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This paper presents 6-point subdivision schemes with cubic precision. We first derive a relation between the 4-point interpolatory
subdivision and the quintic B-spline refinement. By using the relation, we further propose the counterparts of cubic and quintic
B-spline refinements based on 6-point interpolatory subdivision schemes. It is proved that the new family of 6-point combined
subdivision schemes has higher smoothness and better polynomial reproduction property than the B-spline counterparts. It is also
showed that, both having cubic precision, the well-known Hormann-Sabin’s family increase the degree of polynomial generation
and smoothness in exchange of the increase of the support width, while the new family can keep the support width unchanged and
maintain higher degree of polynomial generation and smoothness.

1. Introduction

Subdivision is an efficient method for generating curves and
surfaces in computer aided geometric design. In general,
subdivision schemes can be divided into two categories:
interpolatory schemes and approximating schemes. Interpo-
latory schemes get better shape control while approximating
schemes have better smoothness.Themost well-known inter-
polatory subdivision scheme is the classical 4-point binary
scheme proposed by Dyn et al. [1]. In 1989, it was extended
to the 6-point binary interpolatory scheme by Weissman [2].
Most approximating schemes were developed from splines.
Two of themost famous approximating schemes are Chaikin’s
algorithm [3] and cubic B-spline refinement algorithm [4],
which actually generate uniformquadratic and cubicB-spline
curves with 𝐶1 continuity and 𝐶2 continuity, respectively.

The deep connection between interpolatory schemes and
approximating schemes has been studied in many literatures
[5–15]. In 2001, Maillot and Stam [5] introduced a push-back
operation which is applied at each round of approximating
refinement to progressively interpolate the control vertices.
In 2007, Li and Ma [6] observed a relation between 4-
point interpolatory subdivision and cubic B-spline curve
refinement, and, motivated by this relation, they proposed a
universal method for constructing interpolatory subdivision

through the addition of weighted averaging operations to
the mask of approximating subdivision. In 2008, Lin et al.
[7] found another relation between 4-point interpolatory
subdivision and cubic B-spline refinement and constructed
interpolatory subdivision from approximating subdivision
based on the relation.The deep connection between interpo-
latory and approximating schemes was also studied in [8–12]
which exploited the generating functions of approximating
subdivision and interpolatory subdivision. In 2012, Pan et
al. [13] provided a combined ternary approximating and
interpolatory subdivision scheme with 𝐶2 continuity. Li and
Zheng [14] constructed interpolatory subdivision from pri-
mal approximating subdivision with a new observation of the
link between interpolatory and approximating subdivision.
In 2013, Luo and Qi [15] made some theoretical analysis from
the generation polynomial perspective and constructed some
new interpolatory schemes from approximating schemes.

Our work is motivated by a new observation about the
4-point interpolatory subdivision and the quintic B-spline
curve refinement. The observation gives us heuristics to
construct combined subdivision schemes from existing sub-
division schemes. The idea is to construct the counterparts
of cubic and quintic B-spline refinements and make the
relations between the 6-point interpolatory subdivision and
the counterparts of cubic and quintic B-spline refinements
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similar to those between the 4-point interpolatory subdivi-
sion and the cubic, quintic B-spline curve refinements. Since
the 6-point interpolatory subdivision from which the new
subdivision scheme is deduced has good properties such as
high smoothness and high accuracy, we are interested in
studying which properties of the new subdivision scheme are
better than their counterparts.

The new family of 6-point combined subdivision schemes
is defined as follows:

𝑃𝑘+12𝑖 = 1256 (𝛼 (𝑃𝑘𝑖−2 + 𝑃𝑘𝑖+2) + 𝛽 (𝑃𝑘𝑖−1 + 𝑃𝑘𝑖+1)
+ (256 − 2𝛼 − 2𝛽) 𝑃𝑘𝑖 ) ,

𝑃𝑘+12𝑖+1 = 1256 ((3 + 𝛼2 ) (𝑃𝑘𝑖−2 + 𝑃𝑘𝑖+3)

+ (𝛼 + 𝛽2 − 25) (𝑃𝑘𝑖−1 + 𝑃𝑘𝑖+2)

+ (150 − 𝛼 − 𝛽2) (𝑃𝑘𝑖 + 𝑃𝑘𝑖+1)) .

