1,915 research outputs found

    The telecoupled sustainability impacts of global agricultural value chains:Assessing the cross-scale sustainability impacts of the cocoa sector

    Get PDF
    Agriculture is a major contributor to the global environmental crisis. Natural ecosystems are being replaced by agricultural land, which leads to the extinction of species and the release of tons of carbon emissions. Global agricultural value chains (GVCs) have grown due to the intensification of international trade. While GVCs have undeniably created economic opportunities for the agriculture sector, they have also led to the escalation of local environmental issues. Several initiatives have been implemented to reduce the negative impacts of agriculture, including government regulations, sustainability certification labels, and voluntary sustainability commitments. However, the effectiveness of these initiatives has been questioned due to several reasons, including the mismatches between the scale of the problem and the solution, the lack of monitoring and verification of sustainability actions, and their weak enforcement. Sustainability initiatives are informed by studies assessing the impacts of agriculture that often only focus on local impacts, while disregarding larger-scale – telecoupled– dynamics that can trigger impacts across geographic and temporal scales. This thesis aims to help bridge these knowledge gaps by examining the impacts of agricultural GVCs across scales, studying the role of GVC’s configuration in modulating these impacts and investigating the role of GVC actors in mitigating sustainability risks across scales. The global cocoa value chain is used as a case study. Chapter 2 examines various impact assessment methods and their ability to capture the effects caused by telecoupled dynamics across different scales. The study concludes that no single method is sufficient to capture all telecoupled cross-scale dynamics and that the integration of different methods is necessary to bridge gaps between methods and complement their scope. Chapter 3 implements the recommendations outlined in Chapter 2 by analyzing the impacts caused by cocoa agroforestry and cocoa full-sun production in Ghana. Impacts on carbon, biodiversity stocks, and environmental pollution were analyzed within and beyond the farm-level. This chapter reveals that findings drawn from farm-level assessments can contradict those from landscape-level assessments. Decision-makers focused should be wary of extrapolating farm-level assessment results to larger scales. Chapter 4 expands the scope to the global scale by examining the role of the cocoa GVC configuration on the capacity of the sector to address sustainability challenges across scales. The chapter identifies different types of cocoa traders, their market dominance, and sustainability commitments. The chapter highlights that to address the telecoupled impacts of the cocoa GVC, coordinated action between traders is required, along with government interventions to balance power asymmetries. Chapter 5 measured the degree to which cocoa traders, as identified in Chapter 4, are exposed to deforestation and climate change. This chapter highlights that sustainability challenges in agricultural value chains cannot be resolved in isolation as farming systems are constantly interacting with other farming systems and land competing sectors. To avoid displacing negative impacts across scales, it is necessary to have a coordinated and collaborative effort from stakeholders and sectors involved in making decisions related to land use. This thesis shows that addressing the telecoupled impacts caused by agricultural value chains needs a good understanding of the cause-effect dynamics at play. This requires the quantification of impacts caused by agriculture across scales and the characterization of the GVC network of actors modulating these impacts. Interdisciplinary methods need to be leveraged and integrated to generate actionable insights. The findings of this thesis can assist decision-makers and private actors in devising customized sustainability strategies, prioritizing action, and addressing the most vulnerable hotspots while being mindful of global teleconnections and avoiding spillovers

    Urban heat mitigation by green and blue infrastructure: drivers, effectiveness, and future needs

