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Abstract This article reviews some of the leading results obtained in solar
dynamo physics by using temporal oscillator models as a tool to interpret ob-
servational data and dynamo model predictions. We discuss how solar observa-
tional data such as the sunspot number is used to infer the leading quantities
responsible for the solar variability during the last few centuries. Moreover,
we discuss the advantages and difficulties of using inversion methods (or back-
ward methods) over forward methods to interpret the solar dynamo data. We
argue that this approach could help us to have a better insight about the lead-
ing physical processes responsible for solar dynamo, in a similar manner as
helioseismology has helped to achieve a better insight on the thermodynamic
structure and flow dynamics in the Sun’s interior.
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Iĺıdio Lopes1,2, Dário Passos1,2,3, Melinda Nagy4 and Kristof Petrovay4
1 Instituto Superior Técnico, Universidade de Lisboa, Portugal
Tel.: +351 21 8417938,Fax: +351 21 8419118
E-mail: ilidio.lopes@tecnico.ulisboa.pt; dariopassos@ist.utl.pt
2 Departmento de F́ısica, Universidade de Évora, Portugal
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1 Introduction

The number of dark spots in the Sun’s surface has been counted in a sys-
tematic way since Rudolf Wolf introduced the concept, in the first half of the
nineteenth century. More than any other solar observable, the sunspot number
is considered the strongest signature of the 22-year magnetic cycle. Moreover,
since the sunspot number is the longest time series from all solar observ-
ables (Owens 2013), it makes it the preferred proxy to study the variability
and irregularity of the solar magnetic cycle.

In the Sun’s interior the large scale magnetic field is generated by a mag-
netohydrodynamic dynamo that converts part of the kinetic energy of the
plasma motions into magnetic energy. Polarity reversals occur every 11 years
approximately, as it can be observed directly in the Sun’s dipolar field, and
taking a full 22-years to complete a magnetic cycle. In fact during each mag-
netic cycle, the Sun experiences two periods of maximum magnetic activity,
during which magnetic flux tubes created in the tachocline layer, rise to the
Sun’s surface by the action of buoyancy, emerging as sunspots pairs (Parker
1955). The polarity switch is also observed in the change of polarity alignment
of these bipolar active regions.

Although we know that the solar dynamo resides within the convection
zone, we still don’t have a complete picture where all the physical mechanisms
operate (Charbonneau 2013). There is a strong consensus that the physical
mechanism behind the production of the large scale toroidal field component,
the so called Ω-effect, is located in the tachocline, a shear layer created by
differential rotation and located at the base of the convection zone. The major
source of uncertainty is the location of the α-effect, the physical mechanism
responsible to convert toroidal into poloidal field and close the system. In
truth, this effect could be in fact a collection of several physical mechanisms
that operate at different places and with different efficiencies. Some examples
are the Babcock-Leighton mechanism that operates in the solar surface and
converts the product of decaying active regions into poloidal field, or the action
of the turbulent magnetic helicity that takes place in the bulk of the convection
zone. One of the main questions that is still being debated is the quantification
of the importance and relative contribution of each component to the operation
of the solar dynamo. Because different authors choose to give the leading role
to one or another α source term, there is vast number of dynamo models.
Most of these are two dimensional models (usually referred as 2.5D because
they include two spatial coordinates plus time) and are constructed using
the mean-field theory framework proposed by Steenbeck and Krause (1966).
Despite some short-comes, fruit of the approximations and formulation used,
this type of models running in the kinematic regime, i.e. with prescribed large
scale flows, has been very popular within the solar community because they can
explain many of the observable features of the solar cycle. A detailed discussion
on solar dynamo models, stellar magnetism and corresponding references to
the vast literature on this subject can be found in the reviews by Charbonneau
(2010) and Miesch and Toomre (2009).
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Another way of tackling the solar dynamo problem is by producing 3D
magnetohydrodynamic (MHD) simulations of the solar convection zone. These
computer intensive simulations solve the full set of the MHD equations (usu-
ally under the anelastic approximation) and are fully dynamical in every re-
solved scale, i.e. they take into consideration the interactions between flow
and field and vice-versa – unlike the kinematic regime usually used in mean
field models, where only the flow influences the field. Recently these simula-
tions have started to show stable large scale dynamo behaviour and they are
starting to emerge as virtual laboratories for understanding in detail some of
the mechanisms behind the dynamo (Ghizaru et al. 2010; Brown et al. 2011;
Käpylä et al. 2012; Passos and Charbonneau 2014).

On the other end of the modelling spectrum, we can find oscillator models,
that use simplified parameterizations of the main physical mechanisms that
participate in the dynamo process. Although in the Sun’s interior the mag-
netic field generated by the dynamo has a very rich and complex structure,
as a consequence of the structure of the magnetohydrodynamic differential
equations, some of its main properties can be understood by analyzing low
order differential equations obtained by simplification and truncation of their
original MHD counterparts. Then, several properties of the cycle that can be
extracted by studying these non-linear oscillator models, as is usually done
in nonlinear dynamics. These models have a solid connection to dynamical
systems and are, from the physics point of view the most simple. This does
not mean that they are the easiest to understand because the reduction in the
number of dimensions can sometimes be difficult to interpret (viz. introduc-
tion section of Wilmot-Smith et al. (2005)). These low order dynamo models
(LODM), as they are some times called, allow for fast computation and long
integration times (thousands of years) when compared to their 2.5D and 3D
counterparts. They can be thought as a first order approximation to study the
impact of certain physical mechanisms in the dynamo solution, or some of the
properties of the dynamo itself as a dynamical system.

The variability exhibited by the sunspot number time series, inspired re-
searchers to look for chaotic regimes in the equations that describe the dynamo.
For a complete review on this subject consult Spiegel (2009); Weiss (2010)
and references therein. Some of the first applications of LODM were done in
this context (e.g. Ruzmaikin (1981); Weiss and Cattaneo (1984); Tobias et al.
(1995)). These authors found solutions with cyclic behaviour and variable am-
plitude, including extended periods of low amplitude reminiscent of the grand
minima behaviour we see in the Sun. The downside of these initial works
was the fact that although the proposed model equations made sense from
a mathematical point of view, the physics realism they attained was small.
These low order models, with higher or lower degrees of physical complexity,
can be used in many areas and several of their results have been validated
by 2.5D spatially distributed mean field models, which grants them a certain
degree of robustness. This happens specially in LODM whose formulation is
directly derived from MHD or mean-field theory equations. Some examples of
the results obtained with LODM that have been validated by more complex
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mean field models are: the study of the parameter space, variability and tran-
sitions to chaos in dynamo solutions (Beer et al. 1998; Wilmot-Smith et al.
2005; Charbonneau et al. 2005; Hiremath 2006); the role of Lorentz force feed-
back on the meridional flow (Rempel 2006; Passos et al. 2012); and the influ-
ence of stochastic fluctuations in the meridional circulation and in the α-effect
(Charbonneau and Dikpati 2000; Mininni et al. 2001; Mininni and Gómez 2002;
Lopes and Passos 2009). Some models even include time delays that embody
the spatial segregation and communication between the location of source
layers of the α- and Ω-effects. These have been applied to a more general stel-
lar context by Wilmot-Smith et al. (2006) and recently, Hazra et al. (2014);
Passos et al. (2014) showed that one of this type of time delay LODM that
incorporates two different α source terms working in parallel, can explain how
the Sun can enter and exit in a self-consistently way from a grand minimum
episode. A couple of LODM even ventured in the ”dangerous” field of predic-
tions. For example Hiremath (2008) combined his LODM with an autoregres-
sive model in order to forecast the amplitude of future solar cycles.