(1)

(1) is called the 6-point combined interpolatory and
approximating binary subdivision scheme. If 𝛼 = 𝛽 = 0,
(1) generates 6-point interpolatory subdivision; otherwise, (1)
produces approximating subdivision. It is proved that when
suitably setting the tension parameter, all schemes from (1)
are able to generate curves with 𝐶4 continuity and reproduce
cubic polynomials, whereas the B-spline refinements attain
only linear precision. Moreover, we also make a comparison
of properties between our family and famous Hormann-
Sabin’s family [16] which has the same cubic precision.

2. Preliminaries

In this section, we recall some fundamental definitions
and results that are necessary to the development of the
subsequent results.

Given a set of initial control points P0 = {𝑝0𝑖 ∈ R}𝑖∈Z,
the set of control points P𝑘+1 = {𝑝𝑘+1𝑖 }𝑖∈Z at level 𝑘 + 1 are
recursively defined by the following binary subdivision rules:

𝑝𝑘+1𝑖 = ∑
𝑗∈Z

𝑎𝑖−2𝑗𝑝𝑘𝑗 , 𝑖 ∈ Z. (2)

The finite set 𝑎 = {𝑎𝑖}𝑖∈Z is called mask. The iterative
algorithm based on the repeated application of (2) is termed
subdivision scheme and is denoted by 𝑆𝑎. The symbol of the
scheme 𝑆𝑎 is defined as 𝑎(𝑧) = ∑𝑖∈Z 𝑎𝑖𝑧𝑖.
Theorem 1 (see [17]). Let a binary subdivision scheme 𝑆𝑎 be
convergent. Then the mask 𝑎 = {𝑎𝑖}𝑖∈Z satisfies

∑
𝑖∈Z

𝑎2𝑖 = ∑
𝑖∈Z

𝑎2𝑖+1 = 1. (3)

Theorem 2 (see [17]). Let subdivision scheme 𝑆 with mask𝑎 = {𝑎𝑖}𝑖∈Z satisfy (3). Then there exists a subdivision scheme𝑆1 (first-order divided difference scheme of 𝑆) with the property
𝑑P𝑘 = 𝑆1𝑑P𝑘−1, (4)

where P𝑘 = 𝑆𝑘P0 and 𝑑P𝑘 = {(𝑑P𝑘)𝑖 = 2𝑘(𝑃𝑘𝑖+1 − 𝑃𝑘𝑖 ) | 𝑖 ∈ Z}.
The symbol of 𝑆1 is 𝑎(1)(𝑧) = (2𝑧/(1 + 𝑧))𝑎(𝑧). Generally, if 𝑆𝑛
(the 𝑛th-order divided difference scheme of 𝑆) exists with mask𝑎(𝑛) = {𝑎(𝑛)𝑖 }𝑖∈Z, then the symbol of 𝑆𝑛 is 𝑎(𝑛)(𝑧) = (2𝑧/(1 +𝑧))𝑛𝑎(𝑧).
Theorem 3 (see [17]). (a) Let subdivision scheme 𝑆 have mask𝑎(0) = {𝑎(0)𝑖 }𝑖∈Z, and its 𝑗th-order divided difference scheme
𝑆𝑗 (𝑗 = 1, 2, . . . , 𝑛 + 1) exists with mask 𝑎(𝑗) = {𝑎(𝑗)𝑖 }𝑖∈Z
satisfying

∑
𝑖∈Z

𝑎(𝑗)2𝑖 = ∑
𝑖∈Z

𝑎(𝑗)2𝑖+1 = 1, 𝑗 = 0, 1, . . . , 𝑛. (5)

If there exists an integer 𝐿 ≥ 1, such that ‖((1/2)𝑆𝑛+1)𝐿‖∞ < 1,
then the subdivision scheme 𝑆 is 𝐶𝑛 continuous, where
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(
12𝑆𝑛+1)

𝐿󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∞ = max
{{{
∑
𝑗∈Z

󵄨󵄨󵄨󵄨󵄨󵄨𝑏[𝐿]𝑖−2𝐿𝑗󵄨󵄨󵄨󵄨󵄨󵄨 : 0 ≤ 𝑖 < 2𝐿
}}}
,

𝑏[𝐿] (𝑧) = 𝑏 (𝑧) 𝑏 (𝑧2) ⋅ ⋅ ⋅ 𝑏 (𝑧2𝐿−1) , 𝑏 (𝑧) = 12𝑎(𝑛+1) (𝑧) .
(6)

