999 research outputs found

    Solving the Uncapacitated Single Allocation p-Hub Median Problem on GPU

    Full text link
    A parallel genetic algorithm (GA) implemented on GPU clusters is proposed to solve the Uncapacitated Single Allocation p-Hub Median problem. The GA uses binary and integer encoding and genetic operators adapted to this problem. Our GA is improved by generated initial solution with hubs located at middle nodes. The obtained experimental results are compared with the best known solutions on all benchmarks on instances up to 1000 nodes. Furthermore, we solve our own randomly generated instances up to 6000 nodes. Our approach outperforms most well-known heuristics in terms of solution quality and time execution and it allows hitherto unsolved problems to be solved

    A Local Search Algorithm for Clustering in Software as a Service Networks

    Get PDF
    In this paper we present and analyze a model for clustering in networks that offer Software as a Service (SaaS). In this problem, organizations requesting a set of applications have to be assigned to clusters such that the costs of opening clusters and installing the necessary applications in clusters are minimized. We prove that this problem is NP-hard, and model it as an Integer Program with symmetry breaking constraints. We then propose a Tabu search heuristic for situations where good solutions are desired in a short computation time. Extensive computational experiments are conducted for evaluating the quality of the solutions obtained by the IP model and the Tabu Search heuristic. Experimental results indicate that the proposed Tabu Search is promising.integer programming;complexity theory;Tabu Search;software as a service

    A Tabu Search Heuristic Procedure for the Capacitated Facility Location Problem

    Get PDF
    A tabu search heuristic procedure for the capacitated facility location problem is developed, implemented and computationally tested. The heuristic procedure uses both short term and long term memories to perform the main search process as well as the diversification and intensification functions. Visited solutions are stored in a primogenitary linked quad tree as a long term memory. The recent iteration at which a facility changed its status is stored for each facility site as a short memory. Lower bounds on the decreases of total cost are used to measure the attractiveness of switching the status of facilities and are used to select a move in the main search process. A specialized transportation algorithm is developed and employed to exploit the problem structure in solving transportation problems. The performance of the heuristic procedure is tested through computational experiments using test problems from the literature and new test problems randomly generated. It found optimal solutions for a most all test problems used. As compared to the Lagrangean and the surrogate/Lagrangean heuristic methods, the tabu search heuristic procedure found much better solutions using much less CPU time.Capacitated facility location, Tabu search, Metaheuristics

    Locating emergency services with priority rules: The priority queuing covering location problem

    Get PDF
    One of the assumptions of the Capacitated Facility Location Problem (CFLP) is that demand is known and fixed. Most often, this is not the case when managers take some strategic decisions such as locating facilities and assigning demand points to those facilities. In this paper we consider demand as stochastic and we model each of the facilities as an independent queue. Stochastic models of manufacturing systems and deterministic location models are put together in order to obtain a formula for the backlogging probability at a potential facility location. Several solution techniques have been proposed to solve the CFLP. One of the most recently proposed heuristics, a Reactive Greedy Adaptive Search Procedure, is implemented in order to solve the model formulated. We present some computational experiments in order to evaluate the heuristics’ performance and to illustrate the use of this new formulation for the CFLP. The paper finishes with a simple simulation exercise.Location, queuing, greedy heuristics, simulation

    Optimal staffing under an annualized hours regime using Cross-Entropy optimization

    Get PDF
    This paper discusses staffing under annualized hours. Staffing is the selection of the most cost-efficient workforce to cover workforce demand. Annualized hours measure working time per year instead of per week, relaxing the restriction for employees to work the same number of hours every week. To solve the underlying combinatorial optimization problem this paper develops a Cross-Entropy optimization implementation that includes a penalty function and a repair function to guarantee feasible solutions. Our experimental results show Cross-Entropy optimization is efficient across a broad range of instances, where real-life sized instances are solved in seconds, which significantly outperforms an MILP formulation solved with CPLEX. In addition, the solution quality of Cross-Entropy closely approaches the optimal solutions obtained by CPLEX. Our Cross-Entropy implementation offers an outstanding method for real-time decision making, for example in response to unexpected staff illnesses, and scenario analysis

    Network hub locations problems: the state of the art

    Get PDF
    Cataloged from PDF version of article.Hubs are special facilities that serve as switching, transshipment and sorting points in many-to-many distribution systems. The hub location problem is concerned with locating hub facilities and allocating demand nodes to hubs in order to route the traffic between origin-destination pairs. In this paper we classify and survey network hub location models. We also include some recent trends on hub location and provide a synthesis of the literature. (C) 2007 Elsevier B.V. All rights reserved

    Solution Methods for the \u3cem\u3ep\u3c/em\u3e-Median Problem: An Annotated Bibliography

    Get PDF
    The p-median problem is a graph theory problem that was originally designed for, and has been extensively applied to, facility location. In this bibliography, we summarize the literature on solution methods for the uncapacitated and capacitated p-median problem on a graph or network
    corecore