In this article we show how can one of these LODM be used as a tool
to study the properties of the solar magnetic cycle. For this purpose we use
the international sunspot number time series during the past 23 solar mag-
netic cycles. Nevertheless, the main focus of this work is to present a strategy
inspired by helioseismology, were an inversion methodology is used to infer
variations of some of the LODM parameters over time. Since these parameters
are related to the physical mechanisms that regulate the solar dynamo, this
should in principle, allow for a first order reconstruction of the main dynamo
parameters over the last centuries. In a similar manner to helioseismology, the
comparison between model solutions and data can be done by means of a for-
ward method in which solar observational data is directly compared with the
theoretical predictions, or by means of a backward method in which the data
is used to infer the behaviour of leading physical quantities of the theoretical
model. Naturally, it is necessary to develop an inversion technique or method-
ology that allows to reconstruct the quantities that have changed during the
evolution of solar dynamo. This type of studies is well suited to explore sev-
eral aspects of the solar and stellar dynamo theory. This can be done by: (i)
building a tool to study the dynamo regimes operating in stars; (ii) establish-
ing an inversion methodology to infer the leading quantities responsible for
the dynamics and variability of the solar cycle over time; (iii) comparing the
dynamo numerical simulations with the observational data; (iv) use this tool
as a toy model to test global properties of the solar dynamo.

Here we particularly focus in discussing the three last items of this list, with
special attention on the development of an inversion method applied here to
the sunspot number time series. This is used to infer some of the dynamics of
the solar dynamo back-in-time. In principle this should allow us to determine
the variation profiles of the quantities that drive the evolution of the magnetic
cycle during the last few centuries.

In Section 2, we present a non-linear oscillator derived from the equations
of a solar dynamo that is best suited to represent the sunspot number. In



Oscillator models of the solar cycle 5

Section 3, we discuss how the non-linear oscillator analogue can be used to
invert some of the leading quantities related with solar dynamo. In Section 4
is discussed how solar observational data is use to infer properties of the solar
magnetic cycle. In Section 5 we present a discussion about how the low order
dynamo model can be used to test the basic properties of modern axisymmetric
models and numerical simulations, as well to infer some leading properties of
such dynamo models. In Section 6, we discuss the outlook for the Sun and
other stars.

2 A LODM for the evolution of the large scale magnetic field

The basic equations describing the dynamo action in the interior of a star are
obtained from the magnetic-hydrodynamic induction, and the Navier-Stokes
equations augmented by a Lorentz force (Moffatt 1978). Under the usual kine-
matic approximation the dynamo problem consists in finding a flow field with
a velocity U that has the necessary properties capable of maintaining the
magnetic field, B against Ohmic dissipation (Charbonneau 2010).

For a star like the Sun such dynamo models should be able to reproduce
well-known observational features such as: cyclic magnetic polarity reversals
with a period of 22 years, equatorward migration of B during the cycle (dy-
namo wave), the π/2 phase lag between poloidal and toroidal components ofB,
the antisymmetric parity across the equator, predominantly negative/positive
magnetic helicity in the Northern/Southern hemisphere, as well as many of the
empirical correlations found in the sunspot records, like the Waldmeier Rule
– anti-correlation between cycle duration and amplitude; the Gnevyshev-Ohl
Rule – alternation of higher-than-average and lower-than-average cycle am-
plitude and Grand Minima episodes (like the Maunder Minimum) – epochs
of very low surface magnetic activity that span over several cycles. Given the
amount of complex features that a solar dynamo model has to reproduce, the
task at hand is far from simple.

The vast majority of dynamo models currently proposed to explain the
evolution of the solar magnetic cycle (kinematic mean-field models) became
very popular with the advance of helioseismology inversions and the inclusion
of the differential rotation profile. In the kinematic regime approximation, the
flow field U is prescribed and only the magnetic induction equation is used
to determine the evolution of B. Generally, the large scale magnetic field, the
one responsible for most of the features observed in the Sun is modelled as
the interaction of field and flow where two source terms (Ω and α) naturally
emerge from mean-field theory (e.g., Moffatt 1978; Krause and Raedler 1980;
Cardoso and Lopes 2012). From the mean-field electrodynamics, the induction
equation reads

∂B

∂t
= ∇× (U×B+ αB− η∇×B) , (1)

where U is the large-scale mean flow, and η is the total magnetic diffusivity
(including the turbulent diffusivity and the molecular diffusivity). Currently,
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as inferred from helioseismology, U can be interpreted as a large-scale flow
with at least two major flow components, the differential rotation throughout
the solar interior, and the meridional circulation in the upper layers of the
solar convection (Howe 2009).

Given all the points above, and based on their popularity among the com-
munity, we start our study by considering a reference model based in the
kinematic mean-field flux transport framework. Although the results obtained
here are based on this specific type of model, most of the analysis method
used, as well the conclusions reached, can easily be extended to other models.
As usual, under the simplification of axi-symmetry the large-scale magnetic
field B can be conveniently expressed as the sum of toroidal and poloidal
components, that in spherical polar coordinates (r, θ, φ) can be written as

B(r, θ, t) = ∇× (Ap(r, θ, t)eφ) +Bφ(r, θ, t)eφ. (2)

Similarly, the large-scale flow field U as probed by helioseismology can be
expressed as the sum of an axisymmetric azimuthal (differential rotation) and
poloidal (meridional flow) components:

U(r, θ) = up(r, θ) + r̃Ω(r, θ)eφ (3)

where r̃ = r sin θ, Ω in the angular velocity and up is the velocity of the merid-
ional flow. Accordingly, such decomposition of B (that satisfy the induction
equation 1) and U leads to the following set of equations:

∂Ap

∂t
= η

(

∇2 − r̃−2
)

Ap − r̃−1up · ∇(r̃Ap) + αBφ (4)

∂Bφ

∂t
= η

(

∇2 − r̃−2
)

Bφ − r̃up · ∇(r̃−1Bφ)

+ r̃ [∇× (Apeφ)] · ∇Ω − Γ (Bφ)Bφ (5)

where η is the magnetic diffusivity and α is the source term of Ap (the mecha-
nism to convert toroidal to poloidal field). Moreover, following the suggestions
of (Pontieri et al. 2003) we also considered that the toroidal field can be re-
moved from the layers where it is produced by magnetic buoyancy and obeying
Γ ∼ γB2

φ/8πρ, where γ is a constant related to the removal rate and ρ is the
plasma density.

