1,190 research outputs found

    Effect of dipolar moments in domain sizes of lipid bilayers and monolayers

    Full text link
    Lipid domains are found in systems such as multi-component bilayer membranes and single component monolayers at the air-water interface. It was shown by Andelman et al. (Comptes Rendus 301, 675 (1985)) and McConnell et al. (Phys. Chem. {\bf 91}, 6417 (1987)) that in monolayers, the size of the domains results from balancing the line tension, which favors the formation of a large single circular domain, against the electrostatic cost of assembling the dipolar moments of the lipids. In this paper, we present an exact analytical expression for the electric potential, ion distribution and electrostatic free energy for different problems consisting of three different slabs with different dielectric constants and Debye lengths, with a circular homogeneous dipolar density in the middle slab. From these solutions, we extend the calculation of domain sizes for monolayers to include the effects of finite ionic strength, dielectric discontinuities (or image charges) and the polarizability of the dipoles and further generalize the calculations to account for domains in lipid bilayers. In monolayers, the size of the domains is dependent on the different dielectric constants but independent of ionic strength. In asymmetric bilayers, where the inner and outer leaflets have different dipolar densities, domains show a strong size dependence with ionic strength, with molecular-sized domains that grow to macroscopic phase separation with increasing ionic strength. We discuss the implications of the results for experiments and briefly consider their relation to other two dimensional systems such as Wigner crystals or heteroepitaxial growth.Comment: 13 pages, 5 figues in eps Replaced with new version, one citation added and a few statements corrected. The results of the paper are unchange

    Channel-forming activity of syringopeptin 25 A in mercury-supported phospholipid monolayers and negatively charged bilayers

    Get PDF
    Interactions of the cationic lipodepsipeptide syringopeptin 25 A (SP25A) with mercury-supported dioleoylphosphatidylcholine (DOPC), dioleoylphosphatidylserine (DOPS) and dioeleoylphosphatidic acid (DOPA) self-assembled monolayers (SAMs) were investigated by AC voltammetry in 0.1 M KCl at pH 3, 5.4 and 6.8. SP25A targets and penetrates the DOPS SAM much more effectively than the other SAMs not only at pH 6.8, where the DOPS SAM is negatively charged, but also at pH 3, where it is positively charged just as SP25A. Similar investigations at tethered bilayer lipid membranes (tBLMs) consisting of a thiolipid called DPTL anchored to mercury, with a DOPS, DOPA or DOPC distal monolayer on top of it, showed that, at physiological transmembrane potentials, SP25A forms ion channels spanning the tBLM only if DOPS is the distal monolayer. The distinguishing chemical feature of the DOPS SAM is the ionic interaction between the protonated amino group of a DOPS molecule and the carboxylate group of an adjacent phospholipid molecule. Under the reasonable assumption that SP25A preferentially interacts with this ion pair, the selective lipodepsipeptide antimicrobial activity against Gram-positive bacteria may be tentatively explained by its affinity for similar protonated amino-carboxylate pairs, which are expected to be present in the peptide moieties of peptidoglycan strands

    Polarizable Water Model for the Coarse-Grained MARTINI Force Field

    Get PDF
    Coarse-grained (CG) simulations have become an essential tool to study a large variety of biomolecular processes, exploring temporal and spatial scales inaccessible to traditional models of atomistic resolution. One of the major simplifications of CG models is the representation of the solvent, which is either implicit or modeled explicitly as a van der Waals particle. The effect of polarization, and thus a proper screening of interactions depending on the local environment, is absent. Given the important role of water as a ubiquitous solvent in biological systems, its treatment is crucial to the properties derived from simulation studies. Here, we parameterize a polarizable coarse-grained water model to be used in combination with the CG MARTINI force field. Using a three-bead model to represent four water molecules, we show that the orientational polarizability of real water can be effectively accounted for. This has the consequence that the dielectric screening of bulk water is reproduced. At the same time, we parameterized our new water model such that bulk water density and oil/water partitioning data remain at the same level of accuracy as for the standard MARTINI force field. We apply the new model to two cases for which current CG force fields are inadequate. First, we address the transport of ions across a lipid membrane. The computed potential of mean force shows that the ions now naturally feel the change in dielectric medium when moving from the high dielectric aqueous phase toward the low dielectric membrane interior. In the second application we consider the electroporation process of both an oil slab and a lipid bilayer. The electrostatic field drives the formation of water filled pores in both cases, following a similar mechanism as seen with atomistically detailed models

