
optimization step in our framework, we significantly reduce the computational cost to
evaluate objective function and gradient. Additionally, as guaranteed by this lemma,
our solution quality are equally good as the solution given by other solvers.
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It’s also easy to see from Lemma 2 that if the feasible set F is convex and the
objective function f is convex and second order differentiable, then by using Lemma
2, our algorithm also guarantees the global optimality given that every solver will
provide local optimal with respect to each subproblem.

Till now, we established the lemma under the assumption that there is no global
constraints involved, namely, problem PI . At every stage in the algorithm for solving
PI , x is always a feasible solution to the original problem. However, in general problem
P , when global constraints are involved, x might violated some global constraints and
therefore not necessarily be the feasible solution to the original problem. To handle
this and solve P in this framework, we put the violation of global constraints as a
penalty item in objective function in the hope of solving the optimization and feasibly
problem in a single shot. To show how we deal with separable and non separable
constraints, we first define a sightly different problem PΩ as

Definition 3.1. (Nonlinear Problem on Ω) Assume the general nonlinear opti-
mization problem PΩ

PΩ : min
x

f(x),

subject to h(x) = 0 and g(x) ≤ 0,
x ∈ Ω (3.11)

where Ω is a closed set and contains block separable constraints.
Our aim is to solve a biased problem defined as

P ′Ω : min
x

f(x) + ρ‖h(x), g+(x)‖,

x ∈ Ω (3.12)

where Ω is contains all block separable constraints.
Traditionally, exactly penalty method is defined in solving an unconstrained sub-

problem with biased objective function. The classic result of exact penalty method
can be written as [?] the proposition below. The detailed proof can be found on [?].

Proposition 1 Assume that x∗ ∈ Rn satisfies the second-order sufficient con-
ditions for a local minimizer of problem PΩ. Let λ∗ ∈ Rm, µ∗ ∈ Rr and η∗ be the
Lagrange multiplier vectors associated to h, g and constraints set Ω, respectively. For
ρ > ρ̄ = ‖λ∗, µ∗‖1/p, and ρ1 > ‖η∗‖1/p, x∗ is a strict unconstrained local minimizer of
P (x, ρ, ρ1) = f(x) + ρ‖h(x), g+(x)‖1/q + ρ1ω(x), where ω(x) is the penalty function
for Ω and 1/p+ 1/q = 1.

Based on this proposition, we now prove an important lemma which was first
proved in [?] that exact penalty method can be applied to constrained cases.

Lemma 2 Let x∗ ∈ Rn satisfies the second-order sufficient conditions for a local
minimizer of problem PΩ. There exist 0 < ρ̄ <∞ such that for ρ > ¯rho, x∗ is a strict
local minimizer of P ′Ω where the definition of norms satisfies the same condition in
Proposition 1.

Proof.
Proof. We consider the problem

P ′Ω : min
x

f(x) + ρ‖h(x), g+(x)‖+ ρ1ω(x),

x ∈ Rn (3.13)

where ρ, ρ1 > 0 and ω(x) is as defined in Proposition 1. Since x∗ satisfies the second-
order sufficient conditions for PΩ, we know from Proposition 1 that x∗ is a strict local
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minimizer of 3.13. Therefore, there exists ε such that for all x ∈ B(x∗, ε) ≡ {x ∈
Rn|‖x− x∗‖ ≤ ε},

f(x∗) < f(x) + ρ‖h(x), g+(x)‖+ ρ1ω(x) ∀x ∈ B(x∗, ε) ∪ Ω,

since ω(x) = 0 for all x ∈ Ω. Thus, for ρ > ρ̄ = ‖λ∗, µ∗‖1/p, x∗ is a strict local
minimizer of PΩ.

Hence, to solve the original problem P , we can transform it to PΩ and then
use constraint partitioning approach we proposed for block-separable constraints to
solve that. However, the only difficulty here is that in our algorithm assumption, the
objective function is differentiable. Here the biased function is convex and continuous
but not continuous. We further make the objective function differentiable on each
segments. Other methods that make the objective function, for example, to use
the continuous differentiable exact penalty function can also be used here. We use
non-differentiable function as we don’t want to involve too much complexity to the
nonlinear objective function.

Now we introduce the projection theorem as a lemma here without proof. Detailed
proof can be found in [2].