2.1 A van der Pol-Duffing oscillator for the solar cycle

As the Sun’s magnetic field changes sign from one solar cycle to the next
it is a plausible idea to attribute alternating signs in odd/even cycles also to
other solar activity indicators such as the sunspot number (SSN). The resulting
time series displays cyclic variations around zero in the manner of an oscillator.
This suggests an oscillator as the simplest mathematical model of the observed
SSN series. As, however, the profile of sunspot cycles is known to be markedly
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asymmetric (a steep rise in 3–4 years from minimum to maximum, followed
by a more gradual decline to minimum in ∼ 7 years), a simple linear oscillator
would be clearly a very poor representation of the sunspot cycle. A damped
linear oscillator

ẍ = −ω2x− µẋ (6)

will, on the other hand, naturally result on asymmetric profiles similar to
what is observed. The obvious problem that the oscillation will ultimately
decay due to the damping could be remedied somewhat artificially by applying
a periodic forcing or by reinitializing the model at each minimum. A much
more natural way to counteract the damping, however, is the introduction
of nonlinearities into the equation —indeed, such nonlinearities are naturally
expected to be present in any physical system, see below. As long as the
nonlinearity is relatively weak, the parameters ω2 and µ can be expanded into
Taylor series according to x. Due to the requirement of symmetry (i.e. the
behaviour of the oscillators should be invariant to a sign change in x) only
terms of even degree will arise in the Taylor series. To leading order, then, we
can substitute

ω2 → ω2 − λx2 µ → µ(ξx2 − 1) (7)

into equation (6) resulting in

ẍ = −ω2x− µ(ξx2 − 1)ẋ+ λx3 (8)

In the particular case when λ = 0 (i.e. the nonlinearity affects the damping
only) and the other parameters are positive, the system described by equation
(8) is known as a van der Pol oscillator. The alternative case when nonlinearity
affects the directional force/frequency only, i.e. ξ = 0, µ < 0 and λ 6= 0, in
turn, represents a Duffing oscillator. Due to their simplicity and universal na-
ture these two systems are among those most extensively studied in nonlinear
dynamics. It is straightforward to see that the oscillator is non-decaying, i.e.
the origin is repeller, whenever µ > 0 (negative damping) in the case of a van
der Pol oscillator and/or ω2 > 0 and λ > 0 in a Duffing oscillator.When a
nonlinearity is present in both paramters (i.e. λ and ξ are both non-zero) a
combined van der Pol-Duffing oscillator results.

The van der Pol–Duffing oscillator, however, is more than just a good
heuristic model of the solar cycle. In fact, an oscillator equation of this gen-
eral form can be derived by a truncation of the dynamo equations. As noted
before, we are especially interested in capturing the temporal dynamics asso-
ciated with the large scale magnetic field. In order to construct a low order
model aimed at capturing this dynamics, we follow the procedures described
in Passos and Lopes (2008, 2011).

It has been suggested by Mininni et al. (2000); Mininni et al. (2001) and
Pontieri et al. (2003) that a dimensional truncation of the dynamo equations
(4) and (5) is an effective method to reduce the system’s dimensions and
capture phenomena just on that scale. Following that ansatz, gradient and
laplacian operators are approximated by a typical length scale of the system
l0 (e.g. convection zone length or width of the tachocline), leading to ∇ ∼
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l−1

o and ∇2 ∼ l−2

o . Analogously this can be interpreted as a collapse of all
spatial dimensions, leaving only the temporal behaviour. In terms of dynamical
systems, we are projecting a higher dimensional space into a single temporal
plane. After grouping terms in Bφ and Ap (now functions only dependent of
the time) we get

dBφ

dt
= c1Bφ + c2Ap − c3B

3

φ (9)

dAp

dt
= c1Ap + αBφ (10)

where we have defined the structural coefficients, cn, as

c1 = η

(

1

l2
0

− 1

r̄2

)

− vp
l0

(11)

c2 =
r̄Ω

l2
0

(12)

c3 =
γ

8πρ
(13)

We now concentrate in creating an expression for the time evolution of
Bφ since it is the field component directly associated with the productions of
sunspots. We derive expression (9) in order to the time, and substitute (10)
in it to take away the Ap dependence yielding

d2Bφ

dt2
+ ω2Bφ + µ(3ξB2

φ − 1)
∂Bφ

∂t
− λB3

φ = 0, (14)

where ω2 = c2
1
− c2α, µ = 2c1, ξ = c3/2c1 and λ = c1c3 are model parameters

that depend directly on the structural coefficients. The name used to describe
cn comes from the fact that these coefficients contain all the background phys-
ical structure (rotation, meridional circulation, diffusivity, etc.) in which the
magnetic field evolves.

This oscillator (equation 14) is a van der Pol-Duffing oscillator and it ap-
pears associated with many types of physical phenomena that imply auto-
regulated systems. This equation is a quite general result which B should
satisfy. In this case, unlike in the classical van der Pol-Duffing oscillator, the
parameters are interconnected by a set of relations that link the present os-
cillation model with the original set of dynamo equations (4-5). This interde-
pendency between parameters will eventually constrain the solution’s space.
As in the classical case, ω controls the frequency of the oscillations or the pe-
riod of the solar magnetic cycle, µ controls the asymmetry (or non-linearity)
between the rising and falling parts of the cycle and ξ affects directly the am-
plitude. The λ parameter, related to buoyancy loss mechanism sets the overall
amplitude peak amplitude of the solution. Figure (1) shows the solution of
equation (14) in a time vs. amplitude diagram (left) and in a {Bφ, dBφ/dt}
phase space. From this figure we find that this dynamo solution, under suit-
able parametrization (viz. next section) is a self-regulated system that rapidly
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Fig. 1 Left panel represents the time evolution of Bφ(t) obtained from equation (14) with
parameters c1 = 0.08, c2 = −0.09, c3 = 0.001, α0 = 1. In the right we have a (Bφ, dBφ/dt)
phase space representation of the solution. The blue arrows indicate the direction of increas-
ing time and the red dot the initial value used. Also indicated in this panel are the regions
corresponding to the maxima and minima of the cycle. Adapted from Passos and Lopes
(2011).

relaxes to a stable 22-year oscillation. In the phase space the solution tend
to a limit cycle or attractor. A complete (clockwise) turn in the phase space
corresponds to a complete solar magnetic cycle.

