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Abstract 

The United States Army Corp of Engineers relies on accurate and detailed surface models for 

various construction projects and preventative measures. To aid in these efforts, it is necessary to 

work for advancements in surface model creation. Current methods for model creation include 

Delaunay triangulation, raster grid interpolation, and Hydraulic Spline grid generation. While 

these methods produce adequate surface models, attempts for improved methods can still be 

made.  

A method for raster based spline creation is presented as a variation of the Hydraulic Spline 

algorithm. By implementing Hydraulic Splines in raster data instead of vector data, the model 

creation process is streamlined. This method is shown to be more efficient and less 

computationally expensive than previous methods of surface model creation due to the inherent 

advantages of raster data over vector data.  
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1 Introduction 

For over two hundred years the Army Corps of Engineers have provided a multitude of civil 

engineering services for the United States of America. The USACE has developed a boastful 

repertoire of accomplishments which continually protect the nation’s environment and enhance 

the quality of life for American citizens [1]. USACE owns, operates, and/or maintains more than 

six hundred dams, twelve thousand miles of commercial inland navigation channels, nine 

hundred harbors, and tens of thousands of acres of wetlands.  

In particular, The New Orleans District of USACE works daily to manage flood control, 

navigation, and coastal improvement projects for the Mississippi River, coastal, and inland 

waterways [2]. For these projects to succeed, frequent elevation and hydrographic surveys are 

necessary to monitor the area’s conditions. These surveys provide vital information for 

maintenance operations which could otherwise not be decided upon. By using modern 

technologies to digitize survey data, it can be better utilized. 

A major duty of the New Orleans District of USACE is flood management. Surface models have 

become an integral part of many sophisticated tools used to determine flood zones and high risk 

areas. Hydraulic Simulation Applications in particular could not exist without precise and 

detailed surface models. One such application is the Hydraulic Engineering Center’s River 

Analysis System (HEC-RAS). HEC-RAS takes in cross-section geometries, stream networks 

represented by center lines, and an input flow vector for each stream that contains water quantity 

and direction [7]. This data is used to model water flow to determine variable elevations of the 

water’s surface and saturated channel perimeters brought on by the simulations specified flow 

vector. Another application is the Advanced Circulation System (AdCirc) which models 
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hurricane storm surge simulations. AdCirc utilizes a modified version of the FEMA LiDAR 

dataset for their elevation points, defined as a grid of elevation on which water movement was 

simulated [8]. Applications such as these could not exist without the digital elevations, cross 

sections, and centerlines provided by the surface models. Therefore, it is established that 

continued development of quality, detail rich models is necessary for the advancement of flood 

management and other USACE projects. 

This project outlines a method for improving a type of surface model called Digital Elevation 

Models (DEMs), by generating splines over areas with sparse data. Building off of currently used 

algorithms, a raster based spline method is developed. The comparative advantages of a raster 

based method over a vector based method are shown. The method is implemented in an Oracle 

12c database using PL/SQL. 

In Chapter 2 the top Surveying Methods are introduced. Ways of digitizing this data are talked 

about, and the applications of such digital data are discussed. It is established that there is a 

perpetual need for better data models in order to further USACE work.  

Next, Chapter 3 highlights several model development algorithms. The current methods of 

modeling are detailed, including Inverse Distance Weighting and Delaunay Triangulation. 

Notable shortcomings of these methods are explained. The Hydraulic Spline algorithm is 

discussed as a solution, which has successfully been implemented on numerous USACE projects. 

The deficiencies of this method are then presented after a thorough analysis of the algorithm. To 

highlight these deficiencies, evidence is presented of the advantages of raster data in geospatial 

applications. Finally, a method for implementing the Hydraulic Spline algorithm with raster data 

is presented. 
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Chapter 4 expounds the particulars of implementing such a method through Oracle database 

manipulation. The necessary features of Oracle are explained and implementations of these 

features are presented. The challenges of this approach are also documented in this section. 

Research is concluded in Chapter 5, with a summary of the problem, its necessity for correction, 

and interpreted solution. Current applications are examined as well as possible future work. 
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2 Background 

To understand the solutions this project attempts to provide, an understanding of surveying 

methods and their corresponding digital models must be established. This section presents 

popular modern survey techniques and methods for digitizing terrain data. 

2.1 Surveying Methods 

Surveying measures the distances, angles, and positions of the surface of the Earth [3]. There are 

many types of surveys used by USACE, including but not limited to, Topographic surveys, a 

survey of the natural and man-made surface of a terrain, and Hydrographic surveys, a survey of 

underwater terrain features. Traditionally, USACE carried out these surveys through use of an 

on-site field survey team. The field survey team travels to the survey location and uses either 

Total Stations or Global Positioning System (GPS) Receivers to collect certain geographic 

information. The Total Station is a machine which uses infrared light, laser light, or microwave 

technology measure distance electronically and then calculate precise angles, slopes, and 

eventually elevation. GPS Receivers are used in conjunction with GPS satellites to determine the 

height and location of the surface on which it is placed.  

In particular for hydrographic surveying, these machines are used to calculate profiles and cross-

sections of certain areas. A profile is the centerline of a body of water. Cross-sections are lines 

measured across the waterway, perpendicular to the profile.  



 5 

 

Figure 2.1 A graphical representation of a profile (shown as a dashed line) and its corresponding 

center lines (shown as solid lines). 

For depth, a fathometer measurement is taken along the cross-sections and GPS coordinates are 

taken in reference to a known benchmark. The depth is then subtracted from a vertical 

benchmark to retrieve the elevation at the bottom of the channel. Once this survey data is 

gathered, it can be used to interpolate the elevation for the given area and ultimately create 

Digital Elevation Models (DEMs). These traditional survey techniques are proven to be very 

precise [3].  

Despite this precision, there are still short comings to these methods and they are phasing out in 

favor of remote surveying methods. For example, when centerlines are unable to be gathered 

from a survey, the centerline can easily be obtained from aerial photography or other data 

sources. Surveying is an expensive and laborious process due to its hands on physical nature and 

the need for expensive machinery. Remote methods can provide dense information without the 

need to send teams of workers out into the field. 
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Light Detection and Ranging (LiDAR) has been a widely used survey method for the creation of 

Digital Elevation Models (DEMs) [4]. The remote sensing method LiDAR uses pulsed laser light 

to measure distances to the Earth [5]. Using this gathered distance information, as well as 

information recorded by the aerial system, accurate and precise three-dimensional information is 

generated about the surface below. LiDAR machinery is typically made up of a laser, a scanner, 

and a GPS receiver, all mounted to a helicopter, airplane, or even an Unmanned Aerial Vehicle.  

The laser is beamed from the aircraft onto a targeted area on the Earth’s surface. This can be 

anything from land or buildings, to bodies of water. The laser’s light is bounced off the object, 

reflected, and recorded by a sensor which measures the distance, also known as range. The GPS 

position and orientation are simultaneously recorded, and when combined with the range, 

provide a set of elevation points for the area measured. Each point in the set comes complete 

with latitude, longitude, and height for that particular spot of terrain, providing a set of detail-rich 

information [5].  

The use of different types of lasers in this process adds versatility to LiDAR methods. LiDAR 

can be used topographically to survey land and any natural or manmade adaptations to it. For this 

application, a near infrared laser is used for range measure. LiDAR can also be used 

bathymetrically to survey the land under bodies of water and the variations in seafloor relief [6]. 