Lemma 3 Let C be a closed convex set and ‖.‖ be the Euclidean norm, the
projection mapping f : Rn → C defined by f(x) = [x]+ is continuous and non-
expansive, i.e.,

‖[x]+ − [y]+‖ ≤ ‖x− y‖, ∀x, y ∈ Rn

Lemma 4 For every x ∈ X and z ∈ Rn, the function g : [0,∞)→ R defined by

g(s) =
‖[x+ sz]+ − x‖

s
,∀s > 0,

is monotonically non-increasing.
Proof. We take two scalars s1 and s2 with s2 > s1 > 0, and we show that

‖[x+ s2z]+ − x‖
s2

≤ ‖[x+ s1z]+ − x‖
s1

To simplify the proof, we define y = s1z and γ = s2/s1, we further denote x+ y and
x+ γy by a and b. The inequality is written as

‖b̄− x‖ ≤ ‖γā− x‖

where x̄ is the projections of point x on X.
We first consider some special cases. If ā = x, then as s1 < s2, clearly b̄ = x, so

the equation holds. Also if a ∈ X, then ā = a = x + y, so equation above becomes
‖b̄− x‖ ≤ γ‖y‖ = ‖b− x‖, which again holds according to Lemma 3. Finally if ā = b̄,
then the equation also holds. Therefore, we only consider the case where ā 6= b̄, ā 6= x,
b̄ 6= x, a /∈ X.

Let Ha and Hb be the two hyperplanes that are orthogonal to b̄ − ā and pass
through ā and b̄, respectively. Since (b̄ − ā)′(b − b̄) ≥ 0 and (b̄ − ā)′(a − ā) ≤ 0,
we have that neither a nor b lie strictly between the two hyperplanes Ha and Hb.
Furthermore, x lies on th esame side of Ha as a, so x /∈ Ha. denote the intersections
of the line {x+ α(b− x)|α ∈ R} with Ha and Hb by sa and sb, respectively. Denote
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the intersection of the line {x+ α(ā− x)|α ∈ R} with Hb by ω, we have

γ =
‖b− x‖
‖a− x‖

≥ ‖sb − x‖
‖sa − x‖

(3.14)

=
‖ω − x‖
‖ā− x‖

=
‖ω − ā‖+ ‖ā− x‖

‖ā− x‖
(3.15)

≥ ‖b̄− ā‖+ ‖ā− x‖
‖ā− x‖

≥ ‖b̄− x‖
‖ā− x‖

(3.16)

Theorem 1a For every x ∈ X there exists a scalar sx > 0 such that

f(x)− f(x(s)) ≥ σ∇f(x)′(x− x(s)), ∀s ∈ [0, sx],

where xs = [x− s∇f(x)]+.
Proof. We know that if z is the projection of y over convex set C, we have

(x−z)′(y−z) ≤ 0 for any x ∈ C. We plug in x−s∇f(x) as y and xs = [x−s∇f(x)]+

as z, we have

(x− x(s))′(x− s∇f(x)− x(s)) ≤ 0, ∀x ∈ X, s > 0.

Hence,

∇f(x)′(x− x(s)) ≥ ‖x− x(s)‖2

s
∀x ∈ X, s > 0.

If x is stationary, the conclusion holds with sx being any positive scalar, so assume
that x is not stationary. Thus, ‖x − x(s)‖ 6= 0 for all s > 0. We also know that by
mean value theorem that for all x ∈ X and s ≥ 0,

f(x)− f(x(s)) = ∇f(x)′(x− x(s)) + (∇f(ξs)−∇f(x))′(x− x(s)),

where ξs lies on the line segment joining x and x(s). Therefore, the equation can be
rewritten as

(1− σ)∇f(x)′(x− x(s)) ≥ (∇f(x)−∇f(ξs))′(x− x(s)),

However, from Lemma 4, we have for all s ∈ (0, 1],

∇f(s)′(x− x(s)) ≥ ‖x− x(s)‖2

s
≥ ‖x− x(1)‖ · ‖x− x(s)‖.

Therefore, the equation satisfied for all s ∈ (0, 1] such that

(1− σ)‖x− x(1)‖ ≥ (∇f(x)−∇f(ξs))′
x− x(s)
‖x− x(s)‖

.