2.2 A semi-classical analysis method using a non-linear oscillator

In order to estimate values for the coefficients in equation (14), Mininni et al.
(2000) and Passos and Lopes (2008) fitted this oscillator model either to a
long period of the solar activity (several solar cycles) or to each magnetic cy-
cle individually. We shall return to this point in subsequent sections. A more
general approach to the problem of finding the parameter combinations with
which the classical van der Pol-Duffing oscillator returns solar-like solutions
was taken by Nagy and Petrovay (2013). The authors mapped the parameter
space of the oscillator by adding stochastic noise to its parameters using differ-
ent methods. The objective was to constrain the parameter regime where this
nonlinear model shows the observed attributes of the sunspot cycle, the most
important requirement being the presence of the Waldmeier effect (Waldmeier
1935) according to the definition of Cameron and Schüssler (2008).

Noise was introduced either as an Ornstein–Uhlenbeck process (Gillespie
1996) or as a piecewise constant function keeping a constant value for the
interval of the correlation time. The effect of this noise was assumed to be
either additive or multiplicative. The amplitudes and correlation times of the
noise defined the phase space. The attributes of the oscillator model were first
examined in the case of the van der Pol oscillator (no Duffing cubic term) with
perturbation either in the nonlinearity parameter, ξ or the damping parameter,
µ, as shown in the equations below:

ẍ = −ω2

0
x− µ(t)

[

ξ0x
2 − 1

]

ẋ (15)
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ẍ = −ω2

0
x− µ0

[

ξ(t)x2 − 1
]

ẋ. (16)

The constant parameters, ω0, µ0 and ξ0 used were taken from the fitted
values listed by Mininni et al. (2000). Note that in this simple case, variations
in these parameters were assumed to be independent from each other, whereas
in reality they are interrelated (see equation 14). The results show that the
model presents solar-like solutions when a multiplicative noise is applied to
the nonlinearity parameter, as in equation (16). An example of a time series
produced by this type of oscillator is shown in Figure (2).

Fig. 2 Bottom panel: a 600 year long time series resulting from a stochastically perturbed
van der Pol oscillator stochastically perturbed in one of its parameters (nonlinearity ξ(t)).
SSN values were defined as x2(t). The noise applied (piecewise constant in this case) is
shown in the top panel.

As a next step towards a fully general study, let us consider the case where
both ξ and µ are simultaneously perturbed and the Duffing term −λx3 is also
kept in the oscillator equation (8). Noise is applied to µ but it also affects ξ
as the values of ξ and µ are assumed to be related as

ξ(t) =
Cξ

µ(t)
and λ(t) = Cλ

µ(t)

2
, (17)

(Passos and Lopes 2008); here, Cξ and Cλ are constants.
A mapping of the parameter space shows that in this case solar-like solu-

tions are more readily reproduced compared to the case when only one pa-
rameter was assumed to vary (see Fig. 3). This finding is in line with the
information derived from the LODM developed in the previous section. An
ongoing study shows that the corresponding time dependence in the Duffing
parameter, as predicted by the LODM, has a significant effect on the character
of the solution.

We note that additive noise was first applied to one parameter (ξ) of a van
der Pol oscillator by Mininni et al. (2000); Mininni et al. (2001) but the focus
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Fig. 3 Bottom panel: a 600 year long time series resulting from a van der Pol–Duffing
oscillator stochastically perturbed in two of its parameters, ξ and µ. SSN values were here
defined as x3/2(t), following Bracewell (1988). The noise applied is shown in the top and
middle panels. The Duffing parameter was here given a constant value λ0 = 5× 10−5.

of that work was on reproducing cycle to cycle fluctuations, withour consider-
ing the Waldmeier effect. This model was further analysed by Pontieri et al.
(2003) (and references therein) who studied the behavior of the Hurst expo-
nent of this system and concluded that this type of fluctuations implies that
the stochastic process which underlies the solar cycle is not simply Brownian.
This means that long-range time correlations could probably exist, opening
the way to the possibility of forecasts on time scales comparable to the cycle
period. An attempt to introduce the effects of such non-gaussian noise statis-
tics into the LODM was made by Vecchio and Carbone (2008) who suggest
that this may contribute to cyclic variations of solar activity on time scales
shorter than 11 years.

3 Coupling a LODM with observational data - inversions

In the previous example a perturbation method was studied in order to find
solar like solutions for this non-linear oscillator. Another way of thinking is
to pair the oscillator directly to some solar observable and try to constraint
its parameters. As mentioned in the introduction we choose the international
sunspot number, SSN and we use it to build a proxy of the toroidal magnetic
component. Since the SSN is usually taken to be proportional to the toroidal
field magnetic energy that erupts at the solar surface (∝ B2

φ), Tobias et al.
(1995), this makes it ideal for compare with solutions of the LODM. Taking
this in consideration, Mininni et al. (2000); Passos and Lopes (2008) have built
a toroidal field proxy based on the sunspot number by following the procedure
proposed by Polygiannakis and Moussas (1996), i.e. Bφ ≈ ±

√
SSN . Details
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about the construction of the toroidal proxy (see Fig. 4) can be found in
Mininni et al. (2001); Passos and Lopes (2008) and Passos (2012).
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Fig. 4 Black dashed line represents the built proxy for the toroidal field. Bφ is obtained by

calculating
√
SSN , changing the sign of alternate cycles (represented in gray), and smooth-

ing it down using an FFT low pass filter of 6 months. The vertical thin dotted lines represent
solar cycle minima.

3.1 The averaged behaviour of the solar dynamo attractor

The solution obtained for equation (14) presented in Figure (1) shows that the
solar cycle is a self-regulated system that tends to a stable solution defined
by an attractor (limit cycle). If we allow for the different physical processes
responsible for the solar dynamo and embedded in the structural coefficients
(11, 12 and 13), i.e. the differential rotation, the meridional circulation flow,
the α mechanism, and the magnetic diffusion, to change slowly from cycle to
cycle then we start to observe deviations from the equilibrium state. If de-
viations from this sort of dynamical balance occur, such that if one of these
processes changes due to an external cause, the other mechanisms also change
to compensate this variation and ensure that the solar cycle finds a new equi-
librium.

To test this idea of an equilibrium limit cycle, we fit the LODM parameters
to the {Bφ,dBφ/dt} phase space of the built toroidal proxy (see Fig. 5).

If one of the parameter’s variation is very large the system can be dramat-
ically affected, leading to a quite distinct evolution path like the ones found
during the solar grand minima. We will develop this subject in a subsequent
section.

3.2 Matching of solutions to observable characteristics of the solar cycle

Solutions with fluctuation similar to those we see on the solar cycle are easily
set by variations in the µ parameter (and the physical processes associated
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Fig. 5 Phase-space diagram for the toroidal proxy Bφ(t) : The crosses correspond to local
area averaged values found by dividing the data into 32 temporal intervals. The red dashed
curve is a fit to the crosses. The continuous black curves correspond to a fit to all data
points (not grouped in intervals). For the red curve we have that µ = 0.1645, ω = 0.3523,
ξ = 0.0147 and λ = 0.0005. Figure adapted from Passos and Lopes (2008).

with it). By definition the structural coefficient that regulates this param-
eter (c1) also has an important role in the other parameters (ω, ξ and λ).
In the LODM equation (14) the µ and µξ quantities regulate the strength
and the non-linearity of the damping. Moreover, an occasional variation on
µ, like a perturbation on the meridional flow amplitude, vp (see structural
coefficients 11) will affect all sets of parameters leading to the solar dynamo
(equation 14) to find a new equilibrium, which will translate into the solar
magnetic cycle observable like the sunspots number, showing an irregular be-
haviour.