For this application, green laser light is used for range measure, due to its water-penetrating 

abilities [5]. Unfortunately, LiDARs application for hydrographic surveying is problematic. Due 

to the refractive properties of water, collected data can become distorted [7]. Also, sediment and 

floating vegetation can block laser light from reaching the surface below, giving false results to 

the depth of those areas. 
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Figure 2.2: LiDAR Image – FEMA LiDAR Dataset Louisiana 2006 [15] 

 

2.2 Digital Survey Data 

Terrain data gathered through any of these types of surveying is digital and can be displayed with 

three digital models: Digital Terrain Models (DTM), Digital Surface Models (DSM), or Digital 

Elevation Models (DEM) [4]. The digital terrain data allow for a wide variety of applications 

involving terrain, such as database management, hydraulic simulations, or even video games. 

These three types of digital models have small fundamental differences. DSMs represent the 

surface of the earth in its entirety with any and all manmade or natural objects present. DTMs 

represent only the bare ground of a surface.  

DEMs are used specifically for models that can be represented in a raster [8]. A raster is a type of 

grid which contains coordinate information in Geographical Information Systems. In a LiDAR 

based DEM, each square in the raster contains a coordinate and an elevation for the real terrain 
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location of that coordinate. Together the information in the raster makes a heightmap. These 

heightmaps can be viewed as 8-bit grayscale images where the whitest values represent a higher 

elevation and the blackest areas represent the lowest elevation [8]. Slope information for a pixel 

can also be determined from DEMs. After determining the elevation of a particular pixel color, 

the slope can be calculated between adjacent pixels through use of a matrix-like data structure 

and slope formulas [9].  Having all of this information available from one model makes DEM 

rasters versatile and desirable for surface model applications. 
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3 Model Development Algorithms 

For cases pertaining to Louisiana waterways, several model development algorithms have been 

studied.  Of these popular algorithms, those which use raster data, such as Inverse Distance 

Weighting functions, and those which utilize vector data, such as Delaunay triangulation and The 

Hydraulic Spline algorithm, have been achieved. Although these methods all produce data, some 

have proved to be more viable than others for various reasons. This section details these 

techniques, their short comings, and methods for improvement in order to produce accurate and 

precise surface models. 

3.1 Current Modeling Techniques 

Several techniques exist for transforming survey data into surface models. Delaunay 

triangulation is one of the most commonly used methods [7]. Delaunay triangulation is 

performed on survey data points, transforming them into a set of triangles which can be used as a 

model. Delaunay Triangulation has its short comings for specific USACE applications. LiDAR 

data taken for Louisiana waterways have not been able to reliably capture inundated terrain. To 

compensate for these areas, cross-section surveying is done to obtain sparse, but accurate 

elevation information on these waterways. The data are then merged with dense LiDAR to obtain 

a complete model for an area. However, Delaunay Triangulation was found to be insufficient on 

merged datasets with varying resolution. This can be seen in Figure 3.1. The sparse cross-section 

data, seen in dark lines, are sparse compared to the LiDAR imagery seen in light grey. 

Triangulation cannot be performed when there are not enough data points. In order for Delaunay 

Triangulation to work for this data, cross-section elevation data would have to be enhanced.  
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Figure 3.1: Merged surface point data [7]. 

 

Another method of creating surface models is through the Inverse Distance Weighting function 

(IDW). IDW utilizes LiDAR and cross section raster data to produce a DEM. Functions are run 

on coordinates with known elevation to predict areas of unknown elevation. However, 

predictions are limited to coordinates that exist within a certain distance from the input data 

points. This limits the functions ability to fill in holes and, much like Delaunay triangulation, 

sparse cross section data results in a partially completed model [7]. To show this, IDW was 

performed on the same data shown in Figure 3.1. It is presented in Figure 3.2. The data on which 

it was performed contained insufficient cross section data for the entire water way to be 

interpreted. 
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Figure 3.2: A surface raster generated using an inverse distance weighted function [7]. 

 

Flanagin
1
 proposes the Hydraulic Spline Algorithm, a generalization of the Waterway 

Generation Algorithm, as a solution to this problem [7]. The Hydraulic Spline Algorithm uses 

cross section data to generate hydraulic spline grids of any desired resolution. These grids can 

then be merged with LiDAR to create a complete surface model for waterways. This algorithm 

has been successfully executed on several USACE projects to prove its performance and 

usefulness. While it does produce viable results, its method of grid generation is cumbersome. 

The Hydraulic Spline Algorithm produces a vector surface which then must be manipulated 

through Inverse Distance Weighting interpolation in order to generate a grid. If the hydraulic 

spline were implemented with raster data instead of a vector surface, this interpolation would not 

be necessary. The goal of this project is to perform a thorough analysis of the Hydraulic Spline 

Algorithm and present the needed steps for a raster database implementation. In the following 

                                                           
1
 Copyright permission has been granted for reproducing and discussing this work. 
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section a detailed description of Flanagin’s Hydraulic Spline Algorithm is explained in order to 

address the needs of a raster based interpretation.  

3.2 The Hydraulic Spline Algorithm 

The Hydraulic Spline Algorithm utilizes several techniques for data manipulation, such as 

Hermite splines, cross section and profile intersections, Cartesian to spherical coordinate 

conversion, profile supplementation, and polygon creation [7]. The algorithm is organized into 

three components: 1) Hydraulic Spline Setup, 2) Supplementation of the centerline, and 3) 

Polygon creation from spline evaluation. 

Splines have long been used as an algorithmic tool in graphics for producing smooth curves and 

surfaces [7]. In the Hydraulic Spline Algorithm, splines are used to produce a two-dimensional 

irregular grid of quadrilaterals. It is these quadrilaterals that are used to reconstruct the 

underwater terrain. A spline is defined by its control points which map a normalized position 

along the curve. Most splines can be divided into two types, approximating and interpolating. 

Approximating splines, such as Bezier and B-splines, use a set of control points to define the 

shape of an output. Interpolating splines, such as Hermite splines, interpolate values throughout 

the given control points. Interpolating splines also have the ability to preserve input vertices. It is 

for this reason that they are chosen to be used in the Hydraulic Spline Algorithm. Specifically, 

the Kochanek-Bartels spline, a type of Hermite spline, is used because it has the ability for the 

user to define its control parameters for tension, bias, and continuity. The equation for this spline 

can be seen below. 
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Equation 1: 

     
     [                                         ]

 
 

In equation one    and     are standard Hermite spline control points.      and      are 

additional control points which are used to define a consistent curvature. b represents the bias of 

the curvature. The bias controls how far in front of or behind a control point the curvature is 

allowed to reach. c represent a curvatures continuity, which determines how smooth the change 

in slope is from one curve section to the next. t represents the tension. The value of these 

parameters ranges between -1 and 1.  

In order for the splines to produce a linked mesh of quadrilaterals it is important that the cross 

sections are comprised of the same number of points [7]. The number of points also controls how 

detailed the resulting grid will be. Having many points in a cross-section allowed many spline 

quadrilaterals to be produced. The more quadrilaterals there are, the more detailed the grid.  For 

each point on a cross section a Kochaneck-Bartels spline is used for the x, y, and z components. 

Because the output grid is two dimensional, two template splines are created. The tension 

parameter of these template splines is copied to all of the other splines so that the user has 

control over the output of the cross section’s tension. A high tension, for example a value of 1, 

will produce a straight line of splines. A lower tension, closer to -1, would produce curvy splines. 

The centerline and cross sections are evaluated and their points of intersection are found. Only 

cross sections that intersect the profile are used. If a cross section exists that does not lie on the 

center line, it is not evaluated. The intersections are found by taking the Euclidean distance of the 

profile path from the first end point to the point of intersection. This distance is then divided by 



 14 

the total length of the center line. This is shown in Figure 3.3. The distance is calculated in lines 

one through five. 

