5,747 research outputs found

    TiGL - An Open Source Computational Geometry Library for Parametric Aircraft Design

    Get PDF
    This paper introduces the software TiGL: TiGL is an open source high-fidelity geometry modeler that is used in the conceptual and preliminary aircraft and helicopter design phase. It creates full three-dimensional models of aircraft from their parametric CPACS description. Due to its parametric nature, it is typically used for aircraft design analysis and optimization. First, we present the use-case and architecture of TiGL. Then, we discuss it's geometry module, which is used to generate the B-spline based surfaces of the aircraft. The backbone of TiGL is its surface generator for curve network interpolation, based on Gordon surfaces. One major part of this paper explains the mathematical foundation of Gordon surfaces on B-splines and how we achieve the required curve network compatibility. Finally, TiGL's aircraft component module is introduced, which is used to create the external and internal parts of aircraft, such as wings, flaps, fuselages, engines or structural elements

    Evaluating the Differences of Gridding Techniques for Digital Elevation Models Generation and Their Influence on the Modeling of Stony Debris Flows Routing: A Case Study From Rovina di Cancia Basin (North-Eastern Italian Alps)

    Get PDF
    Debris \ufb02ows are among the most hazardous phenomena in mountain areas. To cope with debris \ufb02ow hazard, it is common to delineate the risk-prone areas through routing models. The most important input to debris \ufb02ow routing models are the topographic data, usually in the form of Digital Elevation Models (DEMs). The quality of DEMs depends on the accuracy, density, and spatial distribution of the sampled points; on the characteristics of the surface; and on the applied gridding methodology. Therefore, the choice of the interpolation method affects the realistic representation of the channel and fan morphology, and thus potentially the debris \ufb02ow routing modeling outcomes. In this paper, we initially investigate the performance of common interpolation methods (i.e., linear triangulation, natural neighbor, nearest neighbor, Inverse Distance to a Power, ANUDEM, Radial Basis Functions, and ordinary kriging) in building DEMs with the complex topography of a debris \ufb02ow channel located in the Venetian Dolomites (North-eastern Italian Alps), by using small footprint full- waveform Light Detection And Ranging (LiDAR) data. The investigation is carried out through a combination of statistical analysis of vertical accuracy, algorithm robustness, and spatial clustering of vertical errors, and multi-criteria shape reliability assessment. After that, we examine the in\ufb02uence of the tested interpolation algorithms on the performance of a Geographic Information System (GIS)-based cell model for simulating stony debris \ufb02ows routing. In detail, we investigate both the correlation between the DEMs heights uncertainty resulting from the gridding procedure and that on the corresponding simulated erosion/deposition depths, both the effect of interpolation algorithms on simulated areas, erosion and deposition volumes, solid-liquid discharges, and channel morphology after the event. The comparison among the tested interpolation methods highlights that the ANUDEM and ordinary kriging algorithms are not suitable for building DEMs with complex topography. Conversely, the linear triangulation, the natural neighbor algorithm, and the thin-plate spline plus tension and completely regularized spline functions ensure the best trade-off among accuracy and shape reliability. Anyway, the evaluation of the effects of gridding techniques on debris \ufb02ow routing modeling reveals that the choice of the interpolation algorithm does not signi\ufb01cantly affect the model outcomes

    Hydrographic Surface Modeling Through A Raster Based Spline Creation Method

    Get PDF
    The United States Army Corp of Engineers relies on accurate and detailed surface models for various construction projects and preventative measures. To aid in these efforts, it is necessary to work for advancements in surface model creation. Current methods for model creation include Delaunay triangulation, raster grid interpolation, and Hydraulic Spline grid generation. While these methods produce adequate surface models, attempts for improved methods can still be made. A method for raster based spline creation is presented as a variation of the Hydraulic Spline algorithm. By implementing Hydraulic Splines in raster data instead of vector data, the model creation process is streamlined. This method is shown to be more efficient and less computationally expensive than previous methods of surface model creation due to the inherent advantages of raster data over vector data
    • …
    corecore