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Abstract 

 
Isogeometric Analysis: Applications for torque and drag models, 

drillstring and bottom-hole assembly design 

Katy Lynn Hanson, MSE 

The University of Texas at Austin, 2018 

 
Supervisor:  Dr. Eric van Oort, Dr. John T. Foster 

 
The drilling industry today relies on torque and drag models to analyze and ensure 

success during all phases of well construction and operations, including planning, drilling, 

and completion. Analytical models are based on equations that are undergoing constant 

development and improvement. The finite element method is an alternative to complex 

analytical calculations that is used often to determine torque and drag forces that are present 

when a drillstring is lowered, raised, and rotated in a wellbore. Traditional finite element 

analysis (FEA), however, is not time efficient or computationally able to simulate the 

complexities of a real wellbore. Thus, we introduce an alternative to the traditional finite 

element approach: isogeometric analysis. Isogeometric analysis is similar to finite element 

analysis except that it uses NURBS (Non-Uniform Rational B-Splines), as opposed to 

interpolatory polynomials used in traditional FEA, as the basis functions. NURBS 

functions are the same as those used in CAD programs, and they are able to construct exact 

conic shapes, such as circles and ellipses. Adopting NURBS basis functions allows finite 

element analysis to be performed directly on the exact geometrical surface – not on an 

approximate geometric surface mesh, as in traditional FEA. IGA yields a significantly 

faster and more accurate simulation. This thesis presents a real-world application of IGA 

to a drag force model to determine the resultant surface hook load during run-in-hole (RIH) 

operations. Real well data is used, and IGA results are compared to a similar FEA analysis. 

The outcome shows that IGA is indeed a superior finite element method that has immense 

potential for further application in the industry.  
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Chapter 1: Introduction 

1.1 The Drilling Process and Drillstring Design  

 Oil and gas hydrocarbons are found in organic rich (source) rocks buried deep 

beneath the surface of the earth, at both onshore and offshore locations. Organic matter in 

these source rocks has been compacted over millions of years and exposed to high 

temperatures and pressures, causing thermogenic breakdown and creation of oil and gas. 

After formation, the oil and gas may migrate upwards through permeable rock until it 

reaches an impermeable seal and collects to form a conventional reservoir. Or, it may 

remain in place in the source rock to form an unconventional reservoir (Figure 1.1). 

Hydrocarbon reservoirs ar e typically found at true vertical depths (TVD) of 2,000 to 

20,000ft. Reservoirs at extreme depths, nearly 30,000ft, are possible in the Gulf of Mexico. 

 

Figure 1.1 Conventional and unconventional reservoirs, vertical and deviated 

wells (xtoenergy.com) 

 An unwavering demand for hydrocarbons in today’s economies has created a need 

to discover a means of producing them more efficiently and from new sources. To access 

these resources, wells are drilled to penetrate the reservoirs and provide a flow path to the 

surface. Expansive research and technological evolution has made it possible to drill 
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complex ERD (extended-reach drilling) wells and produce hydrocarbons that were once 

unreachable. These wells often require extensive measured depths (MD), including a 

significant length of deviated or horizontal section, to maximize exposure to the reservoir 

layer. The hole bending section and horizontal lateral can add up to 30,000 feet of MD to 

the TVD that must be drilled.  

A major concern in the construction of ERD wells is drilling torque and drag, which 

can be limiting factors in well design, drilling, and completion. Drilling torque and drag 

are the moment and pulling force, respectively, required to overcome friction as the pipe is 

rotated and pulled or lowered through the hole. High forces can be caused by poor, tight-

hole conditions, wellbore tortuosity, sloughing shale, key seats, differential sticking, 

cuttings build-up, and sliding wellbore friction. In long, horizontal wells – with the 

assumption of acceptable hole conditions – sliding friction is of greatest concern and is the 

only drag effect considered in this study. 

Drilling is conducted with a drill bit that is connected to a length of steel drillstring 

and hoisted by a drilling rig on the surface. A drillstring consists of two parts: (1) the 

drillpipe and (2) the bottom-hole assembly (BHA). Most of the drill string is drillpipe of 

uniform diameter which connects the BHA to surface. The BHA may include a variety of 

specialty pipe and tools that will differ in length, weight, and diameter. For example, heavy 

weight drill pipe, drill collars, measurement while drilling (MWD) tools, logging while 

drilling (LWD) tools, down hole motors, steering tools, and plenty more. The drillstring is 

rotated by the rig’s topdrive and transmits the rock cutting force from surface to the bit. 

The drillstring can be miles long, and the drilled borehole is often tortuous.  

 To improve drilling efficiency, it is crucial to understand the dynamics of the 

moving drillstring and the forces that act upon it. We must also understand the drilling 

control parameters and their limits, including surface rotational speed, rotary torque, axial 

loading of the string, and mud flow rate. Then, we can create models to help understand 

and predict the behavior of the drillstring as certain conditions are encountered. An 

important modeling application, among many, is determining the amount of applied surface 

weight and torque that is lost to friction, and the resulting hook load.  
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This paper will explore the effects of torque and drag forces experienced in well 

construction and demonstrate how novel isogeometric analysis models, in comparison to 

traditional finite element models, can run faster, more efficient simulations and give 

improved insight to better selection of surface control inputs for improved drilling 

operations.     

1.2 Torque and Drag Analysis      

1.2.1 Application 

Torque and drag analysis has become an essential practice in drilling directional 

wells. It is important to have an accurate idea of the torque and drag forces that will be 

encountered in multiple phases of well construction: (1) planning, (2) drilling, and (3) 

completion / post-drilling.  

(1) During the well design phase, a planned well trajectory should be analyzed to 

determine if the drillstring and equipment intended for use will be sufficient to overcome 

torque and drag forces. Analysis can aid optimization of the drillstring, bottom-hole 

assembly, and well path. Planned trajectory data is smooth and will not be representative 

of the real well survey data, which will be tortuous, so it is important to account for this 

error when considering analysis. Despite this, models are still useful in determining if a 

well will be within reasonable and safe limits of torque and drag to drill.  

(2) As the well is being drilled, torque and drag models can be used to analyze 

forces in the well. A model can help to predict and prevent drilling problems with hole 

cleaning, and in severe dog leg sections, before they are encountered (Aadnoy, B.S. et al., 

2010). Simulation is also a preferred method for monitoring weight-on-bit (WOB) and 

torque-on-bit (TOB) transmission from surface to the bit because downhole measuring 

tools are expensive.  

 (3) After the well has been drilled, torque and drag models can be used for 

completions operations, such as running casing or coiled tubing. Analysis using the 

complete, real drilling data can give a better estimate of the real friction factors, which will 

aid in better modeling and predictions in the next well planned for drilling.  
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1.2.2 Modeling Approach 

There are two primary modeling methods applied to drillstring analysis, and 

subcategories of each: 

1. Analytical Method 

• Soft-String Model 

• Stiff-String Model 

2. Finite Element Analysis Method  

• Traditional Finite Element Analysis (FEA) 

• Isogeometric Analysis (IGA) 

1. First, analytical methods (detailed in Chapter 3) involve solving an entire system 

in one operation. Current drillstring analysis uses either a soft-string or stiff-string 

modeling approach.  

In brief, a soft-string model assumes the drillstring to be like a long, loose cable 

that is in constant contact with the wellbore well. The drillstring is considered to be made 

of many connected segments for which friction calculations are made and summed from 

bottom to surface. The soft-string model is notorious for underestimating torque and drag, 

overestimating the friction coefficient, and not properly estimating side contact forces (stiff 

model patent).  

On the other hand, a stiff-string model assumes pointwise contact with the wellbore 

and calculates the resulting bending stresses that the soft-string model neglects. It is 

considered the superior, more realistic analytical model, but the calculation is complex and 

time intensive. 

2. Second, the finite element method (detailed in Chapter 4) is a numerical 

approach to solving engineering problems that is computer-based and well suited for 

computational automation. It is applicable to problems with complex geometries and 

loadings in which the analytical solution is not easily obtained. Thus, it is a preferred 
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method for analysis of contact, torque and drag forces in long, tortuous wellbores. In 

addition, the finite element approach considers realistic drillstring stiffness and other 

drilling complexities, and pointwise contact forces and bending stresses can be calculated. 

This is not easily possible with analytical methods.  

Finite element analysis divides a system into smaller elements joined at nodal 

points (degrees of freedom) that constitute an approximate mesh geometry and 

corresponding solution space. A finite element mesh is approximated from an exact 

geometrical model constructed with Computer Aided Design (CAD) technology. 

Equations are defined and solved over each element, and combined to obtain an entire 

system solution. The choice of element shape and equation, which affects the resulting 

solution, varies. Traditional finite elements is based on interpolatory polynomials and 

employs the isoparametric concept, meaning that the solution space for dependent 

variables is represented in terms of the same functions which represent the geometry.  

