2,772 research outputs found

    Oscillator models of the solar cycle: Towards the development of inversion methods

    Get PDF
    This article reviews some of the leading results obtained in solar dynamo physics by using temporal oscillator models as a tool to interpret observational data and dynamo model predictions. We discuss how solar observational data such as the sunspot number is used to infer the leading quantities responsible for the solar variability during the last few centuries. Moreover, we discuss the advantages and difficulties of using inversion methods (or backward methods) over forward methods to interpret the solar dynamo data. We argue that this approach could help us to have a better insight about the leading physical processes responsible for solar dynamo, in a similar manner as helioseismology has helped to achieve a better insight on the thermodynamic structure and flow dynamics in the Sun's interior.Comment: 28 pages; 16 figures, ISSI Workshop 11-15 November 2013 - The Solar Cycle, http://www.issibern.ch/program/workshops.htm

    Observing and modeling the poloidal and toroidal fields of the solar dynamo

    Full text link
    Context. The solar dynamo consists of a process that converts poloidal field to toroidal field followed by a process which creates new poloidal field from the toroidal field. Aims. Our aim is to observe the poloidal and toroidal fields relevant to the global solar dynamo and see if their evolution is captured by a Babcock-Leighton dynamo. Methods. We use synoptic maps of the surface radial field from the KPNSO/VT and SOLIS observatories to construct the poloidal field as a function of time and latitude, and Wilcox Solar Observatory and SOHO/MDI full disk images to infer the longitudinally averaged surface azimuthal field. We show that the latter is consistent with an estimate of that due to flux emergence and therefore closely related to the subsurface toroidal field. Results. We present maps of the poloidal and toroidal magnetic field of the global solar dynamo. The longitude-averaged azimuthal field observed at the surface results from flux emergence. At high latitudes this component follows the radial component of the polar fields with a short time lag (1-3 years). The lag increases at lower latitudes. The observed evolution of the poloidal and toroidal magnetic fields is described by the (updated) Babcock-Leighton dynamo model.Comment: A&

    The Origin of Helicity in Solar Active Regions

    Full text link
    We present calculations of helicity based on our solar dynamo model and show that the results are consistent with observational data.Comment: To appear in the Proceedings of IAU Symposium 22
    • …
    corecore