The well-known relation discover by Max Waldmeier (Wolf and Brunner
1935), that the time that the sunspot number takes to rise from minimum to
maximum is inversely proportional to the cycle amplitude in naturally cap-
tured by the LODM assuming discrete variations in µ. Notice that the Wald-
meier effect occurs as a consequence of the limit cycle becoming increasingly
sharp as µ increases, i.e., the sunspot number amplitude increases as the cycle’s
rising times gets shorter.

4 How to infer properties of the Solar Magnetic Cycle

From the physical point of view, based on observations, we know that in the
Sun some of the physical background structures that are taken as constant in
our standard dynamo solution aren’t so. In order to test that specific changes
of the background state lead to the observed changes in the amplitude of the
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solar cycle, the following strategy was devised. At a first approximation we
assume that the structural coefficients can change only discretely in time, more
specifically from cycle to cycle while the magnetic field is allowed to evolve
continuously. The idea is that changing coefficients will generate theoretical
solutions with different amplitudes, periods and eigen-shapes at different times
and by comparing these different solution pieces with the observed variations
in the solar magnetic field, we are able to infer information about the physical
mechanisms associated with the coefficients.

To do this we compare our theoretical solution with a proxy built from the
International monthly averaged SSN since 1750 to the present. As mentioned
before we assume that Bφ ∝

√
SSN . The proxy data is separated into in-

dividual cycles and fitted using equation (14), considering that the buoyancy
properties of the system are immutable, i.e. c3 is constant throughout the time
series. This means that when we fit the LODM to solar cycle N , we will re-
trieve the set of cnN coefficients that best describe that cycle. This allows to
probe how these coefficients vary from cycle to cycle and consequently how the
physical mechanisms associated with them evolve in time (Lopes and Passos
2009; Passos 2012). Equation (14) is afterwards solved by changing the pa-
rameters to their fit value, at every solar minimum using a stepwise function
(similar to that presented in figure (7) for c1). Figures (7) and (6) highlight this
procedure. The fact that such a simplified dynamo model can get this degree
of resemblance with the observed data just by controlling one or two param-
eters is an indication that it captures the most important physical processes
occurring in the Sun.

4.1 Meridional circulation reconstruction

The simple procedure previously described allows to reconstruct the behavior
of solar parameters back in time. Using an improved fitting methodology,
Passos (2012) obtained with this model the reconstruction of the variation
levels of the solar meridional circulation for every solar (sunspot) cycle over
the last 250 years. One must notice that in this specific LODM the amplitude
of the cycle depends directly on the amplitude of the meridional flow during
the previous cycle. It is completely possible to imagine that other models that
consider a different theoretical setup might return a different behaviour.

Looking at equation (11), we can see that the coefficient c1 depends on
two physical parameters, the magnetic diffusivity, η, and the amplitude of the
meridional circulation, vp. The magnetic diffusivity of the system is a property
tightly connected with turbulent convection and is generally believed to change
only in time scales of the order of stellar evolution. This leaves variations in vp
as the only plausible explanation for the variation observed from cycle to cycle.
Therefore, by looking at the evolution of c1 we can can effectively assume that
we are looking at the variation in the strength of meridional circulation. The
results obtained are presented in Figure (7).
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A

B

Fig. 6 A) theoretical solution (red) obtained by fitting it the proxy at each individual
cycle. B) Direct comparison of the model behavior (red) and observed solar cycle amplitude
(black). In panel B) we just plot the squared of panel B) and this also amplifies the differences
between both curve. Adapted from Passos (2012).
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Fig. 7 Reconstruction of the meridional circulation profile represented by c1 (black line)
compared to smoothed the sunspot number (gray). Adapted from Passos (2012)

Although this result is in itself interesting, a more important concept came
from this study. When Passos and Lopes (2008) presented their results for
the first time, they introduced the idea that coherent long term variations (of
the order of the cycle period) in the strength of the meridional circulation
could provide an explanation for the variability observed in the solar cycle
(see Fig. 8). This result was also a posteriori numerically validated using a
2.5D flux transport model (Lopes and Passos (2009) and Karak (2010)). Only
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a couple of years later, Hathaway and Rightmire (2010) presented meridional
circulation measurements spanning over the last solar cycle. Their measure-
ments confirmed that the amplitude of this plasma flow changes considerably
from cycle to cycle.

Fig. 8 Comparison between the observed solar cycle amplitude (top), a sunspot recon-
struction using the Surya Dynamo Code (middle) and the LODM results (bottom). In these
simulations were only considered variations in the meridional flow amplitude every 2 sunspot
cycles (1 magnetic cycle). Adapted from Passos and Lopes (2008), Lopes and Passos (2009)
and Passos (2010).

Recently two other groups have tested this idea with their 2.5D dynamo
models finding additional features based in this effect, c.f. Karak (2010),
Karak and Choudhuri (2011) and Nandy et al. (2011). For example it was
found that the instant at which the change in the meridional flow takes place,
has an influence in the duration of the following solar cycle. This was used as
an explanation for the abnormally long duration of the last minimum. Just
for reference, the numbering of solar cycles only started after 1750 with solar
cycle 1 beginning in 1755. At this moment we are in the rising phase of solar
cycle 24.

4.2 Explaining solar grand minima

4.2.1 Variations in the meridional flow

Solar grand minima correspond to extended periods (a few decades) where
very low or no solar activity occurs. During theses periods no sunspots (or
very few) are observed in the solar photosphere and it is believed that other
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Fig. 9 Top panel represents the sunspot measurements where the Maunder Minimum period
is highlighted by the red arrow. In the bottom we show the response of the LODM (magnetic
energy in arbitrary units) to a decrease in the strength of the meridional flow exemplified
by the green dashed line. Adapted from Passos and Lopes (2011)

solar phenomena also exhibit low levels of activity. The most famous grand
minimum that has been registered is the Maunder Minimum which occurred
between the years of 1645 and 1715 (Eddy (1976)).

A possible explanation for the origin of these quiescent episodes was put
forward by Passos and Lopes (2011). Using a LODM, they showed that a
steep decrease in the meridional flow amplitude can lead to grand minima
episodes like the Maunder minimum (see Figs. 9 and 10). This effect presents
the same visual characteristics as the observed data, namely a rapid decrease
of magnetic intensity and a gradual recovery into normal activity (see Fig. 9)
after the meridional circulation amplitude returns to its normal values. A
similar result was later obtained by Karak (2010), again using a more complex
2.5D numerical flux transport model. Nevertheless the reasons that could lead
to a decrease of the meridional flow amplitude were not explored. This served
as a motivation to study the behavior of this LODM in the non-kinematic
regime, explained in section §5.2.