Algorithm 1 

1 for i =1 to size(CrossSections) do 

2  𝑃 ←  𝐶𝑟𝑜𝑠𝑠𝑆𝑒  𝑖𝑜𝑛𝑖  ∩ 𝑃𝑟𝑜𝑓𝑖𝑙𝑒; 

3  𝑎𝑙 ℎ𝑎𝑠 𝑖 ←  𝑑𝑖𝑠 𝑎𝑛 𝑒 𝑓𝑟𝑜𝑚 𝑃𝑟𝑜𝑓𝑖𝑙𝑒 𝑒𝑛𝑑  𝑜𝑖𝑛   𝑜 𝑃  𝑙𝑒𝑛𝑔 ℎ 𝑜𝑓 𝑃𝑟𝑜𝑓𝑖𝑙𝑒  ; 

4 end 

5 for j = 0 to NumberOfCrossSectionSamples do 

6  for k = 0 to size(CrossSections) do 

7   𝑀 ← 𝑚𝑖𝑑 𝑜𝑖𝑛  𝐶𝑟𝑜𝑠𝑠𝑆𝑒  𝑖𝑜𝑛𝑘 ; 

8   Compute  𝑟, 𝜃, 𝜑  for 𝐶𝑟𝑜𝑠𝑠𝑆𝑒  𝑖𝑜𝑛𝑘 [𝑗] relative to M; 

9   AddPoint(splines(j), alphas(k),  𝑟, 𝜃, 𝜑 ); 

10  end 

11 end  

 

Figure 3.3: Setting up the Hydraulic Spline Algorithm [7]. 

The remainder of Algorithm 1 (lines five through eleven) shows the setup of the splines for each 

point. In Figure 3.4 the spline generation is shown. The red lines represent spline point 

associations. Since each cross section has the same number of points, a distinct spline is created 

for point position. The first points in all cross sections correspond to the first spline. The second 

points in all cross sections compose the second spline. This is true for every point in every cross 

section, meaning, the Nth spline is composed of the Nth points in each cross section. 
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Figure 3.4: Spline set up [7]. 

Also calculated in Algorithm 1 is a computation to change the coordinate system. This is done to 

prevent problems caused by the natural bending of waterways. The Cartesian coordinates for the 

splines are converted to spherical coordinates using Equation 2.  

Equation 2: 

𝑟   √         

𝜃        (
 

 
)     

𝜑        (
 

𝑟
) 
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The midpoint of the cross section is used as the logical origin for this conversion and the 

coordinates at each cross section point are converted. 

To produce viable results, it was determined that the profile should be supplemented. Cross 

sections can be spaced overly far apart in some data [7]. When this is the case spline 

interpolation can cause problems, such as aliasing, which is when different signals become 

indistinguishable from one another during sampling. Flanagin shows that this is a specific 

problem for hydrographic surveying, showing that the deepest path of a channel, called the 

thalweg, has the potential to disappear and reappear in different locations. To solve this Flanagin 

proposes the addition of auxiliary profile lines, one on each bank of the water way, to control the 

transitions between cross sections. The solution is fleshed out in Algorithm 2: 

Algorithm 2 

1 𝑅𝑒𝑠𝑎𝑚 𝑙𝑒𝑑𝐶𝑒𝑛 𝑒𝑟𝑙𝑖𝑛𝑒𝐴𝑙 ℎ𝑎𝑠 ←  ∅; 

2 𝐶𝑒𝑛 𝑒𝑟𝑙𝑖𝑛𝑒𝐴𝑙 ℎ𝑎𝑠 ←    0.0 ∪ 𝐶𝑒𝑛 𝑒𝑟𝑙𝑖𝑛𝑒𝐴𝑙 ℎ𝑎𝑠; 

3 𝐶𝑒𝑛 𝑒𝑟𝑙𝑖𝑛𝑒𝐴𝑙 ℎ𝑎𝑠 ← 𝐶𝑒𝑛 𝑒𝑟𝑙𝑖𝑛𝑒𝐴𝑙 ℎ𝑎𝑠 ∪ {1.0}; 

4 𝑃𝑜𝑖𝑛 𝑠𝑃𝑒𝑟𝐵𝑖𝑛 ← 𝑁𝑢𝑚 𝑒𝑟𝑂𝑓𝐶𝑟𝑜𝑠𝑠𝑆𝑒  𝑖𝑜𝑛𝑆𝑎𝑚 𝑙𝑒𝑠 size 𝐶𝑒𝑛 𝑒𝑟𝑙𝑖𝑛𝑒𝐴𝑙 ℎ𝑎𝑠  ; 

5 for i = 1 to size(CenterlineAlphas) - 1 do 

6  for j = 1 to size(PointsPerBin) -1 do 

7   𝑅𝑒𝑠𝑎𝑚 𝑙𝑒𝑑𝐴𝑙 ℎ𝑎𝑠 ← 𝐶𝑒𝑛 𝑒𝑟𝑙𝑖𝑛𝑒𝐴𝑙 ℎ𝑎𝑠𝑖 +
 𝑗 1  𝐶𝑒𝑛 𝑒𝑟𝑙𝑖𝑛𝑒𝐴𝑙 ℎ𝑎𝑠 𝑖+1 

𝑃𝑜𝑖𝑛 𝑠𝑃𝑒𝑟𝐵𝑖𝑛
; 

8  end 

9 end  

 

 

Figure 3.5: Supplementing the Centerline (Profile) [7]. 
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The left and right bank lines are used as additional centerlines. The normalized distance is found 

for cross sections and auxiliary profile intersections. Ranges are created for the cross section 

lines between the center profile and each bank line profile. First the alpha values are found for 

the left and right endpoints of a cross-section line. The values are then split with the alpha value 

of centerline intersection. The cross section points, the number of which is denoted as 

PointsPerBin, are evenly distributed among the ranges such that each range has the same number 

of points. For example, if the number of cross section points is forty, there will be ten points on 

the left descending bank, then points on the left side of the channel, ten points on the right side of 

the channel, and ten points on the right descending bank. This alters the way the grid would 

otherwise be produced. Without this part of the algorithm points would be evenly distributed 

along the centerline, as would the resulting polygons for that area. Now the points will be 

distributed such that the concentration relies on the length of the range. If a range is shorter than 

another, a greater concentration of polygons will result in that area. This results in more detail for 

certain areas, such as the thalweg.  

Now that the splines have been properly constructed, they are ready to be evaluated so that the 

polygon mesh can be created. A third algorithm is used to show the needed functions: 
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Algorithm 3 

1 for i = 1 to NumberOfProfileSamples - 1 do 

2  for j = 1 to NumberOfCrossSectionSamples -1 do 

3   CreatePolygon 𝑃𝑖 1
𝑗 1

, 𝑃𝑖 1
𝑗

, 𝑃𝑖
𝑗
, 𝑃𝑖

𝑗 1
 ; 

4  end 

5 end  

 

Figure 3.6: Evaluating splines for the creation of polygons [7]. 

Algorithm 3 evaluates splines at regular intervals along the centerline and output cross sections 

are produced. The NumberofProfileSamples and NumberOfCrossSectionSamples are defined by 

the user. Flanagin presents a graphical representation of this method as well [7]. It can be seen in 

Figure 3.7. Here, there are M number of profile samples which corresponds to the number of 

cross sections in the data. There are also N number of cross section samples, which correspond to 

the number of data points on a cross section. These follow the original profile of the waterway, 

and the shapes are determined by the original cross sections of the waterway. In Figure 3.7 the 

dashed green lines represent the created mesh. The solid green line represents the current mesh 

polygon that is being created. The red line represents the profile centerline, with capital letters 

denoting cross sections. Cross section points are denoted in blue. 
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Figure 3.7: A graphical representation of mesh generation [7]. 