  

1.2.3 Current Modeling Challenges  

Due to the complexity of analysis for a full-length wellbore, the finite element 

approach is preferred to analytical methods for drillstring torque and drag models in the 

field. There is, however, need to improve efficiency, accuracy, and automation of FEA 

models. Improvement is needed in the areas of (1) analysis / mesh generation time, (2) 

geometrical exactness, (3) mesh refinement, and (4) computational requirement.  

(1) First, a major issue of the traditional polynomial-based FEA approach is the 

construction of finite element geometry (the mesh). Mesh generation is very expensive and 

time consuming, taking nearly 80% of overall analysis time in automotive, aerospace, and 

ship building industries, for example (Hughes Paper). After the initial mesh is created for 

analysis, any later changes made to the design will only be possible if a new mesh can be 

created in the available time span.  

(2) Second, geometrical representations of FEA models are not exact 

representations of the exact CAD. This can create inaccuracies in solution. It is crucial to 
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acknowledge that the FEA solution is approximated and is only as accurate as the 

geometrical element mesh. 

(3) Third, to increase accuracy and geometrical exactness, the FEA mesh can be 

more coarsely discretized, or refined; but, each iteration of refinement requires interaction 

with the original CAD. This is a hurdle to automating the modeling process. Further, the 

original CAD may not be available, making refinement impossible altogether.  

(4) As the FEA mesh is refined and discretized into smaller elements, there are 

more nodal points. In other words, there are more degrees of freedom that must be solved 

for, which increases the computational power required. Again, this costs more time. 

Work has been done to create models that have inputs for drilling control 

parameters and can be used for comparison to real drilling data. If the real data does not 

desirably match the model prediction, this is an indication that real parameters may need 

adjustment to achieve optimized or predicted performance (the model output). This is an 

important aspect of the work towards drilling automation. Ideally, we would like to develop 

a model that is able to, in real-time, quickly and efficiently calculate expected torque and 

drag under specified conditions.  

Because finite element analysis is computationally and time intensive, actual real-

time models are not entirely feasible. It is feasible, however, to update a model with real-

time well survey and drilling data as it is obtained, and then update predictions of torque, 

drag, WOB, TOB, etc., as quickly as a simulation can run. If the real measurements of 

these quantities differ significantly from predicted values, this indicates potential downhole 

problems (i.e. tight-hole or poor cleaning conditions) and operational changes may be 

required. Clearly, a model simulation must output results fast enough for problems to be 

recognized, and changes implemented, within the opportune time frame of the operation. 

With sophisticated finite element analysis, it has become possible to analyze 

models that account for complexities of real drilling, but such detailed mesh formulations, 

refinement, and calculation requires an extensive amount of time, as well as human 

interaction with the system.  
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These challenges present a clear case to replace traditional FEA with an analysis 

technique that is more CAD-like (Hughes et al., 2009). It will be shown in the research of 

this thesis that the isogeometric approach to finite element analysis improves calculation 

efficiency, accuracy, and provides many new advantages to the endeavor towards 

automation.  

1.3 Isogeometric Analysis  

Isogeometric analysis is the concept of performing engineering analysis on exact 

CAD geometrical models, and it is built upon existing ideas and isoparametric concept of  

finite element analysis (FEA). Traditional FEA imposes its chosen basis for the solution 

space (i.e. interpolatory polynomials) onto the description of a known geometry, creating 

the approximate geometry mesh. Oppositely, IGA chooses a basis capable of representing 

the exact geometry (i.e. NURBS, Non-Uniform Rational B-Splines) and imposes this basis 

on the solution space (Figure 1.2). 

 

 

 

Figure 1.2 IGA reverses the “isoparametric arrow” (Hughes et al., 2009) 

 

      

Figure 1.3 Exact geometry (center), FEA mesh (left), and IGA mesh (right)  
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NURBS are the same functions used to construct CAD geometries, and they can 

exactly represent certain geometries, such as conic shapes, with very few control points 

(degrees of freedom). In addition, model refinement is significantly easier because 

communication with the original CAD is not required, and geometrical exactness is always 

maintained. Contrarily, an FEA mesh requires many nodal degrees of freedom, and 

multiple refinements, to approach the exact geometrical shape; yet, it will never be truly 

exact. These concepts are demonstrated by Figures 1.3 and 1.4, which show that the IGA 

exact geometry has many less DOFs (yellow control points) than the FEA approximate 

geometry (points of element intersection). 

 

 

Figure 1.4 FEA mesh (bottom) requires many nodal points to approach exactness given 

by IGA mesh (top). 

 

By using NURBS as the basis of analysis in IGA, analysis can be performed directly 

on CAD surfaces, eliminating the need for costly generation of an approximate finite 

element geometry (or mesh). This saves an enormous amount of meshing time and cost, 

and makes the overall analysis process significantly faster. The development of IGA is 

heralded as the missing link between FEA and CAD that will enhance analysis capabilities 

and allow for more automated and efficient models. 
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Figure 1.5 Sliding contact modeled with (a) finite element analysis and (b) 

isogeometric analysis. 

Figure 1.5 illustrates how the geometrical inexactness of faceted polynomial finite 

elements can create problems in sliding contact models. NURBS geometries of 

isogeometric analysis can avoid this problem by exactly representing the smoothness of 

real bodies (Hughes et al., 2009).  

This study strives to highlight the significance of IGA to the drilling industry. 

Section 4.3 provides a discussion of the mathematical theory of IGA. Chapter 5 explains 

the software program, LS-DYNA, which is used for computational modeling and 

implementation of IGA. Chapter 6 develops a real well example to exhibit calculation in 

LS-DYNA of torque and drag using both IGA and FEA methods. The results are compared 

to calculations from an analytical soft-string model. The discussion will transition into an 

introduction of the possible future applications and work to be done for IGA.  
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Chapter 2: Torque and Drag Theory 

 Torque and drag forces are always present when the drillstring is moving and/or 

rotating in the wellbore. Drag is the cumulative force that is needed to raise or lower the 

pipe, and torque is the moment needed to rotate the pipe. For each, the amount of force 

required is generally proportional to the amount of friction that must be overcome to initiate 

pipe movement. Additionally, there is a strong correlation for high drag force with high 

torque.  

Some of the many factors that contribute to torque and drag include (Tveitdal, 2011):  

o Mud type 

o Hydrodynamic viscous forces 

o Formation properties 

o Wellbore instability, i.e. swelling shale, tight hole, sloughing hole 

o Poor hole cleaning and cuttings accumulation  

o Contact surface and roughness, i.e. pipe to casing or pipe to open hole) 

o Tortuosity of well path  

o Doglegs  

o Key seating, i.e. pockets that are worn by the drillstring into the formation wall on 

a bend 

o Differential sticking, i.e. higher pressure in the wellbore than in formation pores  

o BHA and pipe stiffness 

o Drillstring weight 
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2.1 Friction and Friction Factor 

This study will consider only the torque and drag effects from sliding (dynamic) 

friction that occurs when the drillstring is moving while in contact with the wellbore. The 

dimensionless friction factor (µ) is a function of the surface-to-surface interaction in the 

model and will vary depending on whether the drillstring is in contact with steel casing or 

the formation of the open hole. The friction factor is notably different than the “friction 

coefficient” in pure kinetic sliding friction (Tveitdal, 2011) and is accepted as a “fudge 

factor” that also lumps together other contributing factors to torque and drag forces. It is 

an unknown, estimated value typically ranging from 0.2 to 0.4, and several iterations may 

be necessary to arrive at an appropriate value.  

2.2 Drag  

 Drag force is primarily associated with deviated and tortuous wellbores, where the 

drillstring rests on the side of the wellbore (Figure 2.1). In vertical wells, where there is 

assumed to be minimal or no contact with the wellbore, drag is neglected. Drag is a function 

of normal force (N), friction factor (µ ), and deviation angle (j).  

 

Figure 2.1 Drag in a deviated wellbore.  

 



	
	
	

12	

2.3 Torque 

Torque is the moment force required to rotate the pipe and overcome friction in the 

rotational direction (Figure 2.2). The torque applied downhole at the bit is less than that 

applied at the surface because of torque loss to friction. Similar to drag, torque is associated 

with deviated and horizontal wellbores, and there is also assumed to be zero torque loss, 

except for a small amount lost to viscous mud forces, in perfectly vertical wells. Torque is 

a function of the coefficient of friction (µ), normal force (N), and the radius of rotation.  

 

 

Figure 2.2 Torque in a deviated wellbore. 

 

2.4 Resultant Force 

 Knowledge of the resultant force will be important for interpreting simulation 

output files, discussed later. The resultant force is the sum of all forces with various 

magnitude and direction acting on an object. This single force has the same effect on the 

object as all the individual forces acting together.   
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2.5 Buoyancy Factor  

 Buoyancy is the upward force exerted by a fluid that opposes the weight of an 

immersed object. The buoyancy factor is used to compensate for loss of drillstring weight 

due to immersion in drilling fluid, and it is calculated as follows: 

𝐵𝐹 =
(65.5	[ppg] −	𝜌<=>	[ppg])

65.5	[ppg] 	 

Where  65.5 ppg is the density of steel.  
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Chapter 3: Analytical Modeling Methods 

This chapter gives a condensed overview of the theory behind two analytical 

drillstring models: soft-string and stiff-string. Because the focus of this study is 

computational modeling, the intimate mathematical details are kept brief. For a full 

discussion of the mathematics and analytical theory, the reader is encouraged to further 

review the cited papers and previous works.   