In particular, when 𝐿 = 1,
󵄩󵄩󵄩󵄩󵄩󵄩󵄩12𝑆𝑛+1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩∞ = 12max{∑
𝑖∈Z

󵄨󵄨󵄨󵄨󵄨𝑎(𝑛+1)2𝑖 󵄨󵄨󵄨󵄨󵄨 , ∑
𝑖∈Z

󵄨󵄨󵄨󵄨󵄨𝑎(𝑛+1)2𝑖+1 󵄨󵄨󵄨󵄨󵄨} . (7)

(b) Let 𝑎(𝑧) = ((1+𝑧)𝑛+1/2𝑛)𝑏(𝑧)with 𝑆𝑏 being contractive
(i.e., 𝑆𝑏 maps any initial data to zero). Then, 𝑆𝑎 is convergent
and 𝐶𝑛 continuous.
Theorem 4 (see [18, 19]). Let 𝜋𝑑 denote the space of all
univariate polynomials with real coefficients up to degree 𝑑.
Then a univariate subdivision scheme 𝑆𝑎

(i) generates 𝜋𝑑 if and only if
𝑎 (1) = 2,
𝑎 (−1) = 0,

𝑎(𝑗) (−1) = 0, 𝑗 = 1, . . . , 𝑑;
(8)

(ii) reproduces 𝜋𝑑 with respect to the parametrization {𝑡𝑘𝑖 =(𝑖 + 𝜏)/2𝑘}𝑖∈Z with 𝜏 = 𝑎(1)(1)/2 and 𝑘 denoting the
subdivision level, if and only if it generates 𝜋𝑑 and

𝑎(𝑗) (1) = 2𝑗−1∏
ℎ=0

(𝜏 − ℎ) , 𝑗 = 1, . . . , 𝑑. (9)
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3. Construction of the New Family

This section first explains a new observation about the rela-
tion between 4-point interpolatory subdivision and quintic
B-spline refinement.Then, a new family of 6-point combined
subdivision schemes is deduced.

3.1. A New Observation. Given an initial control polygon
with vertices {𝑃0𝑖 }, as shown in Figure 1, the rules of 4-point
interpolatory subdivision for generating 𝑘 + 1 level vertices{𝑃𝑘+1𝑖 } are

𝑃𝑘+12𝑖 = 𝑃𝑘𝑖 ,
𝑃𝑘+12𝑖+1 = − 116𝑃𝑘𝑖−1 + 916𝑃𝑘𝑖 + 916𝑃𝑘𝑖+1 − 116𝑃𝑘𝑖+2,

(10)

and quintic B-spline refinement for generating 𝑘 + 1 level
vertices {𝑄𝑘+1𝑖 } is

𝑄𝑘+12𝑖 = 316𝑃𝑘𝑖−1 + 1016𝑃𝑘𝑖 + 316𝑃𝑘𝑖+1,
𝑄𝑘+12𝑖+1 = 132𝑃𝑘𝑖−1 + 1532𝑃𝑘𝑖 + 1532𝑃𝑘𝑖+1 + 132𝑃𝑘𝑖+2.

(11)

Denote by Δ 2𝑖, Δ 2𝑖+1 the displacements of vertices from
quintic B-spline refinement to 4-point interpolatory subdi-
vision after one step of refinement, as shown in Figure 1(a),
where the black lines represent the initial control polygon,
the magenta lines represent the control polygon after one
step of 4-point interpolatory subdivision, and the green lines
represent the control polygon after one step of quintic B-
spline refinement. Then, from (10) and (11), we can get

Δ𝑘+12𝑖 = 𝑃𝑘+12𝑖 − 𝑄𝑘+12𝑖 = − 316𝑃𝑘𝑖−1 + 616𝑃𝑘𝑖 − 316𝑃𝑘𝑖+1,
Δ𝑘+12𝑖+1 = 𝑃𝑘+12𝑖+1 − 𝑄𝑘+12𝑖+1

= − 332𝑃𝑘𝑖−1 + 332𝑃𝑘𝑖 + 332𝑃𝑘𝑖+1 − 332𝑃𝑘𝑖+2.
(12)