    Get PDF
    The combination of urbanisation and global warming leads to urban overheating and compounds the frequency and intensity of extreme heat events due to climate change. Yet, the risk of urban overheating can be mitigated by urban green-blue-grey infrastructures (GBGI), such as parks, wetlands, and engineered greening, which have the potential to effectively reduce summer air temperatures. Despite many reviews, the evidence bases on quantified GBGI cooling benefits remains partial and the practical recommendations for implementation are unclear. This systematic literature review synthesises the evidence base for heat mitigation and related co-benefits, identifies knowledge gaps, and proposes recommendations for their implementation to maximise their benefits. After screening 27,486 papers, 202 were reviewed, based on 51 GBGI types categorised under 10 main divisions. Certain GBGI (green walls, parks, street trees) have been well-researched for their urban cooling capabilities. However, several other GBGI have received negligible (zoological garden, golf course, estuary) or minimal (private garden, allotment) attention. The most efficient air cooling was observed in botanical gardens (5.0±3.5°C), wetlands (4.9±3.2°C), green walls (4.1±4.2°C), street trees (3.8±3.1°C), and vegetated balconies (3.8±2.7°C). Under changing climate conditions (2070-2100) with consideration of RCP8.5, there is a shift in climate subtypes, either within the same climate zone (e.g., Dfa to Dfb and Cfb to Cfa) or across other climate zones (e.g., Dfb (continental warm-summer humid) to BSk (dry, cold semi-arid) and Cwa (temperate) to Am (tropical)). These shifts may result in lower efficiency for the current GBGI in the future. Given the importance of multiple services, it is crucial to balance their functionality, cooling performance, and other related co-benefits when planning for the future GBGI. This global GBGI heat mitigation inventory can assist policymakers and urban planners in prioritising effective interventions to reduce the risk of urban overheating, filling research gaps, and promoting community resilience

    Climate Change and Critical Agrarian Studies

    Full text link
    Climate change is perhaps the greatest threat to humanity today and plays out as a cruel engine of myriad forms of injustice, violence and destruction. The effects of climate change from human-made emissions of greenhouse gases are devastating and accelerating; yet are uncertain and uneven both in terms of geography and socio-economic impacts. Emerging from the dynamics of capitalism since the industrial revolution — as well as industrialisation under state-led socialism — the consequences of climate change are especially profound for the countryside and its inhabitants. The book interrogates the narratives and strategies that frame climate change and examines the institutionalised responses in agrarian settings, highlighting what exclusions and inclusions result. It explores how different people — in relation to class and other co-constituted axes of social difference such as gender, race, ethnicity, age and occupation — are affected by climate change, as well as the climate adaptation and mitigation responses being implemented in rural areas. The book in turn explores how climate change – and the responses to it - affect processes of social differentiation, trajectories of accumulation and in turn agrarian politics. Finally, the book examines what strategies are required to confront climate change, and the underlying political-economic dynamics that cause it, reflecting on what this means for agrarian struggles across the world. The 26 chapters in this volume explore how the relationship between capitalism and climate change plays out in the rural world and, in particular, the way agrarian struggles connect with the huge challenge of climate change. Through a huge variety of case studies alongside more conceptual chapters, the book makes the often-missing connection between climate change and critical agrarian studies. The book argues that making the connection between climate and agrarian justice is crucial

    Evaluating agroecological farming practices [Final report]

    Get PDF

    Advances in ecotechnological methods for diffuse nutrient pollution control: wicked issues in agricultural and urban watersheds

    Get PDF
    Considerable time and funding have been committed to tackling nonpoint source (NPS) pollution in agricultural and urban watersheds . Notwithstanding all these efforts, the water quality in many AUWs has not significantly improved. Diffuse nutrient pollution involves the movement of these pollutants between soil and water. Excessive diffuse pollution has been accepted as one of the main causes of failure to attain favorable environmental conditions in freshwater systems. Recently, several technologies and practices have been implemented to manage diffuse pollution, namely: a) source reduction, b) pollutant retention over the movement process; c) nutrient recycling, and d) purification and restoration of the eutrophic water bodies. This paper synthesized the existing knowledge of key methods to tackle diffuse pollution from AUWs. Furthermore, the predominant purification mechanisms and impacting factors are explored, allowing a comprehensive and critical understanding of different control strategies to improve the management of diffuse pollution. Therefore, potential approaches for strengthening the performance of control technologies for diffuse pollution treatment and remediation are discussed. Although adopting source reduction strategies (e.g., the “4R” approach: right rate, right time, right source, and right placement of nutrients) could efficiently decrease surface runoff and pollutant levels, they may not stop runoff from entering nearby streams. Consequently, comprehensive treatment of agricultural runoff still requires extra process retention strategies. Overall, the findings of this paper showed that treatment system design and operational and environmental factors played crucial but variable roles in diffuse pollution treatment. Moreover, the results showed that combining or integrating constructed wetlands with other control technologies could enhance the comprehensive purification of diffuse pollution compared to using a single method. This review proposes a systematic approach for diffuse pollution control based on three components (water, soil and microbiota) and maximizing the regulating services of agroecosystems via land use/cover types. The current review contributes to the documentation of existing research trends. It sheds light on diffuse pollution control approaches in AUWs, and further encourages the development of this vital field