3.1 The Soft-String Model 

The soft-string drillstring model was introduced in 1983 by Johancsik et al. to 

predict torque and drag in directional wells. The drillstring is assumed to be in constant 

contact with the wellbore, and radial clearance between the drillstring and borehole is 

neglected, as in Figure 3.1 It ignores the bending stresses that are realistically caused by 

pointwise wellbore contact, which generally leads to an underestimation of torque and 

drag, especially in the stiff BHA section and in tortuous or deviated hole sections.  

  

Figure 3.1 Soft-string model solution (DrillScan, 2013) 

Johancsik’s soft-string model assumes torque and drag to be only caused by sliding 

friction, which is calculated by multiplying the sidewall contact force by a friction factor. 

The normal sidewall contact force between the pipe and hole depends on gravity and 

tension acting through curvature of the wellbore.    

The model divides the drillstring into many short, joined segments that transmit 

tension, compression and torsion. Beginning at the bottom of the string, where tension is 

assume to be zero when tripping in and out, the friction equation is applied to each finite 
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section and summed towards the top of the drillstring. Each individual section contributes 

an increment of torque, weight, and axial drag. The maximum tension is felt at the top ofthe 

drillstring – at the surface.  

The soft-string model solutions referenced in this study are based on the adaptation 

of Johancsik’s original model by Bernt S. Aadnoy.   

 

3.2 The Stiff-String Model  

 The stiff-string theory has been sought after by many who attempt to create a torque 

and drag model that accounts for bending stiffness of the drillstring, pointwise contact with 

the wellbore, and radial clearance. A stiff-string model is highly preferred for tortuous and 

deviated wellbore trajectories. It is also useful for when the drillstring is in compression 

and there is a risk of buckling because it can help to identify points of drillstring-wellbore 

contact, as in Figure 3.2 There are many approaches and theories for stiff-string modeling. 

 

Figure 3.2 Stiff-string model solution (DrillScan, 2013) 

In 1990, Hwa-shan Ho developed the stiff-string model for better analysis at the 

collar and BHA portions of the drillstring. The stiff-string model more appropriately 

considers stiffness of the drillstring, bending stresses, and can calculate pointwise contact 

locations and forces. The drawback, however, is that the science of the stiff-string model 

algorithm is much more complex, and computation time is great. Time is generally an issue 

with any analytical computation (DrillScan, 2013). Due to the complexities of stiff-string 

analytical calculations, the remainder of this study will only consider the analytical 

solutions of the soft-string model.  
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Chapter 4: Finite Element Modeling Methods (FEA and IGA) 

4.1 Finite Element Analysis  

Analysis is the heart of engineering design. It involves breaking down a system, 

object, or problem in order to understand the essential features and elements, and their 

relationships to each other. Finite element analysis (FEA) is a standard numerical method 

for solving engineering problems whose analytical solutions require complex boundary 

value problems for partial differential equations. FEA formulation of the problem gives a 

system of algebraic equations that yield approximate values of the unknowns at discrete 

nodal points over the domain, which has been subdivided into smaller finite elements.   

FEA was first developed in the 1950s and 1960s and is a method for obtaining 

approximate solutions to boundary value problems that are governed by partial differential 

equations (Hughes et al., 2009). The finite element method divides the domain of a physical 

problem into a mesh of smaller sections for which analysis can be performed to determine 

a number of outcomes, for example, deformations, internal stresses/strains, temperature 

and heat transfer, or fluid flows. Interpolation of the local element analyses provides a 

global solution to the entire physical problem. It is important to remember that the obtained 

solutions to these problems are approximate, and not exact, due to the inexactness of the 

geometry caused by the element discretization.  

 The finite element mesh used in analysis is created through discretization of a CAD 

geometrical model, which is considered the exact geometry. The discretization elements 

are non-overlapping, simple shapes such as triangles, quadrilaterals, tetrahedra, etc. 

connected at nodal points, or the dependent degrees of freedom (DOF) at which the set of 

equations is solved. The equations approximate the governing equation of interest via a set 

of polynomial functions, also called basis functions, defined over each element (Comsol). 

Piecewise Lagrangian or Hermite functions are common choices for the FEA basis. The 

concept of using the same basis for approximation of geometry and analysis in the solution 

space is the “isoparametric concept” and is quite standard in classical FEA.  
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4.1.1 FEA Mesh Refinement Techniques  

 There are two notable methods of mesh refinement for finite element analysis: (1) 

decrease of mesh element size: h-refinement, and (2) increase of element order: p-

refinement.  

(1) h-refinement: Reducing the size of the elements is intuitively simple and can be 

done with a FEA meshing software. The downside, however, it takes the software an 

extensive amount of time to re-mesh the shape and create more, smaller elements. In 

addition, extensive human interaction with the software is required, as the original CAD 

file must be revisited, and the entire process is essentially restarted from the beginning. 

There are cases when the original CAD file for the model is not even available to access 

and there is no opportunity to refine the element mesh at all.   

(2) p-refinement: Increasing the order of the element polynomial used in analysis 

does not require any alteration of the mesh in use. This method is equally disadvantageous, 

however, because it rapidly increases the computational expense of the analysis.  

4.1.2 Convergence 

 Each time the mesh is refined, the solution at a point can be compared to that of the 

previous trial. After a number of mesh refinements, the solution will cease to show 

significant change, and the model can be considered converged. Of course, the user should 

be aware that a converged solution is not necessarily a correct solution. The use of a model 

is only as good as the certainty of model assumptions and inputs.  

4.1.3 FEA Summary   

 For a more detailed review of the finite element method, one should explore the 

cited references. It is most important for the purpose of this study to understand the 

following list of FEA fundamentals. 

Key Ideas of FEA:  

• Approximate FEA mesh geometry used for analysis is generated from exact CAD 

geometry 
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• Mesh generation takes the majority of analysis time, a major bottleneck in the 

analysis process 

• Mesh refinement requires interaction with the exact CAD geometry and extensive 

human effort  

• Interpolation of basis functions finds approximate solution at element nodes   

4.2 Isogeometric Analysis  

4.2.1 Isogeometric Analysis: Integration of CAD and FEA  

We begin with a brief history and intent of IGA development, and relate the 

significance of its abilities to drilling research. It is shown that the IGA approach can 

increase accuracy, save time and cost, reduce human effort, and be a more efficient, 

automated method for modeling torque and drag. Future work may demonstrate that IGA 

is also efficient in analyzing drillstring dynamics.  

Computer-aided design (CAD) models and finite element analysis (FEA) consider 

the same engineering designs and objects, yet they have entirely independent backgrounds. 

They each adopt the isoparametric concept, but they also each represent objects with 

different geometrical constructs (Hughes et al., 2009). The pioneer of isogeometric 

analysis, Tom Hughes, believed that it would be possible to defeat this barrier by finding a 

single geometrical description for analysis. In other words, he thought that it might be 

possible to perform analysis directly on the exact geometric framework of CAD 

technologies, removing the need for generation and use of an approximate finite element 

geometry.  

Hughes strived to find a method which could maintain geometric exactness 

however coarse the discretization (hence, the term “isogeometric”) and eliminate need for 

communication with CAD geometry once an initial mesh has been constructed. This is 

achieved by making several changes to classical finite element analysis, particularly to the 

basis functions. The choice of basis function used in IGA can vary, but NURBS (Non-

Uniform Rational B-Splines) are selected because they are the same basis of CAD. Table 

4.1 gives a comparison of several features inherent to traditional FEA and IGA. 
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FEA Both IGA 

Nodal points  Control points 

Nodal variables  Control variables 

Mesh  Knots 

Elements  Patches 

Basis interpolates nodal 

points and variables 

 Basis does NOT interpolate 

control points and variables 

Approximate geometry  Exact geometry 

 Compact support  

 Partition of unity  

 Isoparametric concept  

Table 4.1 Comparison of FEA and IGA Features (Hughes et al., 2009). 

Again, because this study utilizes computational implementation of IGA methods, 

a complete understanding of mathematical theory is not necessary, but a condensed 

overview is highly useful. The following sections will explain the fundamentals and brief 

mathematics of the basis functions used in isogeometric analysis, progressing from B-

splines to NURBS, and highlight the benefits they provide for better integration of CAD 

and FEA. For an in-depth discussion of mathematics and numerical methods with NURBS, 

please reference the complete work of Hughes and his colleges: “Isogeometric Analysis: 

Toward Integration of CAD and FEA.” The following summary of IGA mathematics and 

included figures are borrowed from his quality works. 