A new observation is

Δ𝑘+12𝑖+1 = 12 (Δ𝑘+12𝑖 + Δ𝑘+12𝑖+2) , (13)

which shows that the relation between 4-point interpolatory
subdivision and quintic B-spline refinement is similar to the
one between 4-point interpolatory subdivision and cubic B-
spline refinement discovered by Lin et al. in [7]; that is,Δ𝑘+12𝑖+1 = (1/2)(Δ𝑘+12𝑖 + Δ𝑘+12𝑖+2), as shown in Figure 1(b), where
the blue lines represent the control polygon after one step
of cubic B-spline refinement. So, from the point of view of
displacements, 4-point interpolatory scheme has the same
connections with cubic B-spline and quintic B-spline.

We further found that though 6-point interpolatory
subdivision is also constructed from polynomial interpola-
tion just like 4-point interpolatory subdivision, analogous
connection does not exist between 6-point interpolatory
subdivision and quintic B-spline refinement.

3.2. Construction of the New 6-Point Combined Scheme. As is
shown in [2], the rules of 6-point interpolatory subdivision
for generating 𝑘 + 1 level vertices {𝑃𝑘+1𝑖 } are

𝑃𝑘+12𝑖 = 𝑃𝑘𝑖 ,
𝑃𝑘+12𝑖+1 = 3256 (𝑃𝑘𝑖−2 + 𝑃𝑘𝑖+3) − 25256 (𝑃𝑘𝑖−1 + 𝑃𝑘𝑖+2)

+ 150256 (𝑃𝑘𝑖 + 𝑃𝑘𝑖+1) .
(14)

Suppose the new subdivision have the following rule:

𝑃𝑘+12𝑖 = 1256 (𝛼 (𝑃𝑘𝑖−2 + 𝑃𝑘𝑖+2) + 𝛽 (𝑃𝑘𝑖−1 + 𝑃𝑘𝑖+1)
+ (256 − 2𝛼 − 2𝛽) 𝑃𝑘𝑖 ) ,

(15)

where 𝛼, 𝛽 are tension parameters, and then

𝑃𝑘+12𝑖+2 = 1256 (𝛼 (𝑃𝑘𝑖−1 + 𝑃𝑘𝑖+3) + 𝛽 (𝑃𝑘𝑖 + 𝑃𝑘𝑖+2)
+ (256 − 2𝛼 − 2𝛽) 𝑃𝑘𝑖+1) ,

Δ𝑘+12𝑖 = 𝑃𝑘+12𝑖 − 𝑃𝑘+12𝑖 = 1256 (−𝛼 (𝑃𝑘𝑖−2 + 𝑃𝑘𝑖+2)
− 𝛽 (𝑃𝑘𝑖−1 + 𝑃𝑘𝑖+1) + (2𝛼 + 2𝛽) 𝑃𝑘𝑖 ) ,

Δ𝑘+12𝑖+2 = 𝑃𝑘+12𝑖+2 − 𝑃𝑘+12𝑖+2 = 1256 (−𝛼 (𝑃𝑘𝑖−1 + 𝑃𝑘𝑖+3)
− 𝛽 (𝑃𝑘𝑖 + 𝑃𝑘𝑖+2) + (2𝛼 + 2𝛽) 𝑃𝑘𝑖+1) .

(16)

Using relation (13), it can be deduced that

Δ𝑘+12𝑖+1 = 1256 (−𝛼2 (𝑃𝑘𝑖−2 + 𝑃𝑘𝑖+3) − 𝛼 + 𝛽2 (𝑃𝑘𝑖−1 + 𝑃𝑘𝑖+2)

+ (𝛼 + 𝛽2) (𝑃𝑘𝑖 + 𝑃𝑘𝑖+1)) .
(17)

So, we obtain

𝑃𝑘+12𝑖+1 = 1256 ((3 + 𝛼2 ) (𝑃𝑘𝑖−2 + 𝑃𝑘𝑖+3)

+ (𝛼 + 𝛽2 − 25) (𝑃𝑘𝑖−1 + 𝑃𝑘𝑖+2)

+ (150 − 𝛼 − 𝛽2) (𝑃𝑘𝑖 + 𝑃𝑘𝑖+1)) ,

(18)
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Figure 1: The relation between 4-point interpolatory subdivision and B-spline refinement.