4.2.2 Fluctuations in the α effect

Some examples mentioned in the introduction, hint that fluctuations in the α
mechanism can also trigger grand minima. We focus on a specific example now,
the LODM developed by Hazra et al. (2014). In this work the authors used a
time-delay LODM similar to that presented in Wilmot-Smith et al. (2006) but
expanded with the addition of a second α effect. This model incorporates two of
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Fig. 10 The phase-space diagram for B(t) corresponds to the value obtained from the
sunspot number temporal series as in Figure (9). Adapted from Passos and Lopes (2011)
and Passos (2010).

these mechanisms, one that mimics the surface Babcock-Leighton mechanism
(BL), and another one analogous to the classical mean-field (MF) α-effect that
operates in the bulk of the convection zone. This set up captures the idea that
the BL mechanism should only act on strong magnetic fields that reach the
surface, and that weak magnetic fields that diffuse through the convection zone
should feel the influence of the MF α. The authors subject these two effects to
different levels of fluctuations and find that in certain parameter regimes, the
solution of the system shows the same characteristics as a grand minimum.
These results were also validated by implementing a similar set up into a 2.5D
mean-field flux transport dynamo model Passos et al. (2014). Again this shows
the usefulness of low order models to probe ideas before their implementation
into more complex models.

4.3 Solar cycle predictability

For the near future, perhaps one of most interesting applications of this LODM
is its use in the predictability of future solar cycles amplitudes. The first step
towards this objective is presented in Passos (2012). The authors studied the
correlations between the LODM fitted structural coefficients and cycle’s char-
acteristics (amplitude, period and rising time). They found very useful rela-
tionships between these quantities measured for cycle N and the amplitude of
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cycle N+1. These relationships were put to the test by predicting the ampli-
tude of current solar cycle 24 (see Fig. 11).

Fig. 11 Observed values (white squares) and predicted values black circles with gray error
bars for the cycle amplitude. The red circle is the predicted amplitude for solar cycle 24
based on this methodology. Adapted from Passos (2012)

.

5 LODM as probe of numerical dynamo models

In recent years there have been strong developments of different types of dy-
namo models to compute the evolution of the solar magnetic activity and to
explore some of the causes of magnetic variability. Two classes of models have
been quite successful, the kinematic dynamo models and, more recently, the
global magnetohydrodynamical models. Both types of dynamo models have a
quite distinct approach to the dynamo theory, the first one resolves the induc-
tion magnetic equation for a prescribed velocity field (which is consistent with
helioseismology), and the second one obtains global magnetohydrodynamical
simulations of the solar convection zone. Many of these models are able to re-
produce some of the many observational features of the solar magnetic cycle.
Nevertheless, it remains quite a difficult task to successfully identify which are
the leading physical processes in current dynamo models that actually drive
the dynamo in the solar interior. The usual method to test these dynamo
models is to compare their theoretical predictions with the different sets of
data, including the sunspot numbers, however, in many cases the conclusions
obtained are very limited, as different physical mechanisms lead to very iden-
tical predictions. This problem also arises in the comparison between different
dynamo models, including different types of numerical simulations.

A possible solution to this problem is to use inverted quantities (obtained
form observational data) to test the quality of the different solar dynamo
model, rather than making direct comparison of data. For those of you famil-
iarized with helioseismology, there is a good analogue: it is the equivalent to
compare the inverted sound speed profile (obtained from observational data)
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Fig. 12 The phase-space diagram for B(t) of a kinematic dynamo model (using the Surya’s
kinematic model)): (a) a standard kinematic dynamo model (vp is constant); (b) A variable
kinematic dynamo model in which the vp for each magnetic cycle corresponds to the value
obtained from the sunspot number temporal series. Both simulations correspond to 130-year
time series. The small variability present in the left panel is due to the stabilization of the
numerical solution. Figure adapted from Lopes and Passos (2009).

with the sound speed profile predicted by solar models (backward approach),
rather than compare predicted frequencies with observational frequencies (for-
ward approach). The former method to test physical models is more insightful
than the latter one. At the present level of our understanding of the solar dy-
namo theory, as a community we could gain a more profound understanding
of the mechanisms behind the solar magnetic variability, if we start developing
some backward methods to analyse solar observational data and test dynamo
models.

5.1 Using a LODM in the kinematic regime

Using the meridional velocity inverted from the sunspot number time series
(see Fig. 7), Lopes and Passos (2009) showed that most of the long term vari-
ability of the sunspot number could be explained as being driven by the merid-
ional velocity decadal variations, assuming that the evolution of the solar mag-
netic field is well described by an axisymmetric kinematic dynamo model.

Figure (8) shows a reconstructed sunspot times series that has been ob-
tained using the meridional velocity vp inverted from the sunspot observa-
tional time series, and Figure (12) shows the phase space of a standard ax-
isymmetric kinematic dynamo model (with the same vp for all cycles) ((e.g.,
Choudhuri et al. 1995)) and a solar dynamo model where the vp changes from
cycle to cycle as inverted from the sunspot times series (Lopes and Passos
(2009)). It is quite encouraging to find that such class of dynamo models for
which the vp changes overtime successfully reproduced the main features found
in the observational data.

Moreover, in their article Lopes and Passos (2009) tested two different
methods of implementing the velocity variation for each magnetic cycle, namely,
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by considering that amplitude variations in vp that take place at sunspot min-
ima or at sunspot maxima. All the time series show a few characteristics that
are consistent with the observed sunspot records. In particular, all the simula-
tions show the existence of low amplitudes on the sunspot number time series
between 1800 and 1840 and between 1870 and 1900. The simulation that best
reproduces the solar data corresponds to the model SSNrec[3] (see Fig. 8),
in which was implemented a smoothed vp variation profile between consecu-
tive cycles and taking place at the solar maximum. This clearly highlights the
potential of such methodology.

Here, we discuss the same methodology as the one used in the previous
section, but instead of applying it to observational sunspot number records,
it is used to reconstruct the sunspot time series. The results obtained clearly
show that the present kinematic dynamo models can reproduce in some detail
the observed variability of the solar magnetic cycle. The fact that for one of the
sunspot models – model SSNrec[3], it presents a strong level of correlation with
the observational time series, lead us to believe that the main idea behind this
backward approach is correct and it is very likely that the inverted vp variation
is probably very close to the vp variation that happens in the real Sun. Clearly,
under the assumed theoretical framework the meridional circulation is the
leading quantity responsible for the magnetic variability found in the sunspot
number time series and current solar dynamo models are able to reproduce
such variability to a certain degree.

5.2 Using a LODM in the non kinematic regime

So far, the vast majority of the LODM applications presented here followed
the traditional assumption that the solar dynamo can be correctly modeled in
the kinematic regime, where only the plasma flows influence the production of
magnetic field, and not the other way around. This kinematic approximation
is used in the vast majority of the present 2.5D spatially resolved dynamo
models.

