1,719 research outputs found

    TEST: A Tropic, Embodied, and Situated Theory of Cognition

    Get PDF
    TEST is a novel taxonomy of knowledge representations based on three distinct hierarchically organized representational features: Tropism, Embodiment, and Situatedness. Tropic representational features reflect constraints of the physical world on the agent’s ability to form, reactivate, and enrich embodied (i.e., resulting from the agent’s bodily constraints) conceptual representations embedded in situated contexts. The proposed hierarchy entails that representations can, in principle, have tropic features without necessarily having situated and/or embodied features. On the other hand, representations that are situated and/or embodied are likely to be simultaneously tropic. Hence while we propose tropism as the most general term, the hierarchical relationship between embodiment and situatedness is more on a par, such that the dominance of one component over the other relies on the distinction between offline storage vs. online generation as well as on representation-specific properties

    Primary Physical Science for Student Teachers at Kindergarten and Primary School Levels: Part II—Implementation and Evaluation of a Course

    Get PDF
    AbstractThis is the second of two papers on a novel physical science course for student teachers that develops and uses an imaginative approach to Primary Physical Science Education. General philosophical, cognitive, developmental, and scientific issues have been presented in the first paper; here, we briefly recapitulate the most important aspects. In the main part of the current paper, we present in some detail concrete elements of the implementation of the course at three Italian universities where Primary Physical Science Education has been taught for more than 6 years. After a brief description of the course structure, we discuss which parts of macroscopic physics are taught, and how this is done in lectures and labs. Most importantly, we show how the science is entwined with methods related to pedagogy and didactics that (1) help our students approach the science and (2) can be transferred quite readily to teaching children in kindergarten and primary school. These methods include the design of direct physical experience of forces of nature, embodied simulations, writing and telling of stories of forces of nature, and design and performance of Forces-of-Nature Theater plays. The paper continues with a brief description of feedback from former students who have been teaching for some time, and an in-depth analysis of the research and teaching done by one of the students for her master thesis. We conclude the paper by summarizing aspects of both the philosophy and the design of the course that we believe to be of particular value

    Man, Machine, Scientific Models and Creation Science

    Get PDF
    Historically, physics was the most quantitative of the sciences. Geologists and biologists built their models based on observation, categorization and generalization. This distinction between qualitative and quantitative sciences prompted the quote attributed to Ernest Rutherford that “All science is either physics or stamp collecting.” In the intervening 80 years all sciences have exploded in the use of quantitative measures to find patterns and trends in data. A review of a half-century of creationist literature shows that this transition has not been lost to the creationist community. As this trend continues to accelerate, two areas of caution need to be taken seriously: 1) the use of properly validated techniques and 2) evaluating the role of assumptions in the development of models. In addition, advancements in machine learning tend to blur the lines between human insight and computational power. With a proper understanding of the nature of man, creation scientists are well suited to evaluate the unique role human investigators play in the choice, guidance and interpretation of that which is processed by the machine

    Development of a formative sequence for prospective science teachers: the challenge of improving teaching with analogies through the integration of infographics and augmented reality

    Get PDF
    Teachers often use analogies to introduce unfamiliar or complex concepts. However, several studies have found that their knowledge on how to use them is limited or superficial. Similarly, the integration of technological resources in the teaching-learning processes is not always carried out efficiently, which evidences the need to improve teachers’ digital competence. This paper provides a formative sequence on the use of analogies in teaching through mediation of technological resources, implemented in the context of the initial training of secondary education teachers. The results show a positive assessment by the students, a change in their perceptions on the subject and some progress in their classroom proposal designs. The conclusion is that it is necessary to train future teachers to deal with common teaching problems in a reflective, comprehensive and innovative way, which will undoubtedly be one of the challenges of education in the 21st centuryPeer Reviewe