Remark 1 (Partitioned search in convex subproblems). For block separable
constraint partition problem PI , if each region Ft is convex and objective function
f is convex defined on a convex D with standard assumption holds, stage search
algorithm converges to global optimal point of PI .

Now we study a constraint partitioning algorithm that can efficient solve large-
scale nonlinear optimization problems based on augmented Lagrange method. We
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consider the classic nonlinear optimization problem with all equal constraints. The
original problem Po is defined as:

min f(x) (3.17)
subject to : H1(x) = 0 (3.18)

H2(x) = 0 (3.19)

where H1 contains all constraints that can be partitioned and H2 are global con-
straints as we stated. We transform problem Po to an Augmented Lagrange problem
with partical constraints as PL.

min f(x) + λH2(x) +
1
2
c‖H2‖2 (3.20)

subject to : H1(x) = 0 (3.21)

There are plenty of related works talked about how to solve this problem PL
using existing solver. In our proposed algorithm, as argued in the previous section,
we are trying to solve problem PL in a partitioned manner, namely, to solve a series
of smaller subproblems. The partitioned subproblem P tL where t = 1, . . . , r.

min f(x) + λH2(x) +
1
2
c‖H2‖2 (3.22)

subject to : Ht
1(x) = 0 (3.23)

where Ht
2 is the t-Th block of in the block separable constraints H2.

4. Algorithm. In order to solve the problem above, we consider the following
algorithmic models.

Initialization;
while constraint violation larger than η∗ do

while ‖∇LP ‖ ≥ ωk do

end
if ‖H2(x(k))‖ < η∗ ∇LP ≤ ω∗ then

output x(k) as the solution;
end
if ‖H2(x(k))‖ < ηk then

λ(k+1) = λ(k) + c ∗H2(x(k));
c(k+1) = c(k);
k = k + 1;

else

end
end

Note that in the initialization step, an initial vector of Lagrange multiplier esti-
mates λ0 is given. The positive constants are specified as c0 = 1. ωk and ηk are two
positive sequences with 0 as the limit. ω∗ and η∗ are pre-defined positive scalar that
is close to 1 and τ > 1.
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5. Proof. In this section, we will prove three major results. 1, we will prove that
the inner iteration will terminate in finite steps to find x(k+1). 2, we will prove that
this method will converge to a local minimal x∗ of P when stated from a neighborhood
of x∗, namely, the local convergence result. 3, if there is a feasible solution for this
problem and the function is lower bounded, under some mild assumptions, every
limited point of the sequence x(k) is a KKT point of problem P . This result is usually
called global convergence attribute.

The whole theory of our propositions are based on this assumption:
General Assumption Vector x∗ is a strict local minimum and a regular point of

the original problem P .
We first scratch out the local convergence theory for the original augmented la

grange method (i.e. all the constraints are transformed into objective function with
corresponding Lagrange multiplier.)

Lemma 1 Suppose we have general assumption holds and let c̄ be a position scalar
such that

∇2
xxLc̄(x

∗, x∗) > 0.

For two positive scalars ε and δ We draw a set D around x∗, for all (λ, c, α) in
the set D defined by

D = {(λ, c, α)|(|λ− x∗|2/c2 + |α|2)1/2) < δ, c̄ ≤ c},

(1). there exists a unique vector xα(λ, c) within S(x∗; ε) satisfying

∇xLc[xα(λ, c), λ] = α

(2). The function xα is continuously differentiable in the interior of D, and for all
(λ, c, α) ∈ D, we have

|x(λ, c)− x∗| ≤M(|λ− x∗|2/c2 + |α|2)1/2.

.
(3). for all (λ, c, α) ∈ D, we have

‖λ̃− x∗‖ ≤M(‖λ− x∗‖2/c2 + ‖α‖2)1/2,

where λ̃ = λ+ c ∗ h.