    Lipid-protein and protein-protein interactions in the mechanisms of photosynthetic reaction centre and the Na+,K+-ATPase

    Get PDF
    Lipid-protein and protein-protein interactions are likely to play important roles in the function and regulation of charge-transporting membrane proteins. This thesis focuses on two different membrane proteins, the photosynthetic reaction centre (RC) from purple bacteria and the Na+,K+-ATPase. The influence of the lipid surroundings and cholesterol derivatives on the kinetics of electron transfer of the RC were investigated by reconstituting the protein in phosphatidylcholine vesicles containing cholesterol and derivatives known to modulate the membrane dipole potential. The experiments performed on the Na+,K+-ATPase were designed to contribute to a better understanding of the role that oligomeric protein-protein interactions have in the enzyme’s mechanism. Our results show that the cholesterol derivatives significantly modify the electron transfer kinetics within the RCs and their multiphasic behavior. These effects seem to be associated with the extent of the dipole potential change experienced by the RC within the phospholipid membrane. Indeed, the largest effects on the rates are observed when 6-ketocholestanol and cholesterol are present, consistent by with their previously demonstrated significant increase of the dipole potential. We interpret this data as indicating an increased free energy barrier for protons to enter the protein. The consequences of the increased dipole potential seem to be experienced across the entire protein, since the rates of the P+QA- charge recombination in the presence of AQ- acting as QA are also modified by the same effectors. Also interesting is the effect of the dipole potential on the two conformational states of the RCs (previously reported) as revealed by the biphasic decays of the electron transfer kinetics. In particular, we report for the first time a biphasicity of the P+QA- charge recombination in the WT RCs. This non exponential behaviour, absent in the phospholipid membrane or isolated RCs, is induced by the presence of the cholesterol derivatives, suggesting that the equilibration time between the two RC conformations is slowed down significantly by these molecules. According to this work, the dipole potential seems to be an important parameter that has to be taken into account for a fine understanding of the charge transfer function of the RCs. Reported literature values of the dissociation constant, Kd, of ATP with the E1 conformation of the Na+,K+-ATPase based on equilibrium titrations and kinetic methods disagree. Using isothermal titration calorimetry (ITC) and simulations of the expected equilibrium behaviour for different binding models, this thesis presents an explanation for this apparent discrepancy based on protein-protein interactions. Because of the importance of Mg2+ in ATP hydrolysis, kinetic studies of Mg2+ binding to the protein were also carried out. These studies showed that ATP alone is responsible for Mg2+ complexation, with no significant contribution from the enzyme environment

    Lipid-protein and protein-protein interactions in the mechanisms of photosynthetic reaction centre and the Na+,K+-ATPase

    Get PDF
    Lipid-protein and protein-protein interactions are likely to play important roles in the function and regulation of charge-transporting membrane proteins. This thesis focuses on two different membrane proteins, the photosynthetic reaction centre (RC) from purple bacteria and the Na+,K+-ATPase. The influence of the lipid surroundings and cholesterol derivatives on the kinetics of electron transfer of the RC were investigated by reconstituting the protein in phosphatidylcholine vesicles containing cholesterol and derivatives known to modulate the membrane dipole potential. The experiments performed on the Na+,K+-ATPase were designed to contribute to a better understanding of the role that oligomeric protein-protein interactions have in the enzyme’s mechanism. Our results show that the cholesterol derivatives significantly modify the electron transfer kinetics within the RCs and their multiphasic behavior. These effects seem to be associated with the extent of the dipole potential change experienced by the RC within the phospholipid membrane. Indeed, the largest effects on the rates are observed when 6-ketocholestanol and cholesterol are present, consistent by with their previously demonstrated significant increase of the dipole potential. We interpret this data as indicating an increased free energy barrier for protons to enter the protein. The consequences of the increased dipole potential seem to be experienced across the entire protein, since the rates of the P+QA- charge recombination in the presence of AQ- acting as QA are also modified by the same effectors. Also interesting is the effect of the dipole potential on the two conformational states of the RCs (previously reported) as revealed by the biphasic decays of the electron transfer kinetics. In particular, we report for the first time a biphasicity of the P+QA- charge recombination in the WT RCs. This non exponential behaviour, absent in the phospholipid membrane or isolated RCs, is induced by the presence of the cholesterol derivatives, suggesting that the equilibration time between the two RC conformations is slowed down significantly by these molecules. According to this work, the dipole potential seems to be an important parameter that has to be taken into account for a fine understanding of the charge transfer function of the RCs. Reported literature values of the dissociation constant, Kd, of ATP with the E1 conformation of the Na+,K+-ATPase based on equilibrium titrations and kinetic methods disagree. Using isothermal titration calorimetry (ITC) and simulations of the expected equilibrium behaviour for different binding models, this thesis presents an explanation for this apparent discrepancy based on protein-protein interactions. Because of the importance of Mg2+ in ATP hydrolysis, kinetic studies of Mg2+ binding to the protein were also carried out. These studies showed that ATP alone is responsible for Mg2+ complexation, with no significant contribution from the enzyme environment

