619 research outputs found

    Learning Terrain Dynamics: A Gaussian Process Modeling and Optimal Control Adaptation Framework Applied to Robotic Jumping

    Get PDF
    The complex dynamics characterizing deformable terrain presents significant impediments toward the real-world viability of locomotive robotics, particularly for legged machines. We explore vertical, robotic jumping as a model task for legged locomotion on presumed-uncharacterized, nonrigid terrain. By integrating Gaussian process (GP)-based regression and evaluation to estimate ground reaction forces as a function of the state, a 1-D jumper acquires the capability to learn forcing profiles exerted by its environment in tandem with achieving its control objective. The GP-based dynamical model initially assumes a baseline rigid, noncompliant surface. As part of an iterative procedure, the optimizer employing this model generates an optimal control strategy to achieve a target jump height. Experiential data recovered from execution on the true surface model are applied to train the GP, in turn, providing the optimizer a more richly informed dynamical model of the environment. The iterative control-learning procedure was rigorously evaluated in experiment, over different surface types, whereby a robotic hopper was challenged to jump to several different target heights. Each task was achieved within ten attempts, over which the terrain's dynamics were learned. With each iteration, GP predictions of ground forcing became incrementally refined, rapidly matching experimental force measurements. The few-iteration convergence demonstrates a fundamental capacity to both estimate and adapt to unknown terrain dynamics in application-realistic time scales, all with control tools amenable to robotic legged locomotion

    Optimisation of blade type spreaders for powder bed preparation in additive manufacturing using DEM simulations

    Get PDF
    Powders used in the Particle Bed Fusion process are spread onto compact layers and then are fused to generate a layer of the final part. This process is repeated layer-upon-layer to form the final products. It has recently been demon- strated [Powder Technology, 306 (2017) 45–54] that spreading the particles with a counter-rotating roller produces a bed with a higher quality (i.e. a lower void fraction) compared to a blade type spreader. This is related to the geometry of the two spreaders which directly changes the bed-spreader contact dynamic and consequently affects the bed's quality. Based on this rationale, here, it is postulated that changing the blade profile at the blade bed contact region can significantly enhance the bed's quality and improve the effectiveness of a blade as a spreading device. A set of Discrete Element Method (DEM) simulations is performed at device-scale to optimise the geometry of blade spreaders to yield the lowest void fraction using simple rod-shaped grains to control the computational costs. The blade profile is parametrised using a super-ellipse with three geometrical parameters. Firstly, it is demonstrated that geometric optimisation of a blade profile is an effective alternative to using more complex spreading devices. Secondly, for the proposed parametrisation, the optimum values are found using computer simulations and it is shown that bed volume fractions close to critical values are achievable. Finally, a new technique for multi-sphere approximation (MSA) is developed and applied to 3D models of real powder grains to generate realistic particle shapes for the DEM simulations. Then using these grains it is shown that the proposed optimum blade profile is capable of producing a bed with qualities comparable (and even better) to a roller at the actual operating conditions and with realistic grain characteristics

    The Foundational Model of Anatomy Ontology

    Get PDF
    Anatomy is the structure of biological organisms. The term also denotes the scientific discipline devoted to the study of anatomical entities and the structural and developmental relations that obtain among these entities during the lifespan of an organism. Anatomical entities are the independent continuants of biomedical reality on which physiological and disease processes depend, and which, in response to etiological agents, can transform themselves into pathological entities. For these reasons, hard copy and in silico information resources in virtually all fields of biology and medicine, as a rule, make extensive reference to anatomical entities. Because of the lack of a generalizable, computable representation of anatomy, developers of computable terminologies and ontologies in clinical medicine and biomedical research represented anatomy from their own more or less divergent viewpoints. The resulting heterogeneity presents a formidable impediment to correlating human anatomy not only across computational resources but also with the anatomy of model organisms used in biomedical experimentation. The Foundational Model of Anatomy (FMA) is being developed to fill the need for a generalizable anatomy ontology, which can be used and adapted by any computer-based application that requires anatomical information. Moreover it is evolving into a standard reference for divergent views of anatomy and a template for representing the anatomy of animals. A distinction is made between the FMA ontology as a theory of anatomy and the implementation of this theory as the FMA artifact. In either sense of the term, the FMA is a spatial-structural ontology of the entities and relations which together form the phenotypic structure of the human organism at all biologically salient levels of granularity. Making use of explicit ontological principles and sound methods, it is designed to be understandable by human beings and navigable by computers. The FMA’s ontological structure provides for machine-based inference, enabling powerful computational tools of the future to reason with biomedical data

    Efficient From-Point Visibility for Global Illumination in Virtual Scenes with Participating Media