and then the new subdivision can be concluded from (15) and
(18) as

𝑃𝑘+12𝑖 = 1256 (𝛼 (𝑃𝑘𝑖−2 + 𝑃𝑘𝑖+2) + 𝛽 (𝑃𝑘𝑖−1 + 𝑃𝑘𝑖+1)
+ (256 − 2𝛼 − 2𝛽) 𝑃𝑘𝑖 ) ,

𝑃𝑘+12𝑖+1 = 1256 ((3 + 𝛼2 ) (𝑃𝑘𝑖−2 + 𝑃𝑘𝑖+3)

+ (𝛼 + 𝛽2 − 25) (𝑃𝑘𝑖−1 + 𝑃𝑘𝑖+2)

+ (150 − 𝛼 − 𝛽2) (𝑃𝑘𝑖 + 𝑃𝑘𝑖+1)) ,

(19)

which is the form of (1) in Section 1.
The mask and symbol of subdivision (1) are

1256 [3 + 𝛼2 , 𝛼, 𝛼 + 𝛽2 − 25, 𝛽, 150 − 𝛼 − 𝛽2 , 256 − 2𝛼

− 2𝛽, 150 − 𝛼 − 𝛽2 , 𝛽, 𝛼 + 𝛽2 − 25, 𝛼, 3 + 𝛼2 ] ,
(20)

𝑎𝛼,𝛽 (𝑧) = (1 + 𝑧)48 ⋅ 132 (3 + 𝛼2 − (12 + 𝛼) 𝑧

+ (5 + 3𝛼2 + 𝛽2) 𝑧2 + (40 − 2𝛼 − 𝛽) 𝑧3

+ (5 + 3𝛼2 + 𝛽2) 𝑧4 − (12 + 𝛼) 𝑧5 + (3 + 𝛼2 ) 𝑧6) ,

(21)

respectively. When 𝛽 = −4𝛼, symbol (21) can be written as

𝑎𝛼 (𝑧) = (1 + 𝑧)632 ⋅ 18 (3 + 𝛼2 − (18 + 2𝛼) 𝑧
+ (38 + 3𝛼) 𝑧2 − (18 + 2𝛼) 𝑧3 + (3 + 𝛼2 ) 𝑧4) .

(22)

In particular, when 𝛼 = −10,
𝑎−10 (𝑧) = (1 + 𝑧)764 ⋅ 12 (−1 + 2𝑧 + 2𝑧2 − 𝑧3) . (23)

Denote the family of subdivision (1) by 𝑆𝑎𝛼,𝛽 and subfamily
(22) by 𝑆𝑎𝛼 .We call them the counterparts of cubic and quintic
B-spline refinements based on the 6-point interpolatory
subdivision. Figure 2 illustrates the limit curves of some
members of 𝑆𝑎𝛼,𝛽 . In Section 4, we will prove that the family
𝑆𝑎𝛼,𝛽 generates curves with 𝐶3 continuity, and the subfamily
𝑆𝑎𝛼 attains 𝐶4 continuity when 𝛼 ∈ (−14, −8) and reproduces
cubic polynomials.

4. Analysis of the New Family

4.1. Smoothness Analysis

Proposition 5. The scheme 𝑆𝑎𝛼,𝛽 defined by (1) converges and
has smoothness 𝐶3 when 𝛽 ∈ (32, 40) and 𝛼 ∈ (−4 − 𝛽/4, 4 −𝛽/4), or 𝛽 ∈ (40, 72) and 𝛼 ∈ (−4 − 𝛽/4, 14 − 𝛽/2); and when𝛼 ∈ (−14, −8), the subfamily 𝑆𝑎𝛼 generates 𝐶4 continuous limit
curves.

Proof. The symbol of 𝑆𝑎𝛼,𝛽 can be written as

𝑎𝛼,𝛽 (𝑧) = ∑
𝑖

𝑎𝑖𝑧𝑖 = (1 + 𝑧)48 ⋅ 𝑏𝛼,𝛽 (𝑧) , (24)
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(a) 𝛼 = −30 (b) 𝛼 = −10 (c) 𝛼 = 10 (d) 𝛼 = 30

Figure 2: Some limit curves generated by 𝑆𝑎𝛼,𝛽 all with 𝛽 = −65, −50, −35, −20, −5, 10, 25, 40, and 55 from outside (red) to inside (yellow),
respectively. The black is the initial control polygon.

where

𝑏𝛼,𝛽 (𝑧) = 132 (3 + 𝛼2 − (12 + 𝛼) 𝑧

+ (5 + 3𝛼2 + 𝛽2) 𝑧2 + (40 − 2𝛼 − 𝛽) 𝑧3

+ (5 + 3𝛼2 + 𝛽2) 𝑧4 − (12 + 𝛼) 𝑧5 + (3 + 𝛼2 ) 𝑧6) .