    Electrically addressable vesicles: Tools for dielectrophoresis metrology

    Get PDF
    Dielectrophoresis (DEP) has emerged as an important tool for the manipulation of bioparticles ranging from the submicron to the tens of microns in size. Here we show the use of phospholipid vesicle electroformation techniques to develop a new class of test particles with specifically engineered electrical propserties to enable identifiable dielectrophoretic responses in microfabricated systems. These electrically addressable vesicles (EAVs) enable the creation of electrically distinct populations of test particles for DEP. EAVs offer control of both their inner aqueous core and outer membrane properties; by encapsulating solutions of different electrolyte strength inside the vesicle and by incorporating functionalized phospholipids containing poly(ethylene glycol) (PEG) brushes attached to their hydrophilic headgroup in the vesicle membrane, we demonstrate control of the vesicles’ electrical polarizabilities. This combined with the ability to encode information about the properties of the vesicle in its fluorescence signature forms the first steps toward the development of EAV populations as metrology tools for any DEP-based microsystem.National Institutes of Health (U.S.) (Grant RR199652)National Institutes of Health (U.S.) (Grant EB005753)Merck/CSBi (Fellowship)Solomon Buchsbaum AT&T Research Fun

    Photo-induced release of liposome-encapsulated molecules

    Full text link
    Thesis (Ph.D.)--Boston UniversityMany therapeutic molecules have severe side effects, poor bioavailability or have a narrow temporal window in which they are most effective. Liposomes offer a method to encapsulate high concentrations of a drug, protecting it upon in vivo administration. With an appropriate mechanism to manipulate lipid bilayer permeability, liposomes can deliver encapsulated drugs in a spatially and temporally controlled manner. Tissue penetrating wavelengths of light could trigger the release of liposome-encapsulated molecules. However, the photonic energy at these wavelengths is insufficient to power many photochemical reactions. The aim of this research was to develop a photochemical mechanism that uses such wavelengths to initiate the release of liposome-encapsulated molecules. It was proposed that aluminum phthalocyanine disulfonic acids (AIPcS2) adsorbs to lipid bilayers, and produces singlet oxygen 1O2) via photodynamic action (PDA) in response to red light. The 1O2 then reacts with unsaturated acyl chains of phospholipids, leading to increased lipid bilayer permeability. The release of liposome-encapsulated molecules was experimentally modeled using detergents. By measuring the thermodynamics of detergent binding and liposome size increase, a model of lipid bilayer permeabilization was established. A mathematical model of release using principles from random walk diffusion theory was developed from the experimental data. The adsorption of AIPcS2 to liposomes was measured and followed a Frumkin isotherm due to a repulsive force between photosensitizer molecules. Using reaction field theory, the location of the photosensitizer in the lipid bilayer was also predicted. Anisotropy data suggest that AIPcS2 interacts with the phospholipid to increase lipid bilayer stability. The presence of AIPcS2 also lowered background liposome leakage due to an electrostatic repulsion of the encapsulated material. This results in a more stable liposome system that contained a higher dose of the encapsulated material for longer. Irradiation of the AIPcS2-liposome system with tissue penetrating red light increased lipid bilayer permeability ten-fold over the baseline carboxyfluorescein flux. The release was a singlet oxygen mediated process, due to the type II PDA of AIPcS2. This activity provides a novel photochemical mechanism for liposome mediated drug delivery and increases temporal control of release
    • …
    corecore