Proof
We consider the system of equations in (x, λ̃, λ, c, α)

∇f +∇hλ̃ = α

h(x) = (λ− λ̃)/c = 0

By introducing a new variable t and define γ as 1/c, we can rewrite the system
as
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∇f +∇hλ̃ = α

h(x) + t+ γx∗ − γλ̃ = 0

We now define a continuously differentiable functions x̂, λ̂ as the function to
variable γ and t. Now we have

∇f(x̂) +∇h(x̂)λ̂ = α

h(x̂) + t+ γx∗ − γλ̂ = 0

We differentiable the above system with respect to t, γ and α. We obtain

[
∇tx̂ ∇γ x̂ ∇αx̂
∇tλ̂ ∇γ λ̂ ∇αλ̂

]
= A(t, γ, α)

[
0 0 I

−I λ̂− x∗ 0

]
,

where A is the inverted Jacobi an matrix of the system.
Now, we have for all t, γ and α such that ‖(t, α)‖ < δ and γ ∈ [0, 1/c̄],

[
x̄− x∗
λ̄− x∗

]
=
∫ 1

0

A(ζt, ζγ, ζα)
[

0 0 I

−I λ̂− x∗ 0

] t
γ
α

 dζ
We know that A is bounded. Let µ be such that |A| ≤ µ and take δ sufficiently

small to ensure that µδ < 1. We have

(|x̂− x∗|2 + |λ̂− λ|2)1/2 ≤ µ(|t, α|+max|λ̂− x∗|γ).

We denote max|λ̂− x∗|γ by κ and obtain that

|λ̂− x∗| ≤ µ|(t, α)|+ µγκ

Therefore, κ ≤ µ
1−µγ |t, α| for µγ < 1. We plug in this inequality to and get

(|x̂− x∗|2 + |λ̂− λ|2)1/2 ≤
(
µ+

µ2γ

1− µγ

)
|t, α| ≤ µ

1− µδ
|t, α|.

For sufficiently small δ, we have

(|x̂− x∗|2 + |λ̂− λ|2)1/2 ≤ 2µ|t, α|

As t = 1/c, we finally have

|x− x∗| ≤M(|λ− x∗|2/c2 + |α|2)1/2

and

|λ− x∗| ≤M(|λ− x∗|2/c2 + |α|2)1/2
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Q.E.D.
Lemma 1 stats the local convergence of general Lagrange multiplier method in

inexact cases. Now we extend this to handle constraints explicitly. Namely, the aug-
mented Lagrange function L only constrains part of the constraints. Other constraints
are explicitly written as constraints.

Some other works handle the simple bound constraints. Here we propose a method
that can handle general constraints. The idea is similar to [2].

This lemma draws the same idea of [3], Chapter 2, page 143, with the assumption
that every step can be solved inexactly.

Lemma 2 Assume the standard assumption holds. Additionally, the gradient of
each constraint at x∗ are linearly independent.

Problem

minL1,c(x, λ1)

subjecttoh2(x) = 0

is solved in an inexact manner. Namely, we have

∇L1,c(x, λ1) ≤ ε1

|h2(x)| ≤ ε2
Then there exist M such that

|x− x∗| ≤M ∗max {|λ− x∗|/c, |ε1|, |ε2|}

and

|λ− x∗| ≤M ∗max {|λ− x∗|/c, |ε1|, |ε2|}

proof The proof is straightforward. The idea is to divide x as (x1, x2) and assume
without loss of generality that ∇h2 is non-singular. Then using the implicit function
theorem, it’s possible to solve near x∗ the system of equations

h(x1, x2) = 0

and obtain x2 in terms of x1 as an implicit function Φ(x1). To make it more preciously,
we now consider a system of three equations as

∇f +∇h1λ̂+∇h2λ2 = 0,

h1(x) + t+ γx∗1 − γλ̃ = ε1,

h2(x) = ε2

Similar to the proof of Lemma 1. Now we have Jacobi matrix with respect to
(x, λ1, λ2) computed as (x∗, x∗, x∗2) is ∇2

xxL0(x∗, x∗) ∇h1(x∗) h2(x∗)
∇h1(x∗)T −γI 0
∇h2(x∗)T 0 0


As our assumption ensures that this Jacobi matrix is non-singular for γ = 0.

Actually for γ ∈ [0, 1/c̄], this matrix is non-singular. Therefore, by using the implicit
function theorem mentioned in section 1.3 of the book, x2 can denoted as a function
of x1 and h2. The below is as the same as Lemma 1
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6. Global Convergence. Lemma 1 and 2 states the local convergence result
of our algorithm. However, a more important result is the global convergence proof,
namely, every accumulation point of the sequence generated by this algorithm will
converge to a feasible KKT point to the original problem under some mild assump-
tions, or the algorithm will stop at some step states that the original problem doesn’t
have a feasible solution. The global convergence result ensures the robustness of the
algorithm.