In the last couple of years though, evidence started to appear supporting
the claim that this kinematic regime might be overlooking important physical
mechanisms for the evolution of the dynamo. The idea that the meridional flow
strength can change over time and affect the solar cycle amplitude coupled with
the measurements of Hathaway and Rightmire (2010) and Basu and Antia
(2010) indicate that the observed variation in this flow is highly correlated
with the levels of magnetic activity. This leads to the fundamental question:
”Is the flow driving the field or is the field driving the flow?”

The first clues are starting to appear from 3D MHD simulations of solar
convection. The recent analysis of the output of one of the large-eddy global
MHD simulations of the solar convection zone done by Passos et al. (2012)
shows interesting clues. These simulations solve the full set of MHD equations
in the anelastic regime, in a broad, thermally-forced stratified plasma spheri-
cal shell mimicking the SCZ and are fully dynamical on all spatiotemporally-
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resolved scales. This means that a two way interaction between field and flow is
always present during the simulation. The analysis shows that the interaction
between the toroidal magnetic field and the meridional flow in the base of the
convection zone indicates that the magnetic field is indeed acting on the equa-
torward deep section of this flow, accelerating it. This observed relationship
runs contrary to the usually assumed kinematic approximation.

In order to check if this non-kinematic regime has any impact in the long
term dynamics of the solar dynamo, Passos et al. (2012) implemented a term
that accounts for the Lorentz force feedback in a LODM similar to the one
presented here. This allows to fully isolate the global aspects of the dynamical
interactions between the meridional flow and magnetic field in a simplified
way.

They assumed that the large-scale meridional circulation, vp, is divided
into a “kinematic” constant part, v0 (due to angular momentum distribution)
and a time dependent part, v(t), that encompasses the Lorentz feedback of
the magnetic field. Therefore they redefine vp as vp(t) = v0 + v(t) where the
time dependent part evolves according to

dv(t)

dt
= aBφAp − b v(t) . (18)

The first term is a magnetic nonlinearity representing the Lorentz force
and the second is a ”newtonian drag” that mimics the natural resistance of
the flow to an outside kinematic perturbation. Under these conditions the
Lorentz force associated with the cyclic large-scale magnetic field acts as a
perturbation on the otherwise dominant kinematic meridional flow. This idea
was not new and it was used before in the context of magnetically-mediated
variations of differential rotation in mean-field dynamo models Tobias (1996),
Moss and Brooke (2000) and Bushby (2006). The modified LODM equation
they end up defining are

dBφ

dt
=

(

c1 −
vp(t)

ℓ0

)

Bφ + c2Ap − c3B
3

φ , (19)

dAp

dt
=

(

c1 −
vp(t)

ℓ0

)

Ap + αBφ , (20)

where c1, is defined as c1 = η

ℓ2
0

− η

R2

⊙

and takes the role of magnetic diffusivity,

while the other coefficients remain the same.
While the values used for the structural coefficients, are mean values ex-

tracted from the works presented in the previous in sections, the parameters
associated with the meridional flow evolution, a, b and v0 deserved now the at-
tention. These parameters have an important role in the evolution of the solu-
tion space. The behavior observed in the solutions range from fixed-amplitude
oscillations closely resembling kinematic solutions, multiperiodic solutions, and
even chaotic solutions. This is easier to visualize in Figure (13) where are pre-
sented analogs of classical bifurcation diagrams by plotting successive peak
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values of cycle amplitudes, for solutions with fixed (a, v0) combinations but
spanning through values of b. Transitions to chaos through bifurcations are
also observed when holding b fixed and varying a instead.

Fig. 13 Bifurcation maps for maximum amplitude of the toroidal field (equivalent to solar
cycle maximum) obtained by varying b between 10−4 and 1 for different a and v0. (A) Single
period regime, v0 = −0.1, a = 0.01; (B) Appearance of period doubling, v0 = −0.1, a = 0.1
and (C) shows signatures of chaotic regimes with multiple attractors and windows, obtained
with v0 = −0.13, a = 0.05. Adapted from Passos et al. (2012).

The authors expanded the methodology used and applied stochastic fluc-
tuations to parameter a, the one that controls the influence of the Lorentz
force. As a result, and depending on the range of fluctuations, they observed
that the short term stochastic kicks in the Lorentz force amplitude create long
term modulations in the amplitude of the cycles (hundreds of years) and even
episodes where the field decays to near zero values, analog to the previously
mentioned grand minima. The duration and frequency of these long quiescent
phases, where the magnetic field decays to very low values, is determined by
the level of fluctuations of a and the value of b. The stronger this drag term
b is, the shorter the minima are and the higher the level of fluctuation of a,
the more common these intermittency episodes become. Figure (14) shows a
section of a solution that spanned for 40000 years and that presents all the
behaviors described before.

In this specific example they used 100% fluctuation in a and maintaining
all the other parameters constant. In the the parameter space used to produce
this figure, the solution without stochastic forcing is well behaved in the sense
that it presents a single period regime. Therefore, the fluctuations observed in
this solution are a direct consequence of the stochastic forcing of the Lorentz
force and not from a chaotic regime of the solution’s space.

To understand how the grand minima episodes arise they resort to visual-
izing one of these episodes with phase space diagrams of {Bφ, Ap, vp}. This
allows to see how these quantities vary in relation to each other and try to
understand the chain of events that trigger a grand minimum.

The standard solution for the LODM without stochastic forcing, i.e. with
a fixed at the mean value of the random number distribution used, is the limit
cycle attractor, i.e., a closed trajectory in the {Bφ, Ap} phase space. This
curve is represented as a black dashed trajectory in the panels of Figure (15).
The gray points in this figure are the stochastic forced solution values sampled
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Fig. 14 Simulation result fluctuating a ∈ [0.01, 0.03], b = 0.05 and v0 = −0.11. All other
model parameters are the same as in the reference solution. Panel (A) shows a section of
the simulation where the long term modulation can be seen. In black is B2

φ
(t), red A2

p(t)

and blue a scaled version of the meridional flow, in this case 5vp(t). In panel (B) the same
quantities but this time zooming in into a grand minimum (off phase) period. Adapted from

Passos et al. (2012).

at 1 year interval. These points scatter around the attractor representing the
variations in amplitude of the solution. Occasionally the trajectories defined by
these points collapse to the center of the phase space (the point {0,0,v0} is also
another natural attractor of the system) indicating a decrease in amplitude of
the cycle, i.e. a grand minimum. The colored trajectory evolving in time from
purple to red represents one of those grand minimum. This happens when
the solution is at a critical distance from the limit cycle attractor and gets a
random kick further away from it. This kick makes the field grow rapidly. In
turn, since the amplitude of the field grows fast, the Lorentz force will induce
a similar growth in v(t) eventually making vp change sign. When this occurs,
vp behaves as a sink term quenching the field growth very efficiently. This
behavior is seen in the two bottom panels of Figure (15) where vp decays to
its imposed ”kinematic” value v0 after the fields decay. After this collapse of
vp to v0 it starts behaving has a source term again and the cyclic activity
proceeds.