    Using hydrological models and digital soil mapping for the assessment and management of catchments: A case study of the Nyangores and Ruiru catchments in Kenya (East Africa)

    Get PDF
    Human activities on land have a direct and cumulative impact on water and other natural resources within a catchment. This land-use change can have hydrological consequences on the local and regional scales. Sound catchment assessment is not only critical to understanding processes and functions but also important in identifying priority management areas. The overarching goal of this doctoral thesis was to design a methodological framework for catchment assessment (dependent upon data availability) and propose practical catchment management strategies for sustainable water resources management. The Nyangores and Ruiru reservoir catchments located in Kenya, East Africa were used as case studies. A properly calibrated Soil and Water Assessment Tool (SWAT) hydrologic model coupled with a generic land-use optimization tool (Constrained Multi-Objective Optimization of Land-use Allocation-CoMOLA) was applied to identify and quantify functional trade-offs between environmental sustainability and food production in the ‘data-available’ Nyangores catchment. This was determined using a four-dimension objective function defined as (i) minimizing sediment load, (ii) maximizing stream low flow and (iii and iv) maximizing the crop yields of maize and soybeans, respectively. Additionally, three different optimization scenarios, represented as i.) agroforestry (Scenario 1), ii.) agroforestry + conservation agriculture (Scenario 2) and iii.) conservation agriculture (Scenario 3), were compared. For the data-scarce Ruiru reservoir catchment, alternative methods using digital soil mapping of soil erosion proxies (aggregate stability using Mean Weight Diameter) and spatial-temporal soil loss analysis using empirical models (the Revised Universal Soil Loss Equation-RUSLE) were used. The lack of adequate data necessitated a data-collection phase which implemented the conditional Latin Hypercube Sampling. This sampling technique reduced the need for intensive soil sampling while still capturing spatial variability. The results revealed that for the Nyangores catchment, adoption of both agroforestry and conservation agriculture (Scenario 2) led to the smallest trade-off amongst the different objectives i.e. a 3.6% change in forests combined with 35% change in conservation agriculture resulted in the largest reduction in sediment loads (78%), increased low flow (+14%) and only slightly decreased crop yields (3.8% for both maize and soybeans). Therefore, the advanced use of hydrologic models with optimization tools allows for the simultaneous assessment of different outputs/objectives and is ideal for areas with adequate data to properly calibrate the model. For the Ruiru reservoir catchment, digital soil mapping (DSM) of aggregate stability revealed that susceptibility to erosion exists for cropland (food crops), tea and roadsides, which are mainly located in the eastern part of the catchment, as well as deforested areas on the western side. This validated that with limited soil samples and the use of computing power, machine learning and freely available covariates, DSM can effectively be applied in data-scarce areas. Moreover, uncertainty in the predictions can be incorporated using prediction intervals. The spatial-temporal analysis exhibited that bare land (which has the lowest areal proportion) was the largest contributor to erosion. Two peak soil loss periods corresponding to the two rainy periods of March–May and October–December were identified. Thus, yearly soil erosion risk maps misrepresent the true dimensions of soil loss with averages disguising areas of low and high potential. Also, a small portion of the catchment can be responsible for a large proportion of the total erosion. For both catchments, agroforestry (combining both the use of trees and conservation farming) is the most feasible catchment management strategy (CMS) for solving the major water quantity and quality problems. Finally, the key to thriving catchments aiming at both sustainability and resilience requires urgent collaborative action by all stakeholders. The necessary stakeholders in both Nyangores and Ruiru reservoir catchments must be involved in catchment assessment in order to identify the catchment problems, mitigation strategies/roles and responsibilities while keeping in mind that some risks need to be shared and negotiated, but so will the benefits.:TABLE OF CONTENTS DECLARATION OF CONFORMITY........................................................................ i DECLARATION OF INDEPENDENT WORK AND CONSENT ............................. ii LIST OF PAPERS ................................................................................................. iii ACKNOWLEDGEMENTS ..................................................................................... iv THESIS AT A GLANCE ......................................................................................... v SUMMARY ............................................................................................................ vi List of Figures......................................................................................................... x List of Tables........................................................................................................... x ABBREVIATION..................................................................................................... xi PART A: SYNTHESIS 1. INTRODUCTION ............................................................................................... 1 1.1 Catchment management ...................................................................................1 1.2 Tools to support catchment assessment and management ..............................4 1.3 Catchment management strategies (CMSs)......................................................9 1.4 Concept and research objectives.......................................................................11 2. MATERIAL AND METHODS................................................................................15 2.1. STUDY AREA ..................................................................................................15 2.1.1. Nyangores catchment ...................................................................................15 2.1.2. Ruiru reservoir catchment .............................................................................17 2.2. Using SWAT conceptual model and land-use optimization ..............................19 2.3. Using soil erosion proxies and empirical models ..............................................21 3. RESULTS AND DISCUSSION..............................................................................24 3.1. Assessing multi-metric calibration performance using the SWAT model...........25 3.2. Land-use optimization using SWAT-CoMOLA for the Nyangores catchment. ..26 3.3. Digital soil mapping of soil aggregate stability ..................................................28 3.4. Spatio-temporal analysis using the revised universal soil loss equation (RUSLE) 29 4. CRITICAL ASSESSMENT OF THE METHODS USED ......................................31 4.1. Assessing suitability of data for modelling and overcoming data challenges...31 4.2. Selecting catchment management strategies based on catchment assessment . 35 5. CONCLUSION AND RECOMMENDATIONS ....................................................36 6. REFERENCES ............................ .....................................................................38 PART B: PAPERS PAPER I .................................................................................................................47 PAPER II ................................................................................................................59 PAPER III ...............................................................................................................74 PAPER IV ...............................................................................................................8