The proof of this is similar to the proof appears in paper [1].
General assumptions:
The iterates {xk} considered lie within a closed, bounded domain Ω.
The MFCQ is hold (need to expand)
Lemma 3. Suppose that 1/ck converges to 0 as k increases when Algorithm 1 is

executed. Then λ/c convergences to 0.
Proof. We know that if 1/c converges to 0, step 3 (the penalty increase step) must

be executed infinitely often. Therefore, a sub-sequence {ki}of indies of the iteration
can be picked where the step 3 is executed. And we know that, according to our
updating rule,ck > 2β .

Now we consider how the Lagrange multiplier estimates change between two suc-
cessive iterations indexed int eh set K.

λk+j = λk +
j−1∑
l=1

ck+lh(x)

and

ck+1 = ck+1 = ck+j = ηck

Now that the summation is null if j = 1. Suppose that j > 1. We know that step
2 must executed and hence, we have the constraint violation that

h(x) < εk

Plug it in to the equation above, we can get

λk+j ≤ λk +
j−1∑
l=1

ck+lh(x) ≤ λ+ 2η1/c

Thus, we obtain that

λk+j/c ≤ ηλk + 2η1/c

Therefore, if we let k increase, λ/c converges to zero.
Lemma 4. The violation of the constraints h is bounded by this equation

h(xk ≤ (α1 + ‖λ− λ∗‖/c+ α2‖xk − x∗‖/c
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Proof: as we know that h = 1/c(λk+1−λk). According to Lemma 2, we have the
bound of λ− λ∗. Therefore, we have the bound on h.

Lemma 5. Suppose that all the assumption holds and at point x∗ which is an
accumulation point given by algorithm. Additionally, if we have h(x∗) = 0. Then, x∗

is a KKT point of problem P . In the meanwhile, λ∗ is the corresponding multiplier.
Note that x∗ is an accumulative point. Therefore, there exist a sequence xk with

x∗ as the limit point. Now we investigate the gradient of Lagrange function L at x∗.
We all know that gradient of L approaches 0 when k approaches infinity according to
the definition of our algorithm. The only thing we need to proof is the multiplier. Note
that according to the assumption, the Jacobi matrix of the constraint h is nonsigular.
Therefore, we define a new λ′ which is −J+∇L. We use the λ′ to replace the λ∗

in Lemma 2 without affect the result. In this case, as k approaches to infinity, λ
converges to λ∗.

Now let’s prove our global convergence result.
Theorem 1. Suppose all the assumption holds on every accumulative points x∗

of sequences generated by our algorithm without the failure in step 2, then x∗ is the
KKT point of the original problem.

Proof There are two cases
1) If c is bounded. The Step 2 must be executed every iteration from k sufficiently

large. But this implies that the constraint is always satisfied. Then according to
Lemma 5, the accumulative point x∗ is indeed the KKT point.

2) If c converges to infinity, we know that lemma 4 states that h is bounded by
the equation. Therefore, h must be 0 when c approaches infinity. Therefore, the same
conclusion can be drawn that x∗ is the KKT point.

7. Algorithm Implementation. In this section, we briefly introduce our im-
plementation details about our algorithm. We do believe that technical details should
be well presented in introducing a novel algorithm framework. We briefly introduce
the idea of constraint partitioning and

7.1. Strategies for partitioning constraints into subproblems. If we de-
fine Rglobal to measure the effectiveness of using different strategies for partitioning
the constraints of a problem. Since the time to solve a partitioned problem is largely
driven by the overhead in resolving its inconsistent global constraints, we define Rglobal
to the the ratio of the number of global constraints to the total number of all con-
straints. Note that the metric is heuristic because the exact overhead depends on the
difficulty of resolving the inconsistent global constraints and not on the number of
global constraints. We can also introduce some weighted metric to the constraints,
for example, we are willing to leave linear constraints as global constraints instead
of nonlinear constraints as linear inconsistency tends to be easy to resolve. However,
this is beyond the scope of this paper at this time.