    Probing student engagement with size and distance in introductory astronomy

    Get PDF
    Astronomy Education Research has shown that students have many challenges when it comes to understanding key concepts in Astronomy. Amongst these is a poor understanding of astronomical scales. Recently for example, both sizes and distances have been shown to present similar difficulties to students in both South Africa and Norway. It is difficult to attribute the findings simply to inadequate teaching due to the significant differences between the two countries with regard to language, culture, and the type of science teaching. It has, therefore, been suggested that since astronomical sizes and distances are beyond immediate human experience the explanation might in fact lie at a deeper cognitive level. The present thesis is aimed at exploring the link between astronomical sizes and distances as well as cognition. Part I The thesis focuses on investigating students' understanding of sizes and distances in astronomy. This was done by probing student notions of astronomical scales, using the size and distance questions from the Introductory Astronomy Questionnaire (IAQ), the instrument which led to the original findings noted previously. These questions were administered before and after a specially structured teaching intervention on sizes and distances. The results of this study in 2018 were found to be (a) in agreement with similar studies previously reported in South Africa and Norway, namely, that both sizes and distances in astronomy were poorly understood in both contexts and (b) that the teaching intervention was least effective for distances. Based on the findings above, the focus of the thesis shifted to a more fine-grained investigation of how students conceived of distances, as they increased from "human scale" to "beyond human scale". The study was carried out using the Grounded Theory Method (GTM). Data were generated by prompting written explanations from introductory astronomy students on how they engaged with three distances two of which may be considered to be within human experience while the third lies beyond the realm of direct experience. The distances used were 7 metres, 100 kilometres and the distance to the moon. The second distance was partly informed by the idea that we often communicate large distances to each other in terms of time. In addition, the framing of the questions excluded the possibility of visual explanations. The questions were administered to a cohort of introductory astronomy students at the University of Cape Town in 2019. A grounded analysis of the student responses was carried out to identify key ideas. The categories that emerged from the analysis showed clear evidence of students using different, unconnected types of explanations rather than simple extrapolations of one idea. A conceptual transition was identified relative to the body position of the respondents: body calibration and self-propelled body motion (or journeying). What was striking was that time was rarely mentioned explicitly. The way in which students expressed themselves was assumed to be an expression of the way in which they were thinking about different distance domains and suggestive of the cognitive perspective offered by "Embodied Cognition". Of particular interest was that nonstatic explanations were centered around the notion of a journey, and one of the key "thinking templates" in Embodied Cognition; the SOURCE-PATH-GOAL "Image Schema". Part II of the thesis summarizes key elements of Embodied Cognition that are pertinent to the present work and describes a pilot activity for teaching astronomical distances based on this account. Part II Theories of cognition can roughly be divided into two camps: those that assume that thinking is a "mentalese activity" involving symbolic manipulation. Most importantly, these symbolic elements are "amodal" in that they are not derived from the sensory modalities. On the other hand, Embodied Cognition assumes that these symbols arise from the sensory modalities, hence all thinking arises from bodily experience and its interactions with the environment in infancy. While there are several strands that feed into Embodied Cognition, of direct interest to the present work is that of Cognitive Linguistics and the notion of Conceptual Metaphor. In this view metaphors are not regarded as (mere) linguistic devices but as conceptual expressions that reflect cognitive schematic structures that relate to the bodily infant experience. These cognitive schematic structures or "Image Schemas" arise from repeated bodily actions repeatedly activating particular neural networks and form the basic building blocks of all abstract thought. A fair amount of such Image Schemas (or "thinking templates") have been identified of which the SOURCE-PATH-GOAL resonates most clearly with the data described earlier. This Image Schema comes about in infancy when a child learns that a toy on the far side of a room cannot be reached by grasping only but that moving the body from one place to another (crawling) is required. This is the basis of "Life is Journey or the Ph.D. Journey", for example. Another aspect of Embodied Cognition holds that understanding involves a mental simulation using the cognitive resources that are activated at the time. In order to see if activating the SPG / Journey "thinking template" prior to engaging with the teaching material would help in comprehending astronomical distances a two-part teaching activity (A and B) was developed around the notion of a journey. Part A was presented to the students as 'Journey to the observable edge of the UNIVERSE along UNIVERSity avenue" and required students to walk the length of the campus in a structured manner that is described in detail in the thesis. Part B, engagement with the teaching material, was carried out immediately afterwards in the Main Hall of the University. Thus, the thinking behind the two-part activity, piloted in 2020 just prior to Covid related lockdown, was that "journey" cognitive resources would be activated by the experience and would therefore be used in engaging with the teaching material regarding astronomical distances. Student evaluations were gathered in order to probe how students had engaged with the activity, including if any of the resources associated with journeying were expressed. A post-test ranking task showed that while results were mixed relative to previous studies overall there was a marked improvement for the present cohort. In summary the work shows clearly that there were two different modes of thinking about distances (i) based on counting and (2) based on the notion of the journey/journey-ing. Results were interpreted as the activation of schema described by embodied cognition. The difficulty that students experienced with astronomical distances was attributed to the lack of activating the Source-Path-Goal schema. In order to see whether there was a way to activate the Source-Path-Goal schema, an activity involving students walking was designed. The outcomes from the activity, indicated promising results with regard to student engagement with astronomical distance

    ASTRAL PROJECTION: THEORIES OF METAPHOR, PHILOSOPHIES OF SCIENCE, AND THE ART O F SCIENTIFIC VISUALIZATION

    Get PDF
    This thesis provides an intellectual context for my work in computational scientific visualization for large-scale public outreach in venues such as digitaldome planetarium shows and high-definition public television documentaries. In my associated practicum, a DVD that provides video excerpts, 1 focus especially on work I have created with my Advanced Visualization Laboratory team at the National Center for Supercomputing Applications (Champaign, Illinois) from 2002-2007. 1 make three main contributions to knowledge within the field of computational scientific visualization. Firstly, I share the unique process 1 have pioneered for collaboratively producing and exhibiting this data-driven art when aimed at popular science education. The message of the art complements its means of production: Renaissance Team collaborations enact a cooperative paradigm of evolutionary sympathetic adaptation and co-creation. Secondly, 1 open up a positive, new space within computational scientific visualization's practice for artistic expression—especially in providing a theory of digi-epistemology that accounts for how this is possible given the limitations imposed by the demands of mapping numerical data and the computational models derived from them onto visual forms. I am concerned not only with liberating artists to enrich audience's aesthetic experiences of scientific visualization, to contribute their own vision, but also with conceiving of audiences as co-creators of the aesthetic significance of the work, to re-envision and re-circulate what they encounter there. Even more commonly than in the age of traditional media, on-line social computing and digital tools have empowered the public to capture and repurpose visual metaphors, circulating them within new contexts and telling new stories with them. Thirdly, I demonstrate the creative power of visaphors (see footnote, p. 1) to provide novel embodied experiences through my practicum as well as my thesis discussion. Specifically, I describe how the visaphors my Renaissance Teams and I create enrich the Environmentalist Story of Science, essentially promoting a counter-narrative to the Enlightenment Story of Science through articulating how humanity participates in an evolving universal consciousness through our embodied interaction and cooperative interdependence within nested, self-producing (autopoetic) systems, from the micro- to the macroscopic. This contemporary account of the natural world, its inter-related systems, and their dynamics may be understood as expressing a creative and generative energy—a kind of consciousness-that transcends the human yet also encompasses it
    • …
    corecore