8 research outputs found

    From approximating to interpolatory non-stationary subdivision schemes with the same generation properties

    Full text link
    In this paper we describe a general, computationally feasible strategy to deduce a family of interpolatory non-stationary subdivision schemes from a symmetric non-stationary, non-interpolatory one satisfying quite mild assumptions. To achieve this result we extend our previous work [C.Conti, L.Gemignani, L.Romani, Linear Algebra Appl. 431 (2009), no. 10, 1971-1987] to full generality by removing additional assumptions on the input symbols. For the so obtained interpolatory schemes we prove that they are capable of reproducing the same exponential polynomial space as the one generated by the original approximating scheme. Moreover, we specialize the computational methods for the case of symbols obtained by shifted non-stationary affine combinations of exponential B-splines, that are at the basis of most non-stationary subdivision schemes. In this case we find that the associated family of interpolatory symbols can be determined to satisfy a suitable set of generalized interpolating conditions at the set of the zeros (with reversed signs) of the input symbol. Finally, we discuss some computational examples by showing that the proposed approach can yield novel smooth non-stationary interpolatory subdivision schemes possessing very interesting reproduction properties

    Six-Point Subdivision Schemes with Cubic Precision

    Get PDF
    This paper presents 6-point subdivision schemes with cubic precision. We first derive a relation between the 4-point interpolatory subdivision and the quintic B-spline refinement. By using the relation, we further propose the counterparts of cubic and quintic B-spline refinements based on 6-point interpolatory subdivision schemes. It is proved that the new family of 6-point combined subdivision schemes has higher smoothness and better polynomial reproduction property than the B-spline counterparts. It is also showed that, both having cubic precision, the well-known Hormann-Sabin’s family increase the degree of polynomial generation and smoothness in exchange of the increase of the support width, while the new family can keep the support width unchanged and maintain higher degree of polynomial generation and smoothness

    On model parametrization and model structure selection for identification of MIMO-systems

    Get PDF

    Solving Bezout-like polynomial equations for the design of interpolatory subdivision schemes

    No full text
    Subdivision schemes are nowadays customary in curve and surface modeling. In this paper the problem of designing interpolatory subdivision schemes is considered. The idea is to modify a given approximating subdivision scheme just enough to satisfy the interpolation requirement. From an algebraic point of view this leads to the solution of a generalized Bezout polynomial equation possibly involving more than two polynomials. By exploiting the matrix counterpart of this equation it is shown that small-degree solutions can be generally found by inverting an associated structured matrix of Toeplitz-like form. If the approximating scheme is defined in terms of a free parameter, then the inversion can be performed by numeric-symbolic methods

    Solving Bezout-like polynomial equations for the design of interpolatory subdivision schemes

    No full text
    Subdivision schemes are nowadays customary in curve and surface modeling. In this paper the problem of designing interpolatory subdivision schemes is considered. The idea is to modify a given approximating subdivision scheme just enough to satisfy the interpolation requirement. From an algebraic point of view this leads to the solution of a generalized Bezout polynomial equation possibly involving more than two polynomials. By exploiting the matrix counterpart of this equation it is shown that small-degree solutions can be generally found by inverting an associated structured matrix of Toeplitz-like form. If the approximating scheme is defined in terms of a free parameter, then the inversion can be performed by numeric-symbolic methods

    Eight Biennial Report : April 2005 – March 2007

    No full text
    corecore