6 research outputs found

    Solving Bernoulli Rank-One Bandits with Unimodal Thompson Sampling

    No full text
    International audienceStochastic Rank-One Bandits (Katarya et al, (2017a,b)) are a simple framework for regret minimization problems over rank-one matrices of arms. The initially proposed algorithms are proved to have logarithmic regret, but do not match the existing lower bound for this problem. We close this gap by first proving that rank-one bandits are a particular instance of unimodal bandits, and then providing a new analysis of Unimodal Thompson Sampling (UTS), initially proposed by Paladino et al (2017). We prove an asymptotically optimal regret bound on the frequentist regret of UTS and we support our claims with simulations showing the significant improvement of our method compared to the state-of-the-art

    Solving Bernoulli Rank-One Bandits with Unimodal Thompson Sampling

    No full text
    International audienceStochastic Rank-One Bandits (Katarya et al, (2017a,b)) are a simple framework for regret minimization problems over rank-one matrices of arms. The initially proposed algorithms are proved to have logarithmic regret, but do not match the existing lower bound for this problem. We close this gap by first proving that rank-one bandits are a particular instance of unimodal bandits, and then providing a new analysis of Unimodal Thompson Sampling (UTS), initially proposed by Paladino et al (2017). We prove an asymptotically optimal regret bound on the frequentist regret of UTS and we support our claims with simulations showing the significant improvement of our method compared to the state-of-the-art

    A Simple Unified Framework for High Dimensional Bandit Problems

    Full text link
    Stochastic high dimensional bandit problems with low dimensional structures are useful in different applications such as online advertising and drug discovery. In this work, we propose a simple unified algorithm for such problems and present a general analysis framework for the regret upper bound of our algorithm. We show that under some mild unified assumptions, our algorithm can be applied to different high dimensional bandit problems. Our framework utilizes the low dimensional structure to guide the parameter estimation in the problem, therefore our algorithm achieves the best regret bounds in the LASSO bandit, as well as novel bounds in the low-rank matrix bandit, the group sparse matrix bandit, and in a new problem: the multi-agent LASSO bandit
    corecore