773 research outputs found

    Periodic Planar Disk Packings

    Full text link
    Several conditions are given when a packing of equal disks in a torus is locally maximally dense, where the torus is defined as the quotient of the plane by a two-dimensional lattice. Conjectures are presented that claim that the density of any strictly jammed packings, whose graph does not consist of all triangles and the torus lattice is the standard triangular lattice, is at most nn+1Ï€12\frac{n}{n+1}\frac{\pi}{\sqrt{12}}, where nn is the number of packing disks. Several classes of collectively jammed packings are presented where the conjecture holds.Comment: 26 pages, 13 figure

    A combinatorial Yamabe flow in three dimensions

    Get PDF
    A combinatorial version of Yamabe flow is presented based on Euclidean triangulations coming from sphere packings. The evolution of curvature is then derived and shown to satisfy a heat equation. The Laplacian in the heat equation is shown to be a geometric analogue of the Laplacian of Riemannian geometry, although the maximum principle need not hold. It is then shown that if the flow is nonsingular, the flow converges to a constant curvature metric.Comment: 20 pages, 5 figures. The paper arxiv:math.MG/0211195 was absorbed into its new version and this pape

    Notions of denseness

    Full text link
    The notion of a completely saturated packing [Fejes Toth, Kuperberg and Kuperberg, Highly saturated packings and reduced coverings, Monats. Math. 125 (1998) 127-145] is a sharper version of maximum density, and the analogous notion of a completely reduced covering is a sharper version of minimum density. We define two related notions: uniformly recurrent and weakly recurrent dense packings, and diffusively dominant packings. Every compact domain in Euclidean space has a uniformly recurrent dense packing. If the domain self-nests, such a packing is limit-equivalent to a completely saturated one. Diffusive dominance is yet sharper than complete saturation and leads to a better understanding of n-saturation.Comment: Published in Geometry and Topology at http://www.maths.warwick.ac.uk/gt/GTVol4/paper9.abs.htm

    Thurston's sphere packings on 3-dimensional manifolds, I

    Full text link
    Thurston's sphere packing on a 3-dimensional manifold is a generalization of Thusrton's circle packing on a surface, the rigidity of which has been open for many years. In this paper, we prove that Thurston's Euclidean sphere packing is locally determined by combinatorial scalar curvature up to scaling, which generalizes Cooper-Rivin-Glickenstein's local rigidity for tangential sphere packing on 3-dimensional manifolds. We also prove the infinitesimal rigidity that Thurston's Euclidean sphere packing can not be deformed (except by scaling) while keeping the combinatorial Ricci curvature fixed.Comment: Arguments are simplife

    Electrical networks and Stephenson's conjecture

    Full text link
    In this paper, we consider a planar annulus, i.e., a bounded, two-connected, Jordan domain, endowed with a sequence of triangulations exhausting it. We then construct a corresponding sequence of maps which converge uniformly on compact subsets of the domain, to a conformal homeomorphism onto the interior of a Euclidean annulus bounded by two concentric circles. As an application, we will affirm a conjecture raised by Ken Stephenson in the 90's which predicts that the Riemann mapping can be approximated by a sequence of electrical networks.Comment: Comments are welcome
    • …
    corecore