Once an acceptable mesh is generated, it can then be merged with LiDAR data. However, this 

data is exported in the form of vector output, which can be a problem. For many digital 

applications raster data is preferred. In order for this vector data to be rasterized, a dense version 

of the vector surface is exported and IDW interpolation is used to generate a raster. This adds a 

step that makes the use of the Hydraulic Spline Algorithm more cumbersome. The process can 

be streamlined by changing the output of the algorithm from a vector surface to a raster surface. 

To do this the Hydraulic Spline Algorithm will need to be performed on a raster data set instead 

of a vector data set. This would essentially develop a raster oriented process for the Hydraulic 

Spline Algorithm. The next section details the advantages raster output would have over the 

current vector based implementation of The Hydraulic Spline Algorithm. 
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 3.3 The Comparative Advantages of Raster Data in Geospatial Applications 

Geospatial data can essentially be divided into vector and raster based information. Both have 

practical applications and are necessary for the study of topology. However, vector data must 

overcome several challenges when it comes to data storage [10]. This gives it a major 

disadvantage of usefulness when compared to raster data, which is easier to store.  

Vectors must use complex data structures in order to retain their information. Due to the 

graphical nature of vectors, they can also be expensive to visualize. A significant amount of 

specialized commercial software has been developed with the expressed intent of displaying and 

manipulating geographical vector data. These products have been created out of necessity, 

showing that vector data can be hard to work with. Additionally, these software products can be 

expensive and require vast computing power. Raster data, on the other hand, is much simpler. 

Gridded image data requires no complex data structures and can even be stored in geospatial 

databases with ease [9]. The technology needed to display raster data is on par with viewing 

most image data, and thus is accessible and inexpensive [10].  

Vector data is often converted to raster data in order to manipulate it in ways that come more 

naturally to raster data. Sometimes it is necessary to develop raster-oriented solutions for an 

application that only possesses a vector-oriented solution [11].  Such is the case with the 

Hydraulic Spline Algorithm, as a raster-oriented solution would remove unnecessary steps.  

Another advantage of raster data is that it can relatively easily be converted to vector data [11]. 

This is good for vector data that has been converted to raster data for processing reasons. 

Converted data can be easily stored in a database in raster form. This reduces the size and 
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complexity of the data and allows it to be better utilized. If the need arises for vector data, it can 

simply be converted back. 

It is actually possible to easily manipulate raster data in a database, giving it another edge over 

vector data [9]. This has been proven to be computationally cheap, and also eliminates the need 

for expensive vector processing software and machinery. Due to recent advances in geographic 

database techniques, a raster based Hydraulic Spline algorithm could be implemented in a 

database. This would make the Hydraulic Spline algorithm more practical by eliminating the 

need to store vector data, and less laborious to implement by removing the need for specialized 

software. The next section outlines a possible method for producing raster output with the 

hydraulic spline algorithm. 

3.4 A Raster Based Hydraulic Spline Approach  

In order for the Hydraulic Spline Algorithm to be replicated as a raster based method, all of its 

major components must be implementable on rasters. As described in section 3.2, this algorithm 

is made up of three components: 1) Hydraulic Spline Setup, 2) Supplementation of the 

centerline, and 3) Polygon creation from spline evaluation. 

Following the Hydraulic Spline Algorithm 1, an initial set up of the spines is necessary. First the 

cross section and profile line of the raster must be established. Due to the nature of raster grids, 

each pixel also holds the geographic coordinate for that area. A search can be executed on all the 

pixels of a raster to determine if the coordinates match up with those of the cross sections and 

profile line. Finding the cross section and profile intersections is done by finding those pixels 

which have coordinate values matching both centerline coordinates and cross section 

coordinates. Figure 3.8 shows this intersection, where the dashed line represents the profile, the 
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solid line is a cross section, and the grid represents individual pixels. The pixel chosen through 

search is outlined by a red box. This method also accomplishes the task of removing cross 

sections that do not intersect the profile.  

 

Figure 3.8: A representation of selecting profile cross section intersecting pixels in raster data. 

The pixels chosen at these midpoints become the local origin for interpolating sample points 

along the cross section. By fetching the Cartesian coordinates from these sample points, they can 

then be converted into spherical coordinates using the method mentioned in section 3.2. With the 

new coordinates generated, splines are established at the corresponding locations, and the 

necessary steps for Algorithm 1 are complete. A new Algorithm 1 is created to follow this 

procedure: 
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1 for i = 0 to size(ProfileLinePixelArray) do 

2  for j = 1 to size(CrossSectionPixelArray) do 

3   if coordinatesOf(ProfileLinePixelArray[i]) =  

4    coordinatesOf(CrossSectionPixelArray[j]) do 

5     AddMidpoint(coordinatesOf(ProfileLinePixelArray[i]); 

6   end 

7  end 

8 end 

9 for k = 1 to NumberOfSamplePoints do 

10  Compute (𝑟, 𝜃,ϕ) for 𝐶𝑟𝑜𝑠𝑠𝑆𝑒  𝑖𝑜𝑛𝑘  relative to𝑀𝑖𝑑 𝑜𝑖𝑛 𝑘 ; 

11  distanceBetweenPoints = length(𝐶𝑟𝑜𝑠𝑠𝑆𝑒  𝑖𝑜𝑛𝑘) / NumberOfSamplePoints; 

12  for l = 1 to NumberOfCrossSections do 

13   AddPoint(splines(k), distanceBetweenPoints, (𝑟, 𝜃,ϕ)); 

14  end 

15 end 
 

Figure 3.9: Algorithm 1: Setting up splines in raster space 

Following Algorithm 2, supplementary profile lines are added. They are established by searching 

for the pixels which match coordinates for bank lines. Figure 3.10 shows where these profiles, 

the long horizontal lines, would lie on sample LiDAR data. The short vertical lines represent 

possible cross sections. Points can now be redistributed to evenly lie on the ranges generated. 

Figure 3.10 shows raster data with highlighted pixels for cross sections, center profile, and 

supplementary profile lines. 
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Figure 3.10: Supplementing the center line. 

 

The Algorithm for this method of center line supplementation is as follows: 

1 PointsPerBin = NumberOfSamplePoints / (NumberOfBanklines + 2); 

2 for i = 1 to NumberOfBanklines do 

3  for j = 0 to size(𝐵𝑎𝑛𝑘𝑙𝑖𝑛𝑒𝑃𝑖 𝑒𝑙𝐴𝑟𝑟𝑎 𝑖) do 

4   for k = 0 to size(CrossSectionPixelArray) do 

5    if coordinatesOf(BanklinePixelArray[j]) =  

6     coordinatesOf(CrossSectionPixelArray[k]) do 

7      AddBreakpoint(coordinatesOf(BanklinePixelArray[j]); 

8    end 

9   end 

10  end 

11  for n = 1 to NumberOfCrossSections do 

12   StartingPoint = FindNearestEndpoint(𝐵𝑟𝑒𝑎𝑘 𝑜𝑖𝑛 𝑛); 

13   ResamplePoints(StartingPoint, 𝐵𝑟𝑒𝑎𝑘 𝑜𝑖𝑛 𝑛 , PointsPerBin); 

14   ResamplePoints(𝐵𝑟𝑒𝑎𝑘 𝑜𝑖𝑛 𝑛 , 𝑀𝑖𝑑 𝑜𝑖𝑛 𝑛 , PointsPerBin); 

15  end 

16 end 

 

Figure 3.11: Algorithm 2: Supplementing the centerline. 
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For Algorithm 3, the splines are evaluated to set the pixel values to their proper elevation. This is 

done using Minimum Bounding Rectangles (MBR). The interpolated splines have created 

polygons between the sampled points. MBRs can then be used to find all pixels between the 

coordinates of these polygons. For each set of pixels found, the proper elevation is determined 

and set within the raster. A diagram of this is shown in Figure 3.12. The MBR area is shown in 

yellow. Red pixels represent spline control points. The green line is the profile of the waterway. 