4.2.2 B-Splines 

NURBS are built from B-splines (“basis-splines”). A “spline” in mathematics is a 

piecewise polynomial parametric curve. Any spline function of a certain degree can be 

represented by a linear combination of B-splines of that same degree. Figure 4.1 

illustrates an example B-spline curve in ℝ/ built from quadratic basis functions.  
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Figure 4.1 Example B-spline cure (Hughes et al., 2009) 

 

4.2.3 Knot Vectors 

 B-spline parametric space is local to patches, rather than elements as in FEA. 

Patches can be considered subdomains that are comprised of many “elements”, referred to 

in IGA as “knot spans.” Knot spans are defined by a knot vector that in one-dimension is a 

set of non-deceasing coordinates that partition the parameter space and are given as: 

Ξ = {𝜉A, 𝜉/,… , 𝜉BCDCA} 

Where 

 𝜉E ∈ 	ℝ is the ith knot 

 i  is the knot index, i = 1, 2, . . . , n+p+1 

p is the polynomial order  

(note: p = 0, 1, 2, 3, etc. refers respectively to constant, linear, quadratic, 

cubic, etc., piecewise polynomials) 

n is the number of basis functions (and corresponding control points) used to 

construct the B-spline curve 

k = n + p + 1 is the number of knots  
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 A knot vector is uniform if the knots are equally-spaced, or non-uniform if 

unequally spaced in the parameter space. Knots may be repeated, and the multiplicities of 

knot values have meaning for the properties of the basis. Lastly, a knot vector is open 

(standard in CAD) if its first and last knots appear p+1 times. Basis functions formed from 

open knot vectors in one-dimension are interpolatory at the ends of the parametric space 

interval, [𝜉A, 𝜉BCDCA], and at the corners of patches in multiple dimensions; but, they are 

not interpolatory at interior knots.  

4.2.4 B-Spline Basis Functions 

Definitions 

For piecewise constants (p = 0), the B-spline basis functions are defined recursively as: 

𝑁E,H(𝜉) = 		 I
				1					if	𝜉E ≤ 	𝜉 < 𝜉ECA
0	otherwise										

                         (1) 

For greater degrees p = 1, 2, 3, . . . , they are defined by the Cox-de Boor recursion formula 

(Cox, 1971; de Boor, 1972): 

𝑁E,D(𝜉) = 		
UVUW

UWXY	VUW
𝑁E,DVA(𝜉) +	

UWXYX[	VU
UWXYX[	VUWX[

𝑁ECA,DVA(𝜉)  (2)  

 

Figure 4.2 is a visual example of applying equations (1) and (2) to a uniform knot 

vector. For p = 0 and 1, the basis functions are exactly the same as those for FEA. There is 

a difference, however, for p ≥ 2. Reiterated in Figure 4.3, p ≥ 2 B-spline basis functions 

are identical and shifted (“homogenous”), unlike the FEA functions, which differ at 

internal and end nodes (“heterogeneous”). This is an advantage of B-splines over FEA 

functions in equation solving as the order is increased. 
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Figure 4.2 Basis functions of order 0, 1, and 2 for uniform knot vector 	

Ξ = {0, 1, 2, 3, 4,… }. 

 

 

Figure 4.3 FEA and B-spline functions bandwidth comparison. For both, function in 

black has overlapping support with each function in red, and with itself. 
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Knot Multiplicity  

Figure 4.4 is an example of quadratic basis functions for an open, non-uniform knot vector. 

It can be seen that the functions are interpolatory at the ends of the interval and at repeated 

knot 𝜉= 4 where continuity is 𝐶H. Functions are 𝐶Aelsewhere.  

 

Figure 4.4 Quadratic basis functions for open, non-uniform knot vector           

  Ξ = {0, 0, 0, 1, 2, 3, 4, 4, 5, 5, 5}. 

Generally, basis functions of order p have p – 1 continuous derivatives. If a knot is repeated 

m times, the number of continuous derivatives is decreased by m. If the multiplicity m is 

equal to p, the basis function is interpolatory.   

Important Properties of B-Splines  

1. They constitute a partition of unity, 

^𝑁E,D(𝜉) = 1	,
B	

E_A

	∀𝜉	. 

2. Each  𝑝bc  order function has p - 𝑚E  continuous derivatives across element 

boundaries (i.e. across the knots 𝜉E) 

Note: 𝑚E is the multiplicity of the value of 𝜉E in the knot vector.  

If  𝑚E = p,  basis is interpolatory at that knot.  

If  𝑚E = p + 1, basis is discontinuous and patch boundary is formed. 

3. Each basis function is non-negative, meaning that 𝑁E,D(𝜉) ≥ 0, ∀		𝜉. 

Thus, all the coefficients of a mass matrix computed from a basis are ≥ 0. 

4. Support of 𝑁E,D is compact and contained in [𝜉E , 𝜉ECDCA], 
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4.2.5 B-Spline Curves 

Definitions 

In a certain ℝ>  (dimension space), B-spline curves are constructed from a linear 

combination of B-spline basis functions. Control points, the coefficients of the basis 

functions are similar to nodal coordinates in FEA. The control polygon is created through 

piecewise linear interpolation of the control points.  

The piecewise-polynomial B-spline curve is given as: 

𝐂(𝜉) =^𝑁E,D(𝜉)𝐁E

B	

E_A

 

Where 

 𝑁E,D  are n basis functions (i = 1, 2, . . . , n) of order p 

 𝐁E are control points ∈ ℝ> (i = 1, 2, . . . , n) 

 

Important Properties of B-Spline Curves  

1. B-spline curves have continuous derivatives of order p – 1 in the absence of 

repeated knots or control points.  

2. Repeating a knot or control point by multiplicity m decreases the number of 

continuous derivatives by k. 

3. The property of affine covariance, meaning that an affine transformation of a B-

spline curve is obtained by applying the transformation to the control points.  

4. The shape of a B-spline curve can be intuitively changed by adjusting the control 

points, which is also possible with NURBS (Hughes et al., 2009).  
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4.2.6 B-Spline Surfaces 

Definitions  

B-spline surfaces are similar to B-spline curves, but instead use a control net {𝐁E,g}, 

i = 1, 2, . . . , n, j = 1, 2, . . . , m, and knot vectors Ξ = {𝜉A, 𝜉/,… , 𝜉BCDCA} and ℋ =

{𝜂A, 𝜂/, … , 𝜂<CjCA}. The B-spline surface is a tensor product defined as: 

𝐒(𝜉, 𝜂) = ^^𝑁E,D(𝜉)𝑀g,j(𝜂)𝐁E,g,

<	

g_A

B

E_A

 

where 𝑁E,D and 𝑀g,j  are the basis functions of B-spline curves. 

 

4.2.7 NURBS: Rational B-Splines 

Now that we have an understanding of the non-rational B-splines, we can discuss 

the construction of Non-Uniform Rational B-Splines (NURBS).  

Definitions  

Projective transformations of B-spline entities in ℝ>CA  can be made to obtain 

geometric entities in ℝ>. Conic sections (i.e. circles and ellipses) can be built exactly from 

projective transformations of piecewise linear quadratic curves. For instance, a circle in ℝ/ 

can be constructed from a piecewise quadratic B-spline curve in ℝ0.  
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Figure 4.5 Construction of a circle in ℝ/ by projective transformation of a 

piecewise quadratic B-spline in ℝ0.  

As shown in Figure 4.5, the B-spline curve, 𝐂𝒘(𝜉), is the “projective curve” with 

“projective control points”, 𝐁En, and the NURBS curve 𝐂(𝜉) has “control points” 𝐁𝒊. The 

projective transformation is made by dividing the projective control points by the weights, 

𝑤E, which are the z-components of 𝐵En. 

Control points for the NURBS curve are obtained by the following: 

(𝐁E)g =
q𝐁W

rst
nW

	               j = 1, . . . , d 

𝑤E = (𝐁En)>CA 

 

where (𝐁E)g  is the 𝑗bc  component of the vector 𝐁E  and 𝑤E  is the 𝑖bc   weight. The weight 

values are generally positive and are the d + 1 components of projective control points in 

ℝ>CA.  

The weighting function applies the same transformation to every point in the curve:  
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𝑊(𝜉) = 	^𝑁E,D(𝜉)𝑤E

B	

E_A

 

 

The NURBS curve is then defined as: 

(𝐂(𝜉))g =
(𝐂r(U))t
x(U)

     j = 1, . . . , d. 

The NURBS rational basis function is given as:  

  

𝑅E
D(𝜉) = 	zW,Y(U)nW

x(U)
= zW,Y(U)nW

∑ z|̂,Y(U)n|̂~
|̂�[

. 

 

Combing the above with the definition of the control points gives the equation for the 

NURBS curve, which has a form identical to that of B-spline curves: 

𝐂(ξ) = 	^𝑅E
D(𝜉)𝐁E

B

E_A

 

The NURBS surface is then: 

𝑅E,g
D,j(𝜉, 𝜂) = zW,Y(U)�t,�(�)nW

∑ ∑ z|̂,Y(U)���,�(�)n|̂,���
���[

~
|̂�[

.  