(25)

Let 𝑏𝑖 denote the coefficients of Laurent polynomial 𝑏𝛼,𝛽(𝑧).
ByTheorem 3(b), if 𝑆𝑏𝛼,𝛽 is contractive, then 𝑆𝑎𝛼,𝛽 is 𝐶3. When

𝛽 ∈ (32, 40) ,
𝛼 ∈ (−4 − 𝛽4 , 4 − 𝛽4 )
or 𝛽 ∈ (40, 72) ,
𝛼 ∈ (−4 − 𝛽4 , 14 − 𝛽2) ,
󵄩󵄩󵄩󵄩󵄩󵄩𝑆𝑏𝛼,𝛽󵄩󵄩󵄩󵄩󵄩󵄩∞ = max{∑

𝑖

󵄨󵄨󵄨󵄨𝑏2𝑖󵄨󵄨󵄨󵄨 ,∑
𝑖

󵄨󵄨󵄨󵄨𝑏2𝑖+1󵄨󵄨󵄨󵄨} = 132

⋅max{2(󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨5 +
3𝛼2 + 𝛽2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨󵄨󵄨󵄨3 + 𝛼2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨) , 󵄨󵄨󵄨󵄨40 − 2𝛼 − 𝛽󵄨󵄨󵄨󵄨
+ 2 |12 + 𝛼|} < 1,

(26)

which shows that 𝑆𝑏𝛼,𝛽 is contractive; hence, when
𝛽 ∈ (32, 40) ,

𝛼 ∈ (−4 − 𝛽4 , 4 − 𝛽4 )
or 𝛽 ∈ (40, 72) ,

𝛼 ∈ (−4 − 𝛽4 , 14 − 𝛽2) ,
𝑆𝑎𝛼,𝛽 is 𝐶3.

(27)

When 𝛽 = −4𝛼, the symbol of the subfamily 𝑆𝑎𝛼 is
𝑎𝛼 (𝑧) = (1 + 𝑧)632 ⋅ 18 (3 + 𝛼2 − (18 + 2𝛼) 𝑧
+ (38 + 3𝛼) 𝑧2 − (18 + 2𝛼) 𝑧3 + (3 + 𝛼2 ) 𝑧4) ,

(28)

which can also be written as 𝑎𝛼(𝑧) = (1+𝑧)5/16 ⋅ 𝑏𝛼(𝑧), where
𝑏𝛼 (𝑧) = 116 (3 + 𝛼2 − (15 + 3𝛼2 ) 𝑧 + (20 + 𝛼) 𝑧2

+ (20 + 𝛼) 𝑧3 − (15 + 3𝛼2 ) 𝑧4 + (3 + 𝛼2 ) 𝑧5) .
(29)

When 𝛼 ∈ (−14, −8), ‖𝑆𝑏𝛼‖∞ = (1/16)(|3+𝛼/2|+|15+3𝛼/2|+|20 + 𝛼|) < 1.
Hence, by Theorem 3(b), 𝑆𝑏𝛼 is contractive and 𝑆𝑎𝛼 is 𝐶4

when 𝛼 ∈ (−14, −8).
4.2. Generation Degree and Reproduction Degree. Polyno-
mial generation and polynomial reproduction are desirable
properties because any convergent subdivision scheme that
reproduces polynomials of degree 𝑘 has approximation order𝑘 + 1 [18]. The polynomial generation of degree 𝑘 is the
capability of subdivision schemes to generate the full space of
polynomials of degree 𝑘 [20].The polynomial reproduction is
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the capability of subdivision schemes to produce in the limit
exactly the same polynomial from which the initial data is
sampled.The generation degree is not less than the reproduc-
tion degree. For example, the generation degree of degree-
n B-spline refinement is 𝑛, but the reproduction degree of
degree-n B-spline refinement only attains 1. Hormann and
Sabin [16] proposed a family of subdivision schemes 𝑆𝑘 (𝑘 ∈
N) which is defined by the product of the symbol of B-spline
refinement with a degree-2 polynomial and increased the
degree of polynomial reproduction of B-spline schemes from
1 to 3.