Algorithm 3 shown in Figure 3.12 shows the steps needed to create the polygons. 

 

Figure 3.12: The bounding box area of raster pixels 

 

1 for i = 1 for size(Midpoint) - 1 do 

2  for j = 1 for size(crossSectionPoints) - 1 do 

3   CreatePolygon(𝑃𝑖
𝑗
, 𝑃𝑖 1

𝑗 1
); 

4  end 

5 end 

 

Figure 3.13: Algorithm 3: Raster based polygon creation 
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4 Implementation 

This project is implemented in Oracle, which utilizes the features of Oracle Spatial and Graph 

GeoRaster [14]. Oracle PL/SQL is used to define all data models as well as to manipulate the 

data. Oracle 12c provides new functionality for manipulation and storage of raster data. Some 

Extract, Transform, Load (ETL) Tools were also utilized, such as the Oracle GeoRaster Loader 

and Oracle Spatial shapefile loader. The Geospatial Data Abstraction Library (GDAL) was used 

to transform raster data into the format required of Oracle Spatial. Database diagrams were 

created using Gliffy, a free online diagram utility. 

4.1 Oracle Data Storage  

GeoRaster is a built-in feature of Oracle Spatial and Graph. It allows the user to store, index, 

query, analyze, and deliver raster image data, gridded data, and any associated metadata [13]. 

GeoRaster can be used not only to store DEMs but also DTMs and other gridded data [9]. 

GeoRaster data models are logically layered and multidimensional. Oracle Spatial has several 

useful components for the management of raster data. MDSYS is the oracle schema. It defines 

the storage, syntax, and semantics for both vector and raster geometric data types. Oracle Spatial 

provides the SDO_Geometry data type for the storage of spatial data. It contains all the features 

and capabilities of an oracle data. SDO_Geometry tables can be created and are fully functional 

with database features such as views and triggers. Having a complete set of functionality is 

essential for the manipulation, storage, retrieval, and relate-ability of raster data. 

When GeoRaster database objects are created to represent an image, data has the ability to be 

controlled on the pixel level. This is done by forming the data into a multidimensional array of 

raster cells [9]. Each raster cell holds the value of a single pixel from the image data. This allows 
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cells and pixels to be used interchangeably. The depth of a cell is stored as the data size of each 

pixel. This defines a range for all the cell values and applies to each single cell.  

Multidimensionality is expressed through layered banding of raster imagery. The number of 

dimensions an array has is directly related to the type of imagery. Images that have RGB values 

are usually stored as three dimensional arrays [9]. This allows each RGB value for a pixel to be 

stored as its own byte value. In contrast, DEMs are usually portrayed in black and white so they 

are stored in one dimensional arrays. In the case of DEMs, only one value is needed to represent 

a pixel, and that is the elevation value. The dimensionality of the array also dictates the banding 

of an image. Red, green, and blue images have three bands, while DEMs have one. Oracle 

GeoRaster utilizes a generic data model in order to allow for many different types of pixels and 

sizes [9]. Figure 4.1 represents the multidimensionality of the raster data model. The array on the 

top shows a three dimensional array used to store red, green, and blue color values of a pixel. 

The array on the bottom is two dimensional and is used to store elevation data for DEMs. 
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Figure 4.1: Raster Data Models 

 

GeoRaster data models get coordinate information from metadata, which can provide the proper 

spatial reference system [13]. Spatial reference systems associated with a raster define the map 

projection used to create Earth-based coordinates. Using this information the proper coordinates 

are associated with each pixel in the raster array. 

GeoRaster also supports the storage of pyramid levels. In Oracle, pyramids become a subobject 

group of the GeoRaster Object [12]. These subobjects hold information pertaining to the degree 

of resolution of raster data. Pyramid levels symbolize how much of the raster data has been 

reduced. As a pyramid level’s value increases, the resolution of the object decreases. Different 

levels are used to store data in smaller or larger amounts, depending on the level of detail needed 
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in an application. For this project, pyramid levels of zero are employed, signifying that the 

largest resolutions available are utilized. 

Oracle allows for a variety of methods for loading raster data into a geoRaster database [14]. 

Extract, Transform, Load (ETL) tools are particularly useful in this phase of implementation. 

Oracle Spatial example files contain a complete set of ETL tools, based in java, for loading, 

viewing, and exporting GeoRaster data. They are standalone executables designed to run in a 

Java Virtual Machine. Since java is so closely integrated with Oracle database, this makes the 

GeoRaster ETL tools convenient and easy to use. 

4.2 Methodology 

Spatial data requires a fully designed, specified model for the storage of data [9]. In this regard, it 

is no different from other databases. A well designed spatial database is the first step to store 

raster data. Figure 4.2 diagrams the needed tables for a GeoRaster database. 

An Oracle GeoRaster database requires two tables to store a raster object. The first table, the 

GeoRaster table, indexes and keeps track of the GeoRaster objects. The second table, the raster 

data table, holds the key of the object, the tablespace that holds it, and other necessary 

information for handling raster data. This information is required for the raster data table, 

because it manages the storage of the actual data. The raster data table manages raster data as 

Large Object (LOB) datatypes, which are colloquially referred to as blocks of data. LOBs are 

sometimes stored as binary data making them a Binary Large Object (BLOB). 
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Figure: 4.2 GeoRaster Database Diagram 

 

In order to create the necessary data blocks, the multidimensional arrays of pixel values must be 

linearized. The method for doing this is called band-sequential (BSQ) linearization [9]. In this 

process, raster data is transformed into a linear sequence of bytes and stored. There are many 

tools with the ability to perform BSQ linearization on raster data. Oracle recommends using the 

Geospatial Data Abstraction Library (GDAL) [14]. The GDAL utility has a translate function, 

gdal_translate, which reformats and reblocks the raster. Using the function creates a new 

striped file that is based on the original raster data. Once that data has been translated, it is ready 

to be stored in the database.  

Before data can be loaded, the GeoRaster database design must be implemented. First, the 

tablespace must be created. The tablespace defines the storage location where the actual raster 

data will be kept. This is defined under the database user [14]. The tablespace must be defined 
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before instantiating tables so that the proper storage allocation can take place. A sample 

tablespace declaration would be: 

create tablespace USER_DATA 

datafile 'C:\app\USER\oradata\GISDB\DATAFILE\01_user_data.dbf' 

size 1000m 

extent management local autoallocate segment space management 

auto; 

 

Next, two tables are created; one for the storage of the raster data, and one for the storage of 

GeoRaster objects. The SQL for these tables is implemented below: 

CREATE TABLE city_images (image_index NUMBER, image_description 

VARCHAR2(50), image SDO_GEORASTER); 

 

CREATE TABLE city_images_rdt OF SDO_RASTER 

  (PRIMARY KEY (rasterID, pyramidLevel, bandBlockNumber, 

    rowBlockNumber, columnBlockNumber)) 

  TABLESPACE USERS_DATA 

  LOB(rasterBlock) STORE AS SECUREFILE(CACHE); 

 

The city_images table holds index numbers, text descriptions of each image, and the 

SDO_GEORASTER data column. The city_images_rdt table is a Raster Data Table 

(RDT). As mentioned earlier, this is the table where the actual raster data is stored.  A primary 

key is used to enforce B-tree indexing on the raster data table. This table also utilizes Oracle 

SecureFiles and Large Object (LOB) datatypes to store data in the needed format [14].  Data 

block row and column numbers are stored, as well as the pyramid level. 
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The datafile declared here becomes the location for the raster data storage. User created 

datafiles should be stored in the Oracle database architecture under the DATAFILE folder. This 

is not mandatory but it follows the convention for creating stable databases [13]. Commands are 

also issued to give the database automatic control over space management. 