 

Important Properties of NURBS  

1. The NURBS basis functions form a partition of unity. 

2. The continuity and support of NURBS basis functions are the same as for B-splines. 

3. NURBS also possess the property of affine covariance, similar to B-splines.  
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4.2.8 IGA Refinement Techniques  

 The three refinement techniques used in IGA are (1) knot insertion, (2) order 

elevation, and (3) k-refinement.  

(1) Knot insertion is a subdivision strategy analogous to h-refinement in FEA. The 

advantage of IGA knot insertion is that a curve is always geometrically and 

parametrically maintained. Knot values can be repeated if already present in the 

knot vector, but no more than p times, and continuity of the basis will be reduced 

as described in Section 4.3.4.  

Given a knot vector  Ξ = {𝜉A, 𝜉/, … , 𝜉BCDCA} and new knot 𝜉̅ ∈ [𝜉�, 𝜉�CA], new n + 

1 basis functions are generated using recursive equations (1) and (2) and new knot 

vector Ξ = �𝜉A, 𝜉/, . . . , 𝜉�	,𝜉̅	, 𝜉�CA, . . . , 𝜉BCDCA�.  

Figure 4.6 shows a simple example of knot insertion, with original knot vector Ξ =

{0, 0, 0, 1, 1, 1}. A new knot is inserted at 𝜉̅ = 0.5. Clearly, the refined curve is 

geometrically and parametrically identical to the original, but the basis functions 

and control points have changed. Repeating this process will add more basis 

functions of the same order and leave the original curve unchanged.  
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Figure 4.6 Example of knot insertion IGA refinement 

(2) Order elevation is analogous to p-refinement in FEA. The polynomial order of the 

basis functions can be increased while again maintaining the geometry and 

parameterization of the original curve. Each knot value in Ξ must be repeated to 

preserve discontinuities in the 𝑝bc  derivative of the elevated curve. The 

multiplicities of existing knots determines the number of new control points. The 

mathematical details of this process are extensive, and one is encouraged to review 

the work of Piegl and Tiller (21 in paper).  

Figure 4.7 shows an example of order elevation, beginning with the same curve and 

basis functions in the example of knot insertion. Here, multiplicity of the knots is 

increased by one, and the numbers of control points and basis functions also 

increases by one. Notice again that the refined curve is geometrically and 

parametrically identical to the original.  
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Figure 4.7 Example of order elevation IGA refinement  

(3) There is no FEA analogue for k-refinement, which arises from the fact that  

processes of knot insertion and order elevation do not commute. As previously 

stated, a new knot value 𝜉̅ may be inserted into an existing knot vector for a p 

order curve, and the number of continuous derivatives of the basis functions at 𝜉̅ 

is p – 1. Then, if the order is elevated to q, the multiplicity of every distinct knot 

value in the new knot vector is increased so that discontinuities in the pth 

derivative of the basis are preserved (i.e. basis still has p – 1 continuous 

derivatives at 𝜉̅.  

Instead, if the order of the original curve was first elevated to q, and a unique 

know value was then inserted, the basis would have q – 1 continuous derivatives 

at 𝜉̅. This process is k-refinement.  
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4.2.9 Analysis with NURBS  

 In his work, Hughes delivers a comprehensive list of the concepts and features that 

enable NURBS to serve as a base for analysis: 

1. A mesh for a NURBS patch is defined by the product of knot vectors. 

2. Knot spans subdivide the domain into “elements”. 

3. The support of each basis function consists of a small number of “elements”. 

4. The control points associated with the basis functions define the geometry.  

5. The isoparametric concept is invoked, that is, the fields in question (e.g. 

displacement, velocity, temperature, etc.) are represented in terms of the same basis 

functions as the geometry. The coefficients of the basis functions are the degrees-

of-freedom, or control variables. 

6. Mesh refinement strategies are developed from a combination of knot insertion and 

order elevation techniques. These enable analogues of classical h-refinement and 

p-refinement methods, as well as the new possibility of k-refinement.  

7. Dirichlet boundary conditions should be applied to the control variables. 

Homogenous Dirichlet conditions result in exact, pointwise satisfaction. For the 

case of inhomogeneous Dirichlet boundary conditions, the boundary values must 

be approximated by functions lying within the NURBS space.  

 

4.2.10 IGA Summary  

This concludes the discussion of background mathematics for isogeometric analysis, 

and we proceed next to discuss the computational employment of IGA for experiments 

with drillstring analysis.  

Key Ideas of IGA: 

• Exact CAD geometry used as analysis solution space 

• No need to spend time generating FEA mesh from CAD geometry  

• Use of exact CAD solution space increases accuracy of solution  
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• Refinement is simply effective and does not require interaction with original CAD 

geometry model or extensive human effort  

• Eliminating the mesh generation time bottleneck and need for redundant human 

oversight provides opportunity to automate the torque and drag modeling process  
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Chapter 5: LS-DYNA Simulation 

5.1 About LS-DYNA and LSPrePost Programs 

 To directly compare results of the traditional FEA and IGA methods, we employ 

the LS-DYNA general-purpose finite element program, developed by Livermore Software 

Technology Corporation (LSTC). LS-DYNA is unique in that it has been developed for 

use of isogeometric analysis. Therefore, the same physical problem can be built in LS-

DYNA and modeled with both FEA and IGA. This leads to a very straightforward 

comparison of the methods in simulation convergence, accuracy, and run time.  

In addition to monitoring result convergence, accuracy of the computational 

solution will be reference checked with the analytical model solution. Several adjustments, 

discussed later, are made to the LS-DYNA model to account for soft-string model 

assumptions and allow for better comparison of results.  

Hypothetically, the contact feature of LS-DYNA simulation, and inclusion of 

material part stiffness, will naturally account for the effects of bending stiffness, similar to 

a stiff-string model. This is why input adjustments are made to “trick” LS-DYNA into 

acting more like a soft-string model. Contact in LS-DYNA searches for penetrations, using 

any of a number of different assigned algorithms, of a defined “slave” part or node through 

a defined “master” part or segment. The resulting contact force and resultant forces of the 

drillstring are calculated.  

 LSPrePost is the pre/post-processing program for LS-DYNA. Its user interface is 

designed to be efficient and intuitive. In pre-processing, LSPrePost aids geometry creation, 

meshing, and model visualization. It provides an interactive, convenient way of creating 

the LS-DYNA keyword input file. In post-processing, LSPrePost can display output files, 

plots, and animated visual results. A screenshot example of the LSPrePost interface is 

provided for reference in Appendix A. 
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5.2 Modeling Workflow  

Prior to developing a torque and drag model, one should at least have knowledge of the 

following: 

- Drillstring / BHA specifications  

- Wellbore geometry / survey data  

- Set casing depths and diameters  

- Control parameters 

- Drilling operating parameters (i.e. tripping and rotating speeds)  

- A consistent units system 

5.2.1 Building CAD Geometry Models 

First, CAD geometry models must be created for all analysis components: the wellbore and 

drillstring.  

Wellbore Geometry 

• Construct 3D wellbore geometry model using a CAD software  

(Autodesk Inventor or LS-DYNA geometry creation tools were both used) 

o Import well survey data points, connect points to build a spline curve 

o Create a circle of desired wellbore radius at the top survey point, in a plane 

perpendicular to the z-axis (or axial direction of wellbore) 

o Use a “sweep” tool to sweep the circle along the spline curve and create a 

cylindrical 3D wellbore geometry  

• If casing has been installed in portions of the wellbore, multiple wellbore diameters 

may be used following the same “sweep” procedure along each hole portion 

• Save and export geometry as an IGES file  

Drillstring Geometry 

The drillstring geometry is more sophisticated and complex to construct. It will 

have a length of uniform diameter, regular drillpipe from the surface down to the BHA, 

which may be any combination of various length and diameter drill pipe, heavy weight 

drill pipe (HWDP), drill collars, various drilling tools, and a bit on bottom. Figure 5.1 is an 
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example BHA and bit CAD geometry model of the small-scale “nano-rig” created by UT 

Austin PGE.  

 

Figure 5.1 Example CAD model of UT Austin PGE nano-rig. 

 

5.2.2 Creating LS-DYNA Keyword Files  

The LS-DYNA simulation is run from a keyword file input, which organizes the 

database by grouping similar functions under the same “keyword” card. An example 

abbreviated keyword file is included in Appendix C. To begin, open a new LSPrePost 

window and save as a *.k file. The following steps describe the general procedure for using 

the LSPrePost interface to build a keyword input file. 

STEP 1: Import IGES (preferred) or STEP CAD geometry files 

STEP 2: Create and Refine Finite Elements  

 Here, choose whether to conduct a standard FEA or IGA simulation and continue 

with the following relevant procedure. 