    SPATIAL ANALYSES AND REMOTE SENSING FOR LAND COVER CHANGE DYNAMICS: ASSESSING IN A SPATIAL PLANNING

    Get PDF
    ABSTRACT (EN) Spatial planning is a crucial discipline for the identification and implementation of sustainable development strategies that take into account the environmental impacts on the soil. In recent years, the significant development of technology, like remote sensing and GIS software, has significantly increased the understanding of environmental components, highlighting their peculiarities and criticalities. Geographically referenced information on environmental and socio-economic components represents a fundamental database for identifying and monitoring vulnerable areas, also distinguishing different levels of vulnerability. This is even more relevant considering the increasingly significant impact of land transformation processes, consisting of rapid and frequent changes in land use patterns. In order to achieve some of the Sustainable Development Goals of the 2030 Agenda, the role of environmental planning is crucial in addressing spatial problems, such as agricultural land abandonment and land take, which cause negative impacts on ecosystems. Remote sensing, and in general all Earth Observation techniques, play a key role in achieving SDG 11.3 and 15.3 of Agenda 2030. Through a series of applications and investigations in different areas of Basilicata, it has been demonstrated how the extensive use of remote sensing and spatial analysis in a GIS environment provide a substantial contribution to the results of the SDGs, enabling an informed decisionmaking process and enabling monitoring of the results expected, ensuring data reliability and directly contributing to the calculation of SDG objectives and indicators by facilitating local administrations approaches to work in different development and sustainability sectors. In this thesis have been analyse the dynamics of land transformation in terms of land take and soil erosion in sample areas of the Basilicata Region, which represents an interesting case example for the study of land use land cover change (LULCC). The socio-demographic evolutionary trends and the study of marginality and territorial fragility are fundamental aspects in the context of territorial planning, since they are important drivers of the LULCC and territorial transformation processes. In fact, in Basilicata, settlement dynamics over the years have occurred in an uncontrolled and unregulated manner, leading to a constant consumption of land not accompanied by adequate demographic and economic growth. To better understand the evolution and dynamics of the LULCCs and provide useful tools for formulating territorial planning policies and strategies aimed at a sustainable use of the territory, the socio-economic aspects of the Region were investigated. A first phase involved the creation of a database and the study and identification of essential services in the area as a fundamental parameter against which to evaluate the quality of life in a specific area. The supply of essential services can be understood as an assessment of the lack of minimum requirements with reference to the urban functions exercised by each territorial unit. From a territorial point of view, the level of peripherality of the territories with respect to the network of urban centres profoundly influences the quality of life of citizens and the level of social inclusion. In these, the presence of essential services can act as an attractor capable of generating discrete catchment areas. The purpose of this first part of the work was above all to create a dataset of data useful for the calculation of various socio-economic indicators, in order to frame the demographic evolution and the evolution of the stock of public and private services. The first methodological approach was to reconstruct the offer of essential services through the use of open data in a GIS environment and subsequently estimate the peripherality of each municipality by estimating the accessibility to essential services. The study envisaged the use of territorial analysis techniques aimed at describing the distribution of essential services on the regional territory. It is essential to understand the role of demographic dynamics as a driver of urban land use change such as, for example, the increase in demand for artificial surfaces that occurs locally. Social and economic analyses are important in the spatial planning process. Comparison of socio-economic analyses with land use and land cover change can highlight the need to modify existing policies or implement new ones. A particular land use can degrade and thereby destroy other land resources. If the economic analysis shows that the use is beneficial from the point of view of the land user, it is likely to continue, regardless of whether the process is environmentally friendly. It is important to understand and investigate which drivers have been and will be in the future the most decisive in these dynamics that intrinsically contribute to land take, agricultural abandonment and the consequent processes of land degradation and to define policies or thresholds to mitigate and monitor the effects of these processes. Subsequently, the issues of land take and abandonment of agricultural land were analysed by applying models and techniques of remote sensing, GIS and territorial analysis for the identification and monitoring of abandoned agricultural areas and sealed areas. The classic remote sensing methods have also been integrated by some geostatistical analyses which have provided more information on the investigated phenomenon. The aim was the creation of a quick methodology that would allow to describe the monitoring and analysis activities of the development trends of soil consumption and the monitoring and identification of degraded areas. The first methodology proposed allowed the automatic and rapid detection of detailed LULCC and Land Take maps with an overall accuracy of more than 90%, reducing costs and processing times. The identification of abandoned agricultural areas in degradation is among the most complicated LULCC and Land Degradation processes to identify and monitor as it is driven by a multiplicity of anthropic and natural factors. The model used to estimate soil erosion as a degradation phenomenon is the Revised Universal Soil Loss Equation (RUSLE). To identify potentially degraded areas, two factors of the RUSLE have been correlated: Factor C which describes the vegetation cover of the soil and Factor A which represents the amount of potential soil erosion. Through statistical correlation analysis with the RUSLE factors, on the basis of the deviations from the average RUSLE values and mapping of the areas of vegetation degradation, relating to arable land, through statistical correlation with the vegetation factor C, the areas were identified and mapped that are susceptible to soil degradation. The results obtained allowed the creation of a database and a map of the degraded areas to be paid attention to
    • 

    corecore