There are several options for loading GeoRaster data into the newly created database, such as the 

GeoRaster ETL tools included in the Oracle Spatial example files. Oracle can also handle SQL 

based import commands for GeoRaster data. The needed SQL commands are detailed in this 

section. 

When loading data through SQL implementation, permissions must be granted to the user 

creating the tables, as well as to the Oracle schema MDSYS. These commands, seen below, 

allow the system to read data for imputing it into tables.  

call dbms_java.grant_permission( 'USER', 

'SYS:java.io.FilePermission', 'C:\...\rasterFile.tif', 'read' ) 

call dbms_java.grant_permission( 'MDSYS', 

'SYS:java.io.FilePermission', 'C:\...\rasterFile.tif', 'read' ) 

 

After permissions have been granted for the specified files, commands for importing data may be 

implemented in the following manner: 

DECLARE 

geor SDO_GEORASTER; 

BEGIN 

INSERT INTO city_images 

values( 1, 'Raster_TIFF_1_description_and_other_information', 

sdo_geor.init('city_images_rdt') ); 

SELECT image INTO geor FROM city_images 
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WHERE image_index = 1 FOR UPDATE; 

sdo_geor.importFrom(geor, 'blocksize=(256,256)', 'TIFF', 'file', 

'C:\...\rasterFile.tif'); 

UPDATE city_images SET image = geor where image_index = 1; 

END; 

This SQL code first declares an empty GeoRaster object. This creates a space for the external 

image data to reside. Sample data is inserted here as a session variable. This data includes an 

index, description text, and an initialization for the raster data table, city_images_rdt. Now 

that data has been initialized in the table, a Tagged Image File Format (TIFF) raster file can be 

imported. To execute this, the previously created row is updated and the sdo_geor data 

column is populated using the session variable data. The updated values include the object type, 

data block size, compression type, quality, and location of the desired TIFF file source. The 

block size denotes the number of cells per block. In this instance, the blockSize  is set to 256 

for the row dimension, 256 for the column dimension and has a band output width of one. If this 

file had red, green, and blue color values, the band output width would be three and would be 

represented in the blocksize as follows: blocksize=(256,256,3).  

The GeoRaster Viewer, provided by Oracle as part of the GeoRaster ETL tools, displays 

GeoRaster objects, metadata, and raster imagery through a specialized graphical user interface 

[14]. Successfully stored raster data can be viewed by invoking the proper Java programs. These 

programs must first be installed as part of the Oracle Spatial demo files. The GeoRaster Viewer 

can also be used to validate metadata for the functions presented in this section. Figure 4.3 shows 

the GeoRaster Viewer being used to view raster imagery in the database. 
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Figure 4.3: The GeoRaster Viewer 

Reading cell data out of the database is an exercise of this project. The process for doing so 

includes a limited number of steps which are outlined in this section. As stated earlier in this 

section, raster data is stored in the database as LOB data blocks. If the LOB data blocks are 

stored as BLOBs, it will be necessary to convert this binary data from its raw state back into 

standard SQL data types [9]. The following SQL creates a function called getValue. 

CREATE OR REPLACE Function getValue(cellDepth Number, buffer1 

raw, index1 Number, numType Number) 

RETURN Number IS 

R1 raw(1); 

R2 raw(2); 

R4 raw(4); 

R8 raw(8); 

val Number; 
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BEGIN 

IF cellDepth = 1 THEN 

R1 := UTL_RAW.SUBSTR(buffer1, (index1-1) * 

cellDepth+1, cellDepth); 

val := UTL_RAW.CAST_TO_BINARY_INTEGER(R1); 

ElsIf cellDepth = 2 Then 

R2 := UTL_RAW.SUBSTR(buffer1, (index1-1) * 

cellDepth+1, cellDepth); 

val := UTL_RAW.CAST_TO_BINARY_INTEGER(R2); 

ElsIf cellDepth = 4 Then 

R4 := UTL_RAW.SUBSTR(buffer1, (index1-1) * 

cellDepth+1, cellDepth); 

If numType = 0 Then 

val := UTL_RAW.CAST_TO_BINARY_INTEGER(R4); 

Else 

val := UTL_RAW.CAST_TO_BINARY_FLOAT(R4); 

End If; 

ElsIf cellDepth = 8 Then 

R8 := UTL_RAW.SUBSTR(buffer1, (index1-1)*cellDepth+1, 

cellDepth); 

val := UTL_RAW.CAST_TO_BINARY_DOUBLE(R8); 

End If; 

Return val; 

End; 

 

getValue takes in a cell depth and a buffer of raw data. The cell depth is used to determine 

what type of data is stored in the BLOB in order to output the data in the proper data type. Cell 

depth also provides the needed number of bytes to read from the raw buffer at a time. The 
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UTL_RAW package is provided by SQL for manipulating raw data types [12]. The numType 

parameter is used to denote if a value should be of type floating point or integer. 

Now that it is possible to retrieve readable data from the database, manipulation techniques can 

be explored. GeoRaster functionality includes several powerful tools for creating, modifying, and 

retrieving information pertaining to GeoRaster objects [14]. The MDSYS.SDO_GEOR package in 

particular contains many functions and procedures needed to create a raster interpretation of the 

Hydraulic Spline Algorithm. One such feature utilized is the SDO_GEOR.getRasterSubset 

function. This function creates a single LOB object containing all pixels, of a specified pyramid 

level, that are inside or on the boundary of a specified rectangular window or polygon geometry 

object (Oracle GeoRaster Doc). SDO_GEOR.getRasterSubset uses the minimum bounding 

rectangle of the window or geometry object to find and return the requested pixels. Because of 

the minimum bounding rectangle feature of this function, it can be used to retrieve and set pixel 

values for spline evaluation. The function below uses SDO_GEOR.getRasterSubset to 

return the average pixel value for an area within the minimum bounding rectangle. 

An sdo_Number_array is sent in with the coordinates of the upper and lower pixels of the 

bounding box. The SDO_GEOMETRY value is left null, denoting that the area of interest will be 

calculated from data in cell space, not vector space. If vector space was desired, the 

sdo_Number_array would be replaced with null and the SDO_GEOMETRY value would 

instead be filled. 

 

CREATE OR REPLACE FUNCTION getAvgCellValue 

(geoRastObj SDO_GEORASTER, plevel Number, bandNum Number, 
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cellWindow sdo_Number_array, geomWindow SDO_GEOMETRY) 

Return Number As 

cellType Varchar2(80); 

numType Number := 0; 

cellDepth Number; 

parm Varchar(200); 

lb blob; 

buffer1 raw(32767); 

tempAmount Integer; 

amount Integer; 

offset Integer; 

length Integer; 

value Number; 

BEGIN 

cellType := 

geoRastObj.metadata.extract('/georasterMetadata/rasterInfo/ 

cellDepth/text()', 

'xmlns=http://xmlns.oracle.com/spatial/georaster').getStringVal(

); 

IF cellType = '32BIT_REAL' Then 

numType := 1; 

END IF; 

cellDepth := SDO_GEOR.getCellDepth(geoRastObj); 

IF cellDepth < 8 Then 

cellDepth := 8; 

parm := 'celldepth=8bit_u'; 

END IF; 

parm := parm || ' compression=none'; 
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dbms_lob.createTemporary(lb, true); 

IF (geomWindow Is null) Then 

SDO_GEOR.getRasterSubset(geoRastObj,plevel,cellWindow,to_ch

ar(bandNum),lb,parm); 