As our goal is to partition the constraints in such a way that minimizes the
overall search time, an efficient constraint partitioning algorithm is essential. Since
the enumerations of all possible ways of partitioning is computationally prohibitive,
our approach is to convert the constraint partitioning problem to a graph or hyper-
graph partitioning problem. In the graph model, we first formulate all the variables
as the vertexes and the if two variables appear in a constraint, we add an edge in
between these two variables (vertexes) with some weights, and then we minimize the
total sum of the weights of the edges that cross different partitions. In the hyper-
graph model, we first formulate all the variables as the vertexes in the hyper-graph
and all the constraints as hyper-edges in the hyper-graph. In this model, our goal is
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to minimize the edge cuts cross different partitions, which is actually equivalent to
minimize the number of global constraints, or Rglobal.

After studying the existing partition er in different fields and having tried different
problem formulations graph, hyper-graph and community graph partitioning problem.
We finally adopt the hyper-graph model and employ hMETIS to partition the hyper-
graph based on varies of experiments. Note that the general graph or hyper-graph
partitioning problem are NP-hard problems so the results of the partitioning algo-
rithm might vary even with the same input due to some randomized heuristics.The
observation here is that almost every existing graph/hyper-graph partitioner is fast
enough (in comparing with the time to solve the whole NLP problem) so that we can
try to partition the problem in several different ways and try to pick the optimal one.
That is to say, although the one-time result may not reflect the average performance
under the some partition parameter, we can still build an outer iteration that will
repeat the partitioning procedure if the result is better than the known average as we
are trying to find the optimal partitioning strategy.

7.2. Main Components. Our implementation contains three parts: Problem
Analyzer (PA) is to analysis the problem structure and decide how to partition the
problem. PA reads common modeling file like AMPL or GAMS file. PA is the solvers
interface to the real world problems and provides a flexible interface to be hooked in
the AMPL environment or other environments. In the implementation of the NL file
analyzer, we noticed the work of Dr. AMPL, a meta solver for optimization which
is able to find the approximate solution, as will as convexity analysis. Dr. AMPL is
supposed to be an open source software distributed under the terms of the GNU Lesser
General Public License. However, it is not yet available to the public at this time.
Therefore, we follow the idea of Dr. AMPL and implement a simplified version of the
Dr. AMPL which could help us set the initial points, analysis the problem structure
and decide the number of partitions as well as the basic solver selection procedure. By
working on these modules, we also get a byproduct: a very simple environment/API
for problem analysis. It provides the problem structure plot, objective and constraint
evaluation and other functionality where user can analysis the problem in just few
commands or lines of code.

The Automated Partitioning Module (APM) is to partition the constraints in
a way that minimizes the overall search time. In APM, there are several different
components including a metric to measure the quality of partitioning, an algorithm
to partition the constraints and optimize the metric as we mentioned above. Instead
of simply use hMETIS, In our implementation, we employ several heuristics to handle
arrowhead structure and decide the number of partitions.

The Basic Solver Interface reconstructs a series of new subproblems and employ
other CNLP solvers to solver the subproblems after the partitioning. The purpose of
the BSI is provide a neat yet powerful interface that can hook other solvers. Now the
BSI implements a protocol to supply subproblems in AMPL nl file to the basic solver
and retrieve the solution from existing solvers. As a general-purpose interface, the
design and implementation of the interface is a challenge. We will discuss this in the
later sections.

The Penalty Control Module (PCM) dynamically updates the penalty values in
hope of resolving violated global constraints. The update rate of each penalty is
proportional to the violation of the corresponding global constraints.

7.3. Reduce computational cost for each subproblem. As we’ve shown in
this paper, for some large-scale problems, the subproblem only evolves a small number
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of variables. While we can assign other variables as constants and pass the huge nl file
to the subproblem solver, we can reduce the file size as well as the computational cost
of the subproblem solver via a pre-processing called “pre-calculation”. Actually, nl file
consists of all the nonlinear expressions stored as the directed acyclic graph (DAG).
Therefore, simply replace the non-local variables with constants does not reduce the
computational cost as the subproblem solver still needs to evaluate the whole DAG
every time in the iteration. However, after the assignment of the non-local variables to
the constants, at some level of the DAG, the value of this node is fixed. For example,
if we have sin(x1) where x1 = 1.0, we do not need to evaluate sin(1) every time as
the value is fixed. Therefore, we “pre-calulate” the value of some nodes and reduce
the whole DAG subtree to a single constant node, which significantly reduced the size
of the nl file and the computational cost. In the elec problem from COPs benchmark,
we finally reduce the size of the NL file to 1/9 of the original size and therefore reduce
the total solution time to about 1/8.