FEA Standard Elements 

• To Create: There are several methods for creating standard FEA elements in LS-

DYNA. The simplest, used in this study, is the “Auto Mesher”. Choose a geometry 

object and use the dialogue box for the Auto Mesher feature to select mesh mode, 

mesh type, element size, tolerance, and other options. Once the mesh has been 

generated for the object, you may click to “accept,” or “reject” to retry with 

different mesh parameters.  
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• To Refine: The Auto Mesher has a mesh mode option to “remesh”, which can be 

used to create a new mesh of different element size. The *ELEMENT_ and 

*SECTION_ keyword cards can also be edited directly to change the polynomial 

order of the element. IMPORTANT: To create a new mesh, the original geometry 

IGES file must be re-imported. 

 

IGA Elements  

• To Create: To create IGA NURBS elements in LS-DYNA, select the “Create” 

option in the “NURBS Editor” window. Choose a geometry object, set tolerance 

and other preferences, and apply. You may “accept” the generated elements or 

“reject” to try again. 

 

• To Refine: Select the “Refine” option from the same NURBS editor window. Here, 

you can directly select the method and parameters of refinement (h-, p-, or k-

refinement). IMPORTANT: The original geometry IGES file is not needed for IGA 

mesh refinement.  

 

STEP 3:  Assign Part Materials and Properties  

Each geometry entity is assigned a “part” keyword identification once meshed. The 

part keyword is used to assign “section” and “material” keyword properties.  

• Section: Defines element formulation, integration rule, nodal thickness, cross 

sectional properties.  

o *SECTION_SHELL keyword is used to specify IGA element formulation  

(ELFORM = 201). Many different element formulations can be selected 

for FEA. Default is Belytschko-Tsay (ELFORM = 2). 

 

• Material: Defines the material properties.  

o *MAT_ELASTIC keyword (available for beam, shell, and solid LS-

DYNA elements) is used to model the steel material for the drillstring and 
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outer hole wall, assumed to be steel casing. Relevant variable inputs are 

mass density, Young’s modulus, and Poisson’s ratio. 

STEP 4: Define Solution Control and Output Parameters 

• Control: Used to change defaults and activate solution options, such as implicit 

solution. 

o *CONTROL_TERMINATION must be included to define termination time 

of the simulation job. 

o *CONTROL_IMPLICIT_AUTO, *CONTROL_IMPLICIT_GENERAL, 

and *CONTROL_IMPLICIT_SOLUTION are used to invoke and define 

parameters for an implicit simulation.  

 

• Database: Necessary to define output files containing results information. 

o *DATABASE_ASCII_option defines the following output files: 

§ GLSTAT: Global data. 

§ NCFORC: Nodal interface forces. 

§ NODFOR: Nodal force groups. 

§ NODOUT: Nodal point data. 

§ RCFORC: Resultant interface forces. 

§ SLEOUT: Sliding interface energy. 

o *DATABASE_BINARY_D3PLOT adds the part, material, section, and 

hourglass data to the first d3plot file, which is a database for the entire 

model that can be viewed in post-processing.  

o *DATABASE_BINARY_INTFOR is the contact interface database. It 

produces post-processing visuals of contact results.  

o *DATABASE_HISTORY_NODE_SET defines the set of nodes to be 

included in the output files. 
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STEP 5: Define Loads, Boundary Conditions, and Contact Parameters  

• Set Data: Defines groups of nodes, parts, elements, etc.  

o *SET_NODE_LIST allows user to define sets of nodes to which boundary 

conditions can be applied. 

 

• Define: This keyword provides a way to define boxes, coordinate systems, load 

curves, tables, and orientation vectors for use in the model. 

o *DEFINE_BOX can define a box-shaped volume that can be used for 

various specifications for a variety of inputs, such as velocities, contact etc.  

o *DEFINE_COORDINATE_SYSTEM can define a local coordinate 

system. 

o *DEFINE_CURVE defines a load curve (i.e. load versus time). 

o *DEFINE_VECTOR can define a vector that can be used to assign direction 

to a prescribed motion.  

 

• Boundary: Defines imposed motions on boundary nodes or sets of nodes.  

o *BOUNDARY_PRESCRIBED_MOTION_SET_BOX is used to prescribe 

motion to a part, node, or set of parts or nodes within a defined box volume.  

o *BOUNDARY_SPC is used to apply translational constraints to parts or 

nodes. 

 

• Contact: Defined by identifying (via parts, part sets, segment sets, and/or node sets) 

locations for potential penetration of a slave node through a master segment.  

o *CONTACT_AUTOMATIC_NODES_TO_SURFACE  

o *CONTACT_AUTOMATIC_ONE_WAY_SURFACE_TO_SURFACE 

defines surfaces of contact and contact parameters, such as friction factors. 

 

• Load (Gravity) 

o For FEA: *LOAD_GRAVITY_PART 

o For IGA: *LOAD_BODY_PARTS, *LOAD_BODY_Z 
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STEP 6: Run Simulation 

 When the keyword file has been completely and properly formatted, it can be input 

to run the LS-DYNA simulation. LS-DYNA can be invoked directly from LSPrePost with 

File à Run LS-DYNA. Results will be saved to the location specified in the pop-up 

window. The amount of time required to complete the simulation will depend on the 

problem’s level of refinement and corresponding number of degrees of freedom. If any 

errors are encountered in the keyword or model set-up, you will be informed in the run 

window and the job will be terminated.  

STEP 7: Post-Processing Results   

 When normal termination is reached for the simulation, two important output files 

can be opened for viewing in LSPrePost: the “d3plot” and “intfor”. These files show 

animated visuals of the model results and allow for plotting of various output data, i.e. 

stresses, strain, pressure, displacement, forces, etc. In the LSPrePost window for d3plot 

and intfor files, the user can also call other output files (i.e. “rcforc” and “nodout”) to view 

results data and create plots. These files can also be opened in a text editor and imported 

to Microsoft Excel for additional processing.  

 

5.3 Consistent Units  

 The LS-DYNA user is advised to maintain a consistent set of units when defining 

a model. There is no function in the program to automatically define a units system.  

MASS LENGTH TIME FORCE STRESS ENERGY DENSITY YOUNG's 
35MPH      

56.33KMPH 
GRAVITY 

Kg M s N Pa J 7.83e+03 2.07e+11 15.65 9.806 

Table 5.1 LS-DYNA consistent units 

  



	
	
	

40	

Chapter 6: Model Problem 

6.1 Problem Statement  

 In this chapter, the following theory and procedures are implemented to develop a 

real well example and prove the superiority of IGA over FEA in drilling industry models. 

This example will model the drag force, also referred to as frictional sliding energy, 

experienced by a drillstring of realistic length and diameter that is lowered into the build 

section of a deviated wellbore. The simulation will output the resultant force experienced 

by the drillstring, which is equivalent to the hook load felt by the surface equipment.  

In realistic practice, this type of model would be useful in every phase of well 

construction: 

1. Planning: Ensure that the drillstring and BHA equipment planned for use can 

overcome drag to drill, lower in, and pull out of the extended lateral section.  

2. Drilling: Monitor drag forces as drilling progress, with updated survey data, to 

determine if actual well conditions are similar to those predicted in the planning stage. 

If not, analyze to see if there is a problem or if operation parameters can be changed 

to improve drilling performance. Also, ensure ability to install casing.  

3. Completion: Ensure that any casing or completion tools, such as coiled tubing, can be 

run as far as necessary in a lateral section.   

Assumptions: Good hole conditions are assumed, and gravity is the only other load 

considered to act on the drillstring. Initially, the pipe is not rotated and torque is not 

considered. 

6.2 LS-DYNA Licensing and Computer Processing  

 The single computer used in this study is a Dell Latitude with Intel Core i7. There 

are several software products and licenses available to LS-DYNA users. For this study, 

LSTC provided a Node-Locked License, which permits the use of LS-DYNA on a single 

machine with use of up to 50,000 elements in simulation.  The limited element number and 
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use of a single computer processing unit (CPU) in the study leaves room for simulation 

improvement, discussed in the following.    

6.3 Well Survey Data 

Apache Well 2408 

Survey data from real, deviated wells (both planned and actual) was obtained from 

Apache Corporation. Apache is an oil and gas exploration and production company with 

operations in the U.S., Egypt, and the United Kingdom North Sea.  

This study focused on “Well 2408” (Figure 6.1) because it is a typical “build-and-

hold” well, meaning that it deviates steadily from 0 to 90 degrees and remains at 90 degrees 

for the entire lateral section. It is located in the Permian Basin of the United States. 

Comparison of the planned and actual survey data clearly shows that the real wellbore 

encounters significant tortuosity and deviates from the perfect route that is intended.  

   

Figure 6.1 Apache well 2408 planned (left) vs. actual (right) complete survey data. 

Apache Well 2408 

MD 15,202 ft 

TVD 9,738 ft 

Table 6.1 Apache well 2408 data.  
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The actual depths and diameters of set casing were altered to fit the purpose of this 

analysis, explained later, and are not representative of the real well. A uniform wellbore 

diameter of 10” (0.254 m radius) is used. 