ELSEIF (cellWindow Is null) Then 

SDO_GEOR.getRasterSubset(geoRastObj,plevel,geomWindow,to_ch

ar(bandNum),lb,parm); 

END IF; 

length := dbms_lob.getlength(lb); 

cellDepth := cellDepth / 8; 

amount := floor(32767 / cellDepth) * cellDepth; 

tempAmount := amount; 

offset := 1; 

WHILE offset <= length LOOP 

dbms_lob.read(lb, amount, offset, buffer1); 

FOR i In 1..amount/cellDepth LOOP 

value := value + (getValue(cellDepth, buffer1, i, 

numType)); 

END LOOP; 

value := AVG(value) 

offset := offset+amount; 

amount := tempAmount; 

END LOOP; 

dbms_lob.freeTemporary(lb); 

Return value; 

END; 

The getAvgCellValue function takes in a georaster object, pyramid level, band number, and 

cell and geometry window information. SDO_GEOR.getRasterSubset can work with data 
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in both raster space and vector space [14]. For this reason the function takes in windows of both 

types. Values are then instantiated for fetching cell data, calculating its average, and returning 

the value. The buffer is set to the maximum amount of bytes readable for the raw data type, 

32767 bytes. The metadata is called, from which the cell type is extracted, and proper cell depth 

is determined. The function then creates a temporary LOB object to store the read data for 

calculation. The type of window used, cell based or vector based, is determined and the 

SDO_GEOR.getRasterSubset function is called for those values. The values in the LOB 

object are read and averaged. The temporary memory in the LOB is released and the average is 

returned. getAvgCellValue can be called in the following manner: 

SELECT getAvgCellValue(raster, 0, 0, 

sdo_Number_array(0,0,551551), null) 

FROM city_images WHERE id=1; 

 

One advantageous feature of Oracle Spatial is its ability to convert raster cells to model types in 

vector space [13]. This is utilized in problems where the raster based data does not provide 

sufficient information. Additionally, combining raster and vector analysis functions in PL/SQL 

preserves the efficient nature of database manipulation, as it requires no external vector 

processing software or equipment. Some model types needed for creating a raster based 

hydraulic spline method are points and polygons. This section details the functions needed to 

create points and polygons for raster data. 

In order for raster space to be converted to vector space, the corresponding objects must exist in 

the same coordinate space. Additionally, resolution of the raster must be known so that a proper 

one-to-one coordinate mapping method can be established because resolution tells how much 

physical area is covered by one pixel. The resolution and the coordinate system used for a raster 
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can be found in the metadata. It should be verified before implementing any cell to model space 

conversion.  Another key difference in vector and raster space is the origin for coordinate 

mapping. In vector space coordinates are mapped with a lower-left corner origin, while in raster 

space coordinates are mapped with an upper-left corner origin. To adjust this, models may need 

to be flipped in some functions in order for a proper mapping to be produced [9]. The first step of 

converting cell coordinates to point geometry is to fetch the coordinate values of the raster. 

Oracle provides this functionality, which can be seen in the example below. 

SELECT sdo_geo.getCellCoordiante(georaster, 0, 

SDO_GEOMETRY(2001,82394,sdo_point_type(3234.64,7489527.23,n

ull,null)) coord 

FROM city_images WHERE georid = 1; 

The coordinates are returned as a SDO_NUMBER_ARRAY. This array can be used to send 

coordinate information to a function which will create a geometry in cell space. Such a function 

will be called cellGeometry and is outlined below. 

CREATE OR REPLACE FUNCTION cellGeometry (rowCoord number, 

columnCoord number, georaster sdo_georaster, geomType 

number) 

Return SDO_GEOMETRY Is 

mbr SDO_GEOMETRY; 

spatialResolution sdo_number_array; 

xResolution Number; 

yResolution Number; 

xOffset Number; 

yOffset Number; 

Begin 

mbr := sdo_geom.sdo_mbr (georaster.spatialextent); 
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spatialResolution := 

sdo_geor.getSpatialResolutions(georaster); 

xResolution := spatialResolution(1); 

yResolution := spatialResolution(2); 

xOffset := mbr.sdo_ordinates(1) + columnCoor*xResolution; 

yOffset := mbr.sdo_ordinates(4) - rowCoord*yResolution; 

IF (geomType Is NULL) THEN 

geomType = 2001; 

END IF 

Return SDO_GEOMETRY(geomType, mbr.sdo_srid, null, 

sdo_elem_info_array(1, 1003, 3), 

sdo_ordinate_array(xOffset, yOffset – yResolution, 

xOffset+xResolution, yOffset)); 

End; 

Coordinates of a cell and the host raster are taken into the cellGeometry function. Variables 

for the geometry calculation, resolution, and offset are created and instantiated using SDO_GEOR 

functionality. Then, the y values are flipped to accommodate the change in coordinate origin 

mentioned earlier. The new geometry is instantiated as a point type, denoted by the number 

2001, and is returned.  

The points of the minimum bounding rectangle are derived from the SDO_ORDINATE_ARRAY. 

In this array, maximum and minimum values for x and y points are stored such that 

SDO_ORDINATE_ARRAY(xMinimum, yMinimum, xMaximum, yMinimum).These 

values are fetched from the minimum bounding rectangle by calling 

mbr.sdo_ordinates(arrayIndex). In the cellGeometry function the minimum 

value of x and the maximum value of y are retrieved and calculated with the spatial resolution of 
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x and y. This gives the information needed to determine the points where the SDO_GEOMETRY 

will be created. 

The cellGeometry function can be used as is for generating point models from raster data. If 

geomType is specified as 2003 a polygon will be created. If geomType is specified as 2002 a 

line will be created. Figure 4.4 illustrates the differences in these geometry types when applied to 

raster data. Oracle’s method of creating geometric objects from raster data works by instantiating 

SDO_GEOMETRY objects relative to provided coordinates. For a point, an object is set to 

encompass only the specified point’s coordinates. For a line object, points are created with 

straight arc segments and stored in a line string. For Polygons, the perimeter is made up of lines, 

and all points encompassed by it are stored. 

 

Figure 4.4: Raster to Vector Space Illustration 

For creating polygon models, a minimum bounding rectangle for two points can be used. The 

following function sends in raster data, pyramid level, and a set of minimum bounding rectangle 

coordinates in the form of a SDO_GEOMETRY. All values of the SDO_ORDINATE_ARRAY are 

fetched to calculate the maximum and minimum points for the bounding rectangle. 
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Create Or Replace Function createPolygon( georaster 

sdo_georaster, plevel number, geomWindow SDO_GEOMETRY) 

Return SDO_GEOMETRY Is 

cellGeom SDO_GEOMETRY; 

colNum Number; 

rowNum Number; 

mbr SDO_GEOMETRY; 

minimumCorner sdo_number_array; 

maximumCorner sdo_number_array; 

xMin Number; 

xMax Number; 

yMin Number; 

yMax Number; 

Begin 

mbr := sdo_geom.sdo_mbr(geomWindow); 

xMin := mbr.sdo_ordinates(1); 

yMin := mbr.sdo_ordinates(2); 

xMax := mbr.sdo_ordinates(3); 

yMax := mbr.sdo_ordinates(4); 

minimumCorner := sdo_geor.getCellCoordinate(georaster, 0, 

SDO_GEOMETRY(2001, 

mbr.sdo_srid, sdo_point_type(xMin,yMax,null),null,null)); 

maximumCorner := sdo_geor.getCellCoordinate(georaster, 0, 

SDO_GEOMETRY(2001, 

mbr.sdo_srid, sdo_point_type(xMax,yMin,null),null,null)); 

For rowNum in minimumCorner(1) .. maximumCorner(1) Loop 

    For colNum in minimumCorner(2) .. maximumCorner(2) Loop 

cellGeometry := cellGeometry(rowNum, colNum, 

georaster, 2003); 
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    End Loop; 

End Loop; 

Return cellGeom; 

End; 

 

Points will need to be converted from Cartesian coordinates to spherical coordinates for correct 

placement of splines [7]. Created geometries can be converted to different coordinate systems 

using the SDO_CS.TRANSFORM function of Oracle Spatial [13]. This function can be 

associated with different use cases and use plans for converting to different types. One use case 

called USE_SPHERICAL performs the transformation in spherical math, allowing a geometry to 

be transformed to spherical points. SDO_CS.TRANSFORM can be called as follows: 

SDO_CS.TRANSFORM( SDO_GEOMETRY, USE_SPHERICAL, SDO_SRID); 

A sdo_geometry with new coordinates is returned.  