Let 𝐷𝛼,𝛽 = {𝛼, 𝛽 ∈ R | 𝑆𝑎𝛼,𝛽 is convergent} and suppose𝛼, 𝛽 ∈ 𝐷𝛼,𝛽. UsingTheorem 4, we get the following results.

Proposition 6. The subdivision scheme 𝑆𝑎𝛼,𝛽 generates
𝜋3, if 𝛽 ̸= −4𝛼,
𝜋5, if 𝛽 = −4𝛼. (30)

In particular, when 𝛼 = −10, 𝑆𝑎𝛼 generates 𝜋7.
Proof. The symbol of 𝑆𝑎𝛼,𝛽 can be written as

𝑎𝛼,𝛽 (𝑧) = 1256 ⋅ 𝐴 (𝑧) 𝐵 (𝑧) , (31)

where 𝐴(𝑧) = (1 + 𝑧)4 and 𝐵(𝑧) = 32 ⋅ 𝑏𝛼,𝛽(𝑧).
Then, 𝑎(𝑛)

𝛼,𝛽
(𝑧) = 1/256 ⋅ ∑𝑛𝑖=0 𝐶𝑖𝑛𝐴(𝑖)(𝑧)𝐵(𝑛−𝑖)(𝑧), and𝑎(1)

𝛼,𝛽
(−1) = 𝑎(2)

𝛼,𝛽
(−1) = 𝑎(3)

𝛼,𝛽
(−1) = 0.

Moreover, when 𝛽 = −4𝛼,
𝑎(4)𝛼 (−1) = 𝑎(5)𝛼 (−1) = 0; (32)

and when 𝛼 = −10,
𝑎(6)𝛼 (−1) = 𝑎(7)𝛼 (−1) = 0,
𝑎(8)𝛼 (−1) ̸= 0.

(33)

Hence, according toTheorem 4(i), we get that when 𝛽 ̸= −4𝛼,
the subdivision scheme 𝑆𝑎𝛼,𝛽 generates 𝜋3; when 𝛽 = −4𝛼, 𝑆𝑎𝛼
generates 𝜋5 and when 𝛼 = −10, 𝑆𝑎𝛼 generates 𝜋7.
Proposition 7. If applying the parameter shift 𝜏 = 5, the
subdivision scheme 𝑆𝑎𝛼,𝛽 reproduces

𝜋1, if 𝛽 ̸= −4𝛼,
𝜋3, if 𝛽 = −4𝛼, (34)

with respect to the parametrization {𝑡𝑘𝑖 = (𝑖 + 𝜏)/2𝑘}𝑖∈Z, where𝑘 denotes the subdivision level. In particular, when 𝛼 = 0, 𝑆𝑎𝛼
reproduces 𝜋5.
Proof. To consider the reproduction degree of the subdivi-
sion scheme 𝑆𝑎𝛼,𝛽 , in view of Theorem 4(ii), we just need

to consider 𝑎(𝑗)
𝛼,𝛽
(1), 𝑗 = 1, . . . , 𝑑. Using the notation in

Proposition 6, we get that

𝑎(1)𝛼,𝛽 (1) = 10,
𝑎(2)𝛼,𝛽 (1) = 40 + 4𝛼 + 𝛽16 ,
𝑎(3)𝛼,𝛽 (1) = 120 + 38 (4𝛼 + 𝛽) ,

(35)

so 𝜏 = 𝑎(1)
𝛼,𝛽
(1)/2 = 5, and when 𝛽 = −4𝛼,
𝑎(2)𝛼 (1) = 40 = 2𝜏 (𝜏 − 1) ,
𝑎(3)𝛼 (1) = 120 = 2𝜏 (𝜏 − 1) (𝜏 − 2) .

(36)

Then 𝑎(4)𝛼 (1) = 240 + 3𝛼, and when 𝛼 = 0,
𝑎(4)𝛼 (1) = 240 = 2

3∏
ℎ=0

(𝜏 − ℎ) ,

𝑎(5)𝛼 (1) = 240 = 2
4∏
ℎ=0

(𝜏 − ℎ) ,

𝑎(6)𝛼 (1) ̸= 0 = 2
5∏
ℎ=0

(𝜏 − ℎ) .