One clear advantage of low order models emerges from this example. Cur-
rently 3D MHD simulations of solar convection spanning a thousand years
take a couple of months to run in high efficiency computational clusters or in
supercomputers. Longer simulations are at the moment prohibitive not only
for the amount of time they take but also for the huge amount of data they
generate. Statistical studies on grand minima originated by the kind of mag-
netic back-reaction described here, require long integration times where many
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Fig. 15 Phase spaces of the solution with stochastic fluctuations. The gray dots represent
1 year intervals between t=35000 and t=40000. The colored line shows the trajectory of a
grand minima (starting from purple, t=27300 and ending in red, t=27400. The black dashed
line represents the unperturbed solution with a = 0.02. Adapted from Passos et al. (2012).

thousands of cycles need to be simulated. The LODM calculations can be done
in a few minutes or hours in any current desktop.

The grand minima mechanism presented in this section is now being stud-
ied by looking at the data available from 3D simulations. Some effects are
easier to find when you know what to look for.

6 Outlook for the Sun and Stars

So far we have shown that low order dynamo models (for which the approxima-
tion must be carefully chosen to keep the relevant physics within) could lead
the way to explore some features of the solar magnetic activity including the
long-term variability. The study of the phase diagram {Bφ(r), Ḃφ(t)} clearly
shows that on a scale of a few centuries the solar magnetic cycle shows evidence
for a van der Pool attractor — put in evidence by the mean solar magnetic
cycle, although on a time-scale of a few solar magnetic cycles the phase space
trajectory changes dramatically. In some cases the trajectory collapses com-
pletely for several magnetic cycles as in the periods of grand minima. This gives
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Fig. 16 Magnetic activity signature expressed by the variation of the intensity of the Ca
II emission line (S-index) for two solar like stars. Adapted from Baliunas et al. (1995).

us an indication about the existence of a well defined self regulated system un-
der all this observed magnetic variability, for which we still need to identify
the leading physical mechanisms driving the solar dynamo to extreme activity
scenarios like periods of grand minima. Actually, the fact that a well-defined
averaged van der Pool limit curve exists for all the sunspot records, can be
used to test different solar dynamo models, including numerical simulations,
against observational data or between different dynamo models.

Moreover, the fact that such well-defined attractor exists in the phase
space, and several dynamo models are able to qualitatively reproduce the solar
variability (as observed in the phase space {Bφ(r), Ḃφ(t)} gives us hope that
in the near future we will be able to make quite reliable short term predictions
of the solar magnetic cycle variability, at least within certain time intervals
of solar magnetic activity. A significant contribution can be done by the uti-
lization of more accurate sunspot time series in which many of the historical
inaccuracies were corrected (Lefevre and Clette 2014).

In the future, similar inversion techniques could be developed, namely to
study the possible asymmetry between the North and South Hemispheres using
the sunspot areas, either by treating each of the sunspot areas as two distinct
times series or by attempting two-dimension inversions of sunspot butterfly
diagrams. In the former case, recently Lopes et. al. (2014) have analysed these
long-term sunspot areas time series and found that turbulent convection and
solar granulation are responsible by the stochastic nature of the sunspot area
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variations. In the last case, we could learn about the evolution of the solar
magnetic cycle in the tachocline during the last two and a half centuries.
Moreover, most of the inversion methods used for the sunspot number can be
easily extended to other solar magnetic cycles proxies such as TSI, Hα and
Magnetograms.

The oscillator models, as a first order dynamo model are particularly suit-
able to study the magnetic activity in other stars. A good proxy of magnetic
activity in stars in the chromospheric variations of Ca II H and K emission
lines. Baliunas et al. (1995) have found many F2 and M2 stars which seem to
have cyclic magnetic cycle activity, as observed in the Sun (see Fig. 16). In
some of these stars the observational time series covers several cycles of activ-
ity. In particular, it will be interesting to identify how the dynamo operating
in these stars differs from the solar case.

More recently, the CoROT and Kepler space missions have observed pho-
tometric variability associated with solar-like activity in a very large number
of main sequence and sub-giant stars. While the time coverage is too short to
derive cycle periods for stars very close to the Sun, the overall level of activity
and its dependence on various stellar parameters can be studied on a large sta-
tistical sample (Basri et al. 2010; McQuillan et al. 2012). Nevertheless, with
so many stars with quite distinct masses and radius, it is reasonable to expect
that we will find quite different type of dynamos and regimes of stellar mag-
netic cycle. Actually, we think it is likely to find a magnetic diversity identical
to the one found in the acoustic oscillation spectra measured for the more than
500 sun-like stars already discovered (Chaplin et al. 2014), some of which have
already shown evidence of a magnetic cycle activity. Garćıa et al. (2010) have
obtained a proxy of the starspots number for the star HD49933 from ampli-
tudes and frequencies of the acoustic modes of vibration. As in the nonlinear
oscillator models the activity level is determined by the structural parameters
which in turn depends on the dynamo model. These studies potentially offer
a simple theoretical scheme against which to test the observational findings.
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R.A. Garćıa, S. Mathur, D. Salabert, J. Ballot, C. Régulo, T.S. Metcalfe, A. Baglin, CoRoT
reveals a magnetic activity cycle in a Sun-like star. arXiv.org, 1032 (2010)

M. Ghizaru, P. Charbonneau, P.K. Smolarkiewicz, Magnetic Cycles in Global Large-eddy
Simulations of Solar Convection. The Astrophysical Journal Letters 715, 133–137
(2010). doi:10.1088/2041-8205/715/2/L133

D.T. Gillespie, Exact numerical simulation of the Ornstein–Uhlenbeck process and its inte-
gral. Physical Review E 54, 2084–2091 (1996)

D.H. Hathaway, L. Rightmire, Variations in the Sun Meridional Flow over a Solar Cycle.
Science 327, 1350 (2010). doi:10.1126/science.1181990



Oscillator models of the solar cycle 29

S. Hazra, D. Passos, D. Nandy, A Stochastically Forced Time Delay Solar Dynamo Model:
Self-Consistent Recovery from a Maunder-like Grand Minimum Necessitates a Mean-
Field Alpha Effect. The Astrophysical Journal accepted, 5751 (2014)

K.M. Hiremath, The solar cycle as a forced and damped harmonic oscillator: long-term
variations of the amplitudes, frequencies and phases. A&A 452, 591–595 (2006).
doi:10.1051/0004-6361:20042619.

K.M. Hiremath, Prediction of solar cycle 24 and beyond. Ap&SS 314, 45–49 (2008).
R. Howe, Solar Interior Rotation and its Variation. Living Reviews in Solar Physics 6, 1

(2009)
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