Oracle currently supports three main types of curves, Bezier curve, B-spline curve and NURBS 

curve. With the release of Oracle Database 12c (12.1) support for Non-Uniform Rational B-

spline (NURBS) curve geometries was introduced [13]. NURBS curves represent curves through 

control points and knots and can be used to represent cubic splines with little data. They require 

three or more control points and allow the user to specify the exact amount. This allows for 

splines with more than two control points, which is necessary to define a consistent curvature.  

A NURBS curve is created as a SDO_GEOMETRY in the following manner: 

SDO_GEOMETRY( 

    SDO_GTYPE, 
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    SDO_SRID, 

    SDO_POINT, 

    SDO_ELEM_INFO_ARRAY(offset, 2, 3), 

    SDO_ORDINATE_ARRAY 

      (3, 

       7, 

       x1, y1, w1, 

       x2, y2, w2, 

       x3, y3, w3, 

       x4, y4, w4, 

       x5, y5, w5, 

       x6, y6, w6, 

       x7, y7, w7, 

       11, 

       0, 0, 0, 0, 0.25, 0.5, 0.75, 1.0, 1.0, 1.0, 1.0)) 

The SDO_GTYPE for a NURBS curve should be set to the value ‘2002’ indicating it to be two 

dimensional and a single line string. The SDO_ELEM_INFO_ARRAY holds the offset, element 

type, and interpretation value. This array holds information for one element of type 

SDO_ETYPE_CURVE with an interpretation value of three for NURBS curves. The 

SDO_ORDINATE_ARRAY holds the degree of the NURBS curve, the number of weighted 

control points, the locations and weights of these control points, the number of knot values, and 

the normalized knot vector. For this example, the curve has a degree of three and seven control 

points. The location of these points is denoted by their x and y coordinates (x1, y1 through x7, 

y7) for each point and the weight of each point (w1 through w7). The number of knot values is 

the sum of the number of control points and the degree plus one. The normalized knot vector is 

calculated with values starting at zero and ending at one.  The multiplicity of zero and one is 
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equal to the degree of the curve plus one. Therefore, for this example there are four zeroes and 

ones in the normalized knot vector, and values in between are evenly distributed until eleven 

values exist. This approximates values across the spline.  

4.3 Challenges  

Splines are a major component and somewhat of a challenge for this project. The Kochanek-

Bartels splines used in the Hydraulic Spline algorithm are interpolating splines while NURBS 

curves create approximating splines. Because Kochanek-Bartels splines and NURBS curves are 

fundamentally different, this could cause issues with producing desirable results. However, some 

properties of raster data can be utilized to counteract this drawback. Kochanek-Bartels splines 

provide methods to manage spline curvature without calculating slope derivatives. Fortunately, 

slopes can fairly easily be calculated with raster data, so it would not be computationally 

expensive to do this.  

Slope can be calculated from the pixel values of DEMs through several methods. One simple 

method is to take the eight neighbors of a pixel into a matrix and calculate the rise over run [9]. 

For example, slope of a pixel, e, can be found by constructing the following matrix of elevation 

values for e and its surrounding pixels: 

𝑎   
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

 

Now the following calculations can be determined: 

𝑑 

𝑑 
 

[ 𝑎   𝑑  𝑔      𝑓  𝑖 ]

[   𝑅𝑒𝑠𝑜𝑙𝑢 𝑖𝑜𝑛]
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𝑑 

𝑑 
 

  𝑔   ℎ  𝑖   𝑎       ]

[   𝑅𝑒𝑠𝑜𝑙𝑢 𝑖𝑜𝑛]
 

𝑠𝑙𝑜 𝑒  
𝑟𝑖𝑠𝑒

𝑟𝑢𝑛
 √ 𝑑 𝑑      𝑑  𝑑    

Pixel values can be retrieved and manipulated through the methods mentioned in the previous 

section. Since DEMs can be very large precautions should be taken when performing these 

calculations so that it remains quick and efficient. Small subsets of the raster should be retrieved 

and processed rather than attempting to calculate the entire raster at once.  

Implementing this project in an Oracle database has several advantages, but significant learning 

curve is also present. Not only is a vast working knowledge of Oracle Spatial and Oracle 

GeoRaster required, but the intricacies of managing large complex databases are also needed. 

This can make database implementations out of reach for many individuals working with surface 

models. A Java or C++ implementation would not require this knowledge and may be favored 

for this reason. However, the advantages provided by direct manipulation of data through 

PL/SQL far outweigh the ease of use provided by other technologies. Companies and 

organizations with dedicated database management could more easily take advantage of an 

Oracle database implementation as the learning curve would be reduced.  
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5 Conclusion 

The raster based method of spline creation provides more efficient data manipulation due to the 

inherent properties of raster data. This project provides a well described method that can be 

readily applied to topics mentioned in this chapter. Additionally, future work can still be done 

within this field and is detailed below.  

5.1 Possible Applications 

Thematic raster data can be created from multi-spectral images [9]. Land cover data is an 

example of thematic raster data that has discrete sets of values assigned to different pixels in the 

raster.  Here, numbers are stored which denote the type of land covered by a pixel space. Figure 

5.1 shows the different types of land cover, the number of their classification, and the color of 

the pixel for that type.  

Due to the size of raster data, it could be advantageous to only select pixels based on their land 

cover classification. This would reduce the cost of searching for or sorting pixels by only 

focusing on a subset of the raster instead of every pixel value in the raster. This type of raster 

would be beneficial for hydrographic surveying problems. Land Cover Classification would 

allow an analyzer to select only Open Water data for analysis and manipulation. Since the data 

are obtained as a subset of the raster, the functions presented in the previous sections would be 

usable for analysis and manipulation. 
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Figure 5.1: Land Cover Classification Chart [9]. 

 

5.2 Future Work 

This raster based spline creation method has been interpreted for individual waterway channels. 

In reality, hydraulic modeling projects encompass large networks of waterways, which contain 

many branches, confluences, and forks [7]. The Hydraulic Spline Algorithm has been 

successfully modified to account for these geographic occurrences.  Further research would need 

to be done to determine if confluences and waterway branching could be accommodated in a 

raster based interpretation.  

Possible issues could arise with the database implementation of NURBS splines presented in this 

project. With NURBS splines tension is automatically controlled and cannot be user defined. It is 
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possible that NURBS splines may only be used for tight tension points such as channels. In the 

future, NURBS should be tested on curvy waterways to see how the tension reacts in different 

situations. If NURBS prove to be unusable in common waterway conditions there would be 

sufficient need for database support of Kochanek-Bartels splines. 

5.3 Summary 

This project successfully outlines the method of improving surface model data by generating 

splines in raster space. Working with raster data is shown to have many advantages over methods 

utilizing vector data, including the Hydraulic Spline algorithm. Improving surface model data 

and their subsequent creation methods is necessary for the advancement of work done by the U. 

S. Army Corp of Engineers.  
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