8. Experimental results. In this section, we compare the performance of CPRE
to that of other leading solvers. In the CNLP benchmarks, we use IPOPT, one of the
leading solver in optimization. Our benchmarks includes problems from COPS, ASU
benchmark and CUTE.

To get some insight into computational properties of our approach, we considered
test problems taken from COPS. In particular, we choose Elec, Shape and Polygen.

8.1. Problem Elec. Given np electrons, find the equilibrium state distribution
of the electrons positioned on a conducting sphere. If np points are denoted by
(xi, yi, zi), the problem can be formulated as: [5]

min
np−1∑
i=1

np∑
j=i+1

((xi − xj)2 + (yi − yj)2 + (zi − zj)2)−
1
2 , (8.1)

subject to x2
i + y2

i + z2
i = 1, i = 1, . . . , np (8.2)

Obviously this problem is block separable where we can cluster constraints and
variables along index i and it has many local minima. Theoretical results show that
the number of local minima grows exponentially with np and determining the global
minimum is computationally difficult. Thus, solvers are usually expected to find local
minimum. We will show that partitioned algorithm can handle up to 3000 variables
where other existing solver can only handle no more than 300 variables.

8.2. Problem CamShape. This problem tries to maximize the area of a convex
cam with constraints on the curvature and on the radius of the cam. We assume that
the shape of the cam is circular over an angle of 6

5π of its circumference with radius
rmin. The design variables, ri, i = 1, . . . , n, represent the radius of the cam at equally
spaces angles distributed over an angle of 2

5nπ.
The problem can be formulated as

min − πr2
v(

1
n

n∑
i=1

ri) (8.3)

s.t. 2ri−1ri+1cos(θ) ≤ ri(ri−1 + ri+1), i = 0, . . . , n+ 1, (8.4)
s.t. − α ∗ θ ≤ ri+1 − ri ≤ α ∗ θ, i = 0, . . . , n+ 1, (8.5)

(8.6)



21

The first constraint group are convexity constraints where r−1 = r0 = rmin,
rn+1 = rmax, rn+2 = rn and θ = 2π/5(n + 1). The second group of constraints are
curvature requirements. It’s easy to show that these constraints are block separable if
we remove two adjacent constraints from each constraint group. Namely, if we remove
constraints in the form of g1(rk−1, rk, rk+1) ≤ 0 and g2(rk, rk+1, rk+2) ≤ 0, then the
remaining constraints can be divided into two blocks with all constraints related to
xi, i ≤ k in first block and xi, i ≥ k+ 1 as the other block. Our algorithm handles g1

and g2 as global constraints and partition the original problem into subproblems.

Table 8.1
Results on MacMINLP

CUTE CPRE-IPOPT IPOPT
ID Sol. Time Sol. Time

aug2dcqp 312 27 302 0.1
drcav1lq 1190.234 M
drcav2lq 1088.5 I
drcav3lq 662.1 1039.021
ncvxqp4 1.298 12.98
ncvxqp5 3.039 13.58
ncvxqp6 15.025 18.31
bratu3d 7.86 11.449
britgas 21.34 33.962

gausselm 35.921 51.131
nuffield2 21.129 23.033
nuffield 931.1 I

nuffield2 trap 18.9 47.055
semicon1 16.21 17.817

EIGMAXB - - 2.43 9.1
HADAMARD - - 1.21 27.21

KISSING - - 0.77 794.2
VANDERM1 - - 0 19.2
VANDERM3 - - 0 26.9
VANDERM4 - - 0 24.16
OPPRLOC 550 0.11 550 0.01

OPTCNTRL -16.42 2.12 -16.42 0.02

Table 8.2
Results on some COPS problems

COPS IPOPT CPRE
ID Sol. Time Sol. Time

ELEC300 42145.09 27 42131.5 22
SHAPE1200 4.273 5.42 4.273 6.23
Polygon300 - - 7.623492 891.2
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[9] C. A. Sagastizábal and M. V. Solodov. Parallel variable distribution for constrained optimiza-

tion. Computational Optimization Applications, 22(1):111–131, 2002.
[10] Paul Tseng and Dimitri P. Bertsekas. Relaxation methods for problems with strictly convex

costs and linear constraints. Math. Oper. Res., 16(3):462–481, 1991.
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