Apache Well 2408 Build Section  

Clearly, it is desirable to study the results of a torque and drag analysis for an entire 

well; however, full well analysis is computationally intensive. The single CPU made 

accessible to this study was not ideally suited to handle such a complex computation 

(memory was limited and run time was excessive). Instead, a portion of the build section 

of the well, where torque and drag forces are most significant, was chosen for analysis. The 

results of a shorter well segment analysis are sufficient to demonstrate the difference and 

superiority of IGA to the FEA and analytical solutions.   

 

		 			

Figure 6.2 Apache well 2408 build section (two views) 
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Apache Well 2408 (Build Section)  

MD 8,845 – 9,478 ft 

TVD 8,845 – 9,444 ft  

Radius 0.254 m 

Table 6.2 Apache well 2408 data used for simulation.  

 

6.4 Drillstring Data 

 Apache also provided real drillstring and BHA data, including the lengths and 

properties of dill pipe, drill collars, and heavy-weight drill pipe used. Again, alterations we 

made to the drillstring input data in order for this study to clearly compare IGA and classic 

FEA computational analyses to the analytical analysis.  

Recall that the soft-string model assumes constant contact of the drillstring and 

wellbore wall. To emulate this assumption in LS-DYNA, a uniform diameter drillstring is 

used with intentionally decreased stiffness properties, as shown in Table 6.3.  

 

Steel Drillstring Properties 

Radius 0.2032 m  

Density 7,850 kg/m3 

Young’s Modulus 1 x 109  Pa 

Poisson’s Ratio 0.33 

Table 6.3 Drillstring inputs used in simulation 
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6.5 Other Parameter Inputs  

Listed below are other miscellaneous parameter inputs used to construct the drag model. 

• Friction Factor: 0.3 (Steel to steel surface) 

• Termination Time:  600 seconds 

• Tripping Speed (into hole): 0.3 m/s 

• Gravity Acceleration: 9.8 m/s2 
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Chapter 7: Results 

This chapter presents the details and results for each of 6 trial simulations run in 

LS-DYNA. Three trials of increased refinement (increased DOFs) were completed for both 

the FEA and IGA methods. Trials we completed over the build section of the well, 

described in Chapter 6. A segment of approximately 25m, which had the least output noise, 

was selected and used for best comparison of all trial results.  

Remember, the stiffness parameters in the LS-DYNA model were lessened to 

achieve a better comparison and representation of the assumptions made by the analytical 

soft-string model. Also remember that the soft-string analytical model itself is not 

necessary a real, exact solution, because all models are an approximation. Despite this, it 

is widely accepted by the industry as an accurate model for torque and drag calculation and 

is therefore accepted for use here as a reference solution for the results of IGA and FEA 

simulations.  

 

Figure 7.1 Soft-string analytical model results for entire Well 2408 (DeAngelo, 2017). 

 In LS-DYNA, results are output in the designated “rcforc” file, which gives data of 

the resultant force (in Newtons) versus time (in seconds), or pipe displacement (in meters). 

The resultant force is equivalent to the hook load force (drag force), which is the force 

needed to overcome all friction and gravity forces and move the pipe. To compare to the 

analytical results, the LS-DYNA output is converted to resultant force (in klbf) versus 

measured depth (in feet). See Appendix B for a sample plot of hook load (resultant force) 
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versus MD. The average hook load force was taken along the analyzed segment for both 

the analytical and LS-DYNA experimental results, and the apparent error was found as 

follows: 

Apparent Error  = (Experimental – Analytical)/Analytical 

Trial FEA 1 FEA 2 FEA 3 

# Elements 9706 12190 27082 

# Nodes 9718 12204 27103 

Memory required 6321K 9407K 11000K 

Run time 34743 sec 53656 sec 132127 sec 

Polynomial Degree 2 2 2 

Element size 0.3 0.2 0.1 

Error 0.16364 0.11576 .02032 

Table 7.1 FEA trial results  

 

Trial IGA 1 IGA 2 IGA 3 

# Elements 2 2 2 

# Nodes 1568 5068 8288 

Subdivision 3R, 200S 3R, 700S 3R, 300S 

Memory required 3831K 6579K 9307K 

Run time 8051 sec 12359 sec 15053 sec 

NURBS Degree 2 2 3 

Error 0.36384 0.19348 
0.04075 

 

Table 7.2 IGA trial results  
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Figure 7.2 Apparent error for FEA vs. IGA with increased DOFs. 

 Immediately, several conclusions can be intuitively drawn from the given model 

data and results: 

- Convergence: IGA convergence (arrival at correct solution) is significantly better 

than FEA in simulation run time, required memory and degrees of freedom. 

- Geometrical solution: It is important to remember that each IGA trial maintains 

the exact original CAD geometry, while each FEA trial only approximates the CAD 

geometry, and requires many more nodes (DOFs) to do so.  

- Number of elements: Note also that while the number of elements for FEA 

increases with each mesh refinement, the IGA method maintains only 2 elements. 

This is because mesh refinement for IGA is done instead through a subdivision 

process with knot insertion, as described in Chapter 4, which does not physically 

create new elements, as in FEA.  

- Finite element order: The polynomial element order is maintained at the LS-

DYNA default for the FEA method because any increase caused the simulation to 

exceed the computational and time limits of this study.  
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Chapter 8: Discussion of Results, IGA Applications, and Future Work 

8.1 Implementing IGA into Current Drilling Models   

 As reiterated throughout this study and shown by the experimental results, IGA has 

immediate potential to replace traditional FEA in torque and drag modeling because  IGA 

simulations require significantly less time and computational memory. Further, the 

refinement process for each IGA trial was much simpler and quicker than each FEA 

refinement. In order to refine the FEA model, the original CAD geometry file had to be 

imported again into LS-DYNA so that a new mesh could be generated. This is not 

necessary in the IGA models, as the original geometry is always maintained with 

refinement.  

It is possible that IGA can be implemented into already existing FEA codes, such 

as those that are designed to identify points of drillstring contact with the wellbore wall. 

As discussed, conversion from FEA to IGA can be done by changing the basis functions 

used to solve for the finite element solution. This is rather simple, but certainly does require 

much work and skill from the finite element code programmer. However, once this change 

is made, great opportunity is introduced to improve efficiency and accuracy of the program 

solution.  

8.2 Future Applications of IGA Models  

Improved Finite Element Programs 

The LS-DYNA application of IGA shown in this study can also be expanded for 

greater simulations of both torque and drag forces for entire wellbores. To do this, a full 

license must be obtained so that the LS-DYNA simulation can be run in parallel on multiple 

CPUs (computer processing units). Running in parallel lessens the computational demand 

assigned to each CPU, and bigger simulations can be run more efficiently. Again, this study 

was limited to a single CPU, which limited demonstrational potential. Torque forces can 

be analyzed by applying a rotational movement to the drillstring and reading the resultant 

force measured in the radial direction. 
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It is notable to mention that the use of LS-DYNA in this study was primarily for 

direct comparison of IGA and FEA methods. LS-DYNA is a useful finite element program 

for many engineering industries, but the interface is not very well suited for modeling the 

drilling process. A clever approach was needed to create a model of the wellbore and 

drillstring, and to prescribe motion to the drillstring in a way that properly simulated 

tripping into the hole.  

Advancing the simulation to include other drilling complexities will prove to be 

difficult, as well. Thus, this realizes a need for a similar IGA-based finite element program 

that has an interface suited for easily modeling standard drilling procedures and equipment. 

In addition, developing a highly efficient IGA-based drilling model program will be 

significant in the endeavor towards automated drilling processes. Time efficient IGA 

models will also make it viable for torque and drag analysis to become a standard practice 

and duty of engineers during the routine well design and drilling process. 

Drillstring Dynamics Analysis  

There is great potential for applying IGA to other areas of study in the drilling 

industry. Advancement in data transmission from mud pulse telemetry to wired drill pipe 

has led to a new era of “big data”, and there is ongoing study on how to best harness this 

newly available wealth of drilling information. A particular topic of interest is the use of 

this high-frequency data to detect drilling dysfunctions caused by oscillatory movements, 

or vibrations, of the drillstring (i.e. whirl, stick-slip, and bit bounce). These movements are 

associated with a host of drilling problems including ROP (rate of penetration) reduction 

and tool damage. 

 It would be ideal to have a model that is able to identify drilling problems in real-

time and alter parameters as necessary to mitigate the issue. Eventually, this type of model 

could also be automated and able to perform immediate mitigation efforts without human 

supervision. This would be an incredible advantage to the safety and smoothness of the 

drilling process. With FEA, efficient, automated, and real-time simulation is not possible; 

but with IGA, it may become possible in the near future. 
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Chapter 9: Conclusion 

 The work completed in this study provides strong evidence that isogeometric 

analysis is a viable and improved alternative to traditional finite element methods. There is 

immense potential for introducing IGA into existing and developing drilling models. The 

real well example LS-DYNA model in this study greatly demonstrates IGA application to 

drag force analysis. Although the example model was run for only a portion of the entire 

real wellbore, the results are certainly representative and can be expanded with access to 

parallel CPU simulation.  