(37)

Hence, using Theorem 4(ii), we conclude that when 𝛽 ̸=−4𝛼, the subdivision scheme 𝑆𝑎𝛼,𝛽 reproduces 𝜋1; when 𝛽 =−4𝛼, 𝑆𝑎𝛼 reproduces 𝜋3 and when 𝛼 = 0, 𝑆𝑎𝛼 reproduces 𝜋5.
As the new family of subdivision schemes 𝑆𝑎𝛼,𝛽 is deduced

from the 6-point interpolatory scheme using the relation
between 4-point interpolatory scheme and cubic, quintic
B-spline, the properties of all of them are summarized in
Table 1. For the new subfamily 𝑆𝑎𝛼 and Hormann-Sabin’s
family 𝑆𝑘 (𝑘 ∈ N) and both have cubic precision, we list
corresponding properties for a comparison in Table 2.

5. Conclusions

In this paper, we present a new family of 6-point com-
bined subdivision schemeswhich provides the representation
of wide variety of shapes and a subfamily of subdivision
schemes with high smoothness and cubic precision. All
these properties are required in many applications, such as
computer aided geometric design and geometric modeling.
The subfamily 𝑆𝑎𝛼 attains cubic precisionwhereas theB-spline
schemes have linear precision (see Figure 3). On the other
hand, both having cubic precision, Hormann-Sabin’ family𝑆𝑘 (𝑘 ∈ N) increases the degree of polynomial generation
and smoothness in exchange of the increase of the support
width, while 𝑆𝑎𝛼 can keep the support width unchanged
and maintain higher degree of polynomial generation and
smoothness. Moreover, the tension parameter 𝛼 makes 𝑆𝑎𝛼
able to provide more choices in applications (see Figures 4
and 5).
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(a) (b)
Figure 3: The polynomial reproduction property of 𝑆𝑎𝛼 (𝛼 = 4) with (a) 𝑦 = 𝑥2 and (b) 𝑦 = 𝑥3. The blue is the initial control polygon.
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(b)
Figure 4: Comparison of limit curves (the blue curves) generated by (a) 4-p interpolatory scheme, cubic B-spline, and quintic B-spline
refinement from outer to inner part and (b) 6-p interpolatory scheme, 𝑆𝑎𝛼 (𝛼 = −8) and 𝑆𝑎𝛼,𝛽 (𝛼 = 8, 𝛽 = 10), from outer to inner part. The
red is the initial control polygon.
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Figure 5: Comparison of limit curves generated by 𝑆𝑘 (a) with 𝑘 = 4, 5, 6, 8, and 10 from outer to inner part and 𝑆𝑎𝛼 (b) with 𝛼 =8, 4, 0, −4, −8, −12, −20, and − 32 from outer to inner part. The red is the initial control polygon.
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Table 1: Comparison between properties of cubic B-spline refinement, quintic B-spline refinement, 6-point interpolatory scheme, and the
new family of schemes 𝑆𝑎𝛼,𝛽 , 𝑆𝑎𝛼 .
Scheme Support Continuity Generation degree Reproduction degree
4-p interpolatory scheme 6 1 3 3
Cubic B-spline 4 2 3 1
Quintic B-spline 6 4 5 1
6-p interpolatory scheme 10 2 5 5𝑆𝑎𝛼,𝛽 10 3 3 1𝑆𝑎𝛼 10 4 5 3𝑆𝑎𝛼 (𝛼 = −10) 10 4 7 3

Table 2: Comparison between properties of Hormann-Sabin’s family 𝑆𝑘, 𝑘 ∈ N, and the new family of schemes 𝑆𝑎𝛼 .
Scheme Support Continuity Generation degree Reproduction degree𝑆4 6 1 3 3𝑆5 7 2 4 3𝑆6 8 3 5 3𝑆7 9 4 6 3𝑆8 10 5 7 3𝑆9 11 6 8 3𝑆𝑘 (𝑘 ≥ 4) 𝑘 + 2 [𝑘 − log2 (2 + 𝑘/2)] 𝑘 − 1 3𝑆𝑎𝛼 10 4 5 3𝑆𝑎𝛼 (𝛼 = −10) 10 4 7 3
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