    Get PDF
    Sichtbarkeitsbestimmung ist einer der fundamentalen Bausteine fotorealistischer Bildsynthese. Da die Berechnung der Sichtbarkeit allerdings äußerst kostspielig zu berechnen ist, wird nahezu die gesamte Berechnungszeit darauf verwendet. In dieser Arbeit stellen wir neue Methoden zur Speicherung, Berechnung und Approximation von Sichtbarkeit in Szenen mit streuenden Medien vor, die die Berechnung erheblich beschleunigen, dabei trotzdem qualitativ hochwertige und artefaktfreie Ergebnisse liefern

    Synthesis of Spatially Extended Sources in Virtual Reality Audio

    Get PDF
    This thesis details a real-time implementation of spatial extent synthesis for virtual sound source objects made from mono sound signals and source object geometries. Techniques for distributing components of sound across basic and mesh-like geometry surfaces are discussed. A virtual-world audio environment supporting a listener avatar and various spatially extensive sound sources is described, and forms of source-to-listener distance attenuation are outlined with their roles in sound localization of spatially extensive sound sources. The implementation described herein takes form as an audio plug-in, of which the behavior, usage details, and compatible host applications are mentioned

    Is the Sun Lighter than the Earth? Isotopic CO in the Photosphere, Viewed through the Lens of 3D Spectrum Synthesis

    Full text link
    We consider the formation of solar infrared (2-6 micron) rovibrational bands of carbon monoxide (CO) in CO5BOLD 3D convection models, with the aim to refine abundances of the heavy isotopes of carbon (13C) and oxygen (18O,17O), to compare with direct capture measurements of solar wind light ions by the Genesis Discovery Mission. We find that previous, mainly 1D, analyses were systematically biased toward lower isotopic ratios (e.g., R23= 12C/13C), suggesting an isotopically "heavy" Sun contrary to accepted fractionation processes thought to have operated in the primitive solar nebula. The new 3D ratios for 13C and 18O are: R23= 91.4 +/- 1.3 (Rsun= 89.2); and R68= 511 +/- 10 (Rsun= 499), where the uncertainties are 1 sigma and "optimistic." We also obtained R67= 2738 +/- 118 (Rsun= 2632), but we caution that the observed 12C17O features are extremely weak. The new solar ratios for the oxygen isotopes fall between the terrestrial values and those reported by Genesis (R68= 530, R6= 2798), although including both within 2 sigma error flags, and go in the direction favoring recent theories for the oxygen isotope composition of Ca-Al inclusions (CAI) in primitive meteorites. While not a major focus of this work, we derive an oxygen abundance of 603 +/- 9 ppm (relative to hydrogen; 8.78 on the logarithmic H= 12 scale). That the Sun likely is lighter than the Earth, isotopically speaking, removes the necessity to invoke exotic fractionation processes during the early construction of the inner solar system

    Aeolian Simulations: A Comparison of Numerical and Experimental Results, with Projections for Titan.

    Get PDF
    Aeolian processes are major determinants of geomorphology on bodies in the Solar System possessing an atmosphere-surface interface and transportable sediment, including Earth, Mars, Venus, and Titan. Substantial efforts have been made over the last few decades to understand these processes using specialized wind tunnels, field studies, and, more recently, numerical simulations. This thesis describes a model of aeolian sediment transport using computational fluid dynamics (CFD), and compares the results with those obtained in the Martian Surface Wind Tunnel (MARSWIT) testing conducted in the Planetary Aeolian Laboratory at NASA Ames Research Center. The ultimate goal of the thesis was to develop an experimentally validated computational approach for modeling aeolian sediment saltation on Titan and other planetary bodies. In this thesis, sieved walnut shell particles with diameters of 175-250 microns were placed on the test section floor of the MARSWIT tunnel, the tunnel was started, and the free stream airspeed was raised to ~2.5 to 7.5 m/s. A Phantom v12 high-speed camera was used to image the resulting particle motion at 1000 frames per second, and the open source software, ImageJ, was used to evaluate particle motion. Airflow in the MARSWIT facility was modeled with Ansys FLUENT, a commercial CFD program. Surface properties for roughness height (Ks) and roughness constant (Cs) were determined through computation of a dimensionless roughness height parameter, , while using von Kármán\u27s constant. The turbulent scheme used in FLUENT to obtain closed-form solutions to the Navier-Stokes equations was a 1st Order Discretization, k-epsilon (two-equation) model. These methods produced computational velocity profiles that agreed with experimental data to within 10-15%. Once satisfactory modeling of the flow field had been achieved, a Discrete Phase Model (DPM) was utilized to simulate particle trajectories numerically. A Euler-Lagrangian scheme was employed, treating the particles as spheres and tracking each particle at its center. Calculated particle trajectories agreed closely with experimental results, within error bounds. Projections of Titan trajectories for specific conditions are among the major results presented and discussed and show higher and longer lofts than currently estimated
    corecore