 IGA methods are proven to be significantly faster and more computationally 

efficient than FEA methods. Saving time saves money, which is crucial in times of low oil 

price, when efficiency is needed the most. Even more important, the potential for IGA to 

improve automated drilling is an invaluable success for safety improvement in the industry.  
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Appendix 

A. LS-DYNA LSPrePost Graphic User Interface  

The following image is a screenshot of the LSPrePost modeling program. 

This user interface provides a visually interactive way to build the LS-DYNA 

keyword file that is used to run the simulation. The sidebars contain various tools 

that can be used for geometry and mesh creation, and to define all other parameters 

of the model. For greater detail, please visit the well-developed manuals and 

tutorials provided by LSTC. 

The red section is a finite element mesh of the wellbore, and the blue section 

is a finite element mesh of the drillstring. For each trial of this study, this LSPrePost 

visual is generally the same, the only  difference being in the type of element 

formulation applied (FEA or IGA).  
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B. Sample Resultant Force vs. MD Plot  
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C. Example LS-DYNA Keyword File  

 
$# LS-DYNA Keyword file created by LS-PrePost(R) V4.5.5 - 14Nov2017 
$# Created on Apr-12-2018 (19:13:51) 
*KEYWORD 
*TITLE 
$#                                                                         title 
LS-DYNA keyword deck by LS-PrePost 
*CONTROL_IMPLICIT_AUTO 
$#   iauto    iteopt    itewin     dtmin     dtmax     dtexp     kfail    kcycle 
         0        11         5       0.0       0.0       0.0         0         0 
*CONTROL_IMPLICIT_GENERAL 
$#  imflag       dt0    imform      nsbs       igs     cnstn      form    zero_v 
         0       0.0         2         1         2         0         0         0 
*CONTROL_IMPLICIT_SOLUTION 
$#  nsolvr    ilimit    maxref     dctol     ectol     rctol     lstol    abstol 
        12        11        15     0.001      0.011.00000E10       0.91.0000E-10 
$#   dnorm    diverg     istif   nlprint    nlnorm   d3itctl     cpchk      
         2         1         1         0         2         0         0 
$#  arcctl    arcdir    arclen    arcmth    arcdmp    arcpsi    arcalf    arctim 
         0         0       0.0         1         2         0         0         0 
$#   lsmtd     lsdir      irad      srad      awgt      sred     
         4         2       0.0       0.0       0.0       0.0 
*CONTROL_TERMINATION 
$#  endtim    endcyc     dtmin    endeng    endmas     nosol      
     600.0         0       0.0       0.01.000000E8         0 
*DATABASE_GLSTAT 
$#      dt    binary      lcur     ioopt      
       1.0         1         0         1 
*DATABASE_NCFORC 
$#      dt    binary      lcur     ioopt      
       1.0         1         0         1 
*DATABASE_NODFOR 
$#      dt    binary      lcur     ioopt      
       1.0         1         0         1 
*DATABASE_NODOUT 
$#      dt    binary      lcur     ioopt   option1   option2        
       1.0         1         0         1       0.0         0 
*DATABASE_RCFORC 
$#      dt    binary      lcur     ioopt      
       1.0         1         0         1 
*DATABASE_SLEOUT 
$#      dt    binary      lcur     ioopt      
       1.0         1         0         1 
*DATABASE_BINARY_D3PLOT 
$#      dt      lcdt      beam     npltc    psetid       
       1.0         0         0         0         0 
$#   ioopt      
         0 
*DATABASE_BINARY_INTFOR 
$#      dt      lcdt      beam     npltc    psetid       
       1.0         0         0         0         0 
$#   ioopt      
         0 
*DATABASE_NODAL_FORCE_GROUP 
$#    nsid       cid    
         2         0 
*DATABASE_HISTORY_NODE_SET 
$#     id1       id2       id3       id4       id5       id6       id7       id8 
         1         2         0         0         0         0         0         0 
*BOUNDARY_PRESCRIBED_MOTION_SET_BOX 
$#  typeid       dof       vad      lcid        sf       vid     death     birth 
         2         3         0         1       1.0         01.00000E28       0.0 
$#   boxid   toffset    lcbchk       
         0         0                   0 
*BOUNDARY_SPC_SET 
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$#    nsid       cid      dofx      dofy      dofz     dofrx     dofry     dofrz 
         1         0         1         1         1         1         1         1 
*SET_NODE_LIST_TITLE 
Outer 
$#     sid       da1       da2       da3       da4    solver       
         1       0.0       0.0       0.0       0.0MECH 
$#    nid1      nid2      nid3      nid4      nid5      nid6      nid7      nid8 
 
*LOAD_BODY_PARTS 
$#    psid     
         1 
*LOAD_BODY_Z 
$#    lcid        sf    lciddr        xc        yc        zc       cid    
         4       9.8         0       0.0       0.0       0.0         1 
*CONTACT_AUTOMATIC_NODES_TO_SURFACE 
$#     cid                                                                 title 
$#    ssid      msid     sstyp     mstyp    sboxid    mboxid       spr       mpr 
         2         1         3         3         0         0         1         1 
$#      fs        fd        dc        vc       vdc    penchk        bt        dt 
       0.3       0.3       0.0       0.0       0.0         0       0.01.00000E20 
$#     sfs       sfm       sst       mst      sfst      sfmt       fsf       vsf 
       1.0       1.0       0.0       0.0       1.0       1.0       1.0       1.0 
*CONTACT_AUTOMATIC_ONE_WAY_SURFACE_TO_SURFACE 
$#     cid                                                                 title 
$#    ssid      msid     sstyp     mstyp    sboxid    mboxid       spr       mpr 
         2         1         3         3         0         0         1         0 
$#      fs        fd        dc        vc       vdc    penchk        bt        dt 
       0.3       0.3       0.0       0.0       0.0         0       0.01.00000E20 
$#     sfs       sfm       sst       mst      sfst      sfmt       fsf       vsf 
       1.0       1.0       0.0       0.0       1.0       1.0       1.0       1.0 
*PART 
$#                                                                         title 
Nurbs1 
$#     pid     secid       mid     eosid      hgid      grav    adpopt      tmid 
         1         1         1         0         0         0         0         0 
*SECTION_SHELL 
$#   secid    elform      shrf       nip     propt   qr/irid     icomp     setyp 
         1       201       1.0         2       1.0         0         0         1 
$#      t1        t2        t3        t4      nloc     marea      idof    edgset 
      0.02      0.02      0.02      0.02       0.0       0.0       0.0         0 
*MAT_ELASTIC 
$#     mid        ro         e        pr        da        db  not used         
         1    7850.01.000000E9      0.33       0.0       0.0         0 
*PART 
$#                                                                         title 
Nurbs2 
$#     pid     secid       mid     eosid      hgid      grav    adpopt      tmid 
         2         2         1         0         0         0         0         0 
*SECTION_SHELL 
$#   secid    elform      shrf       nip     propt   qr/irid     icomp     setyp 
         2       201       1.0         2       1.0         0         0         1 
$#      t1        t2        t3        t4      nloc     marea      idof    edgset 
      0.02      0.02      0.02      0.02       0.0       0.0       0.0         0 
*DEFINE_BOX 
$#   boxid       xmn       xmx       ymn       ymx       zmn       zmx    
         1   35.3321   37.2519    17.374   19.9175   2540.39   2694.94 
*DEFINE_CURVE_TITLE 
Velocity  
$#    lcid      sidr       sfa       sfo      offa      offo    dattyp     lcint 
         1         0       1.0       1.0       0.0       0.0         0         0 
$#                a1                  o1   
                 0.0                 0.0 
                 5.0                 0.3 
             1000000                 0.3 
*DEFINE_CURVE_TITLE 
Gravity SF 
$#    lcid      sidr       sfa       sfo      offa      offo    dattyp     lcint 
         4         0       1.0       1.0       0.0       0.0         0         0 
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$#                a1                  o1   
                 0.0                 1.0 
              1000.0                 1.0 
*SET_NODE_LIST_TITLE 
Inner 
$#     sid       da1       da2       da3       da4    solver       
         2       0.0       0.0       0.0       0.0MECH 
$#    nid1      nid2      nid3      nid4      nid5      nid6      nid7      nid8 
     43706     43707     43708     43709     43710     43711     43712     43713 
$#      w1        w2        w3        w4        w5        w6        w7        w8 
       1.0       0.8       0.7       0.7       0.8       1.0       0.8       0.7 
    .... 
    1.0       0.8       0.7       0.7       0.8       1.0       0.8       0.7 
*NODE 
$#   nid               x               y               z      tc      rc   
       1        83.45972       -120.3813        2957.559       0       0 
    .... 
   21832        35.26573        19.46165        2566.716       0       0 
*END 
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