635,172 research outputs found

    Mobility-aware QoS assurance in software-defined radio access networks: an analytical study

    Get PDF
    Software-defined networking (SDN) has gained a tremendous attention in the recent years, both in academia and industry. This revolutionary networking paradigm is an attempt to bring the advances in computer science and software engineering into the information and communications technology (ICT) domain. The aim of these efforts is to pave the way for completely programmable networks and control-data plane separation. Recent studies on feasibility and applicability of SDN concepts in cellular networks show very promising results and this trend will most likely continue in near future. In this work, we study the benefits of SDN on the radio resource management (RRM) of future-generation cellular networks. Our considered cellular network architecture is in line with the recently proposed Long-Term Evolution (LTE) Release 12 concepts, such as user/control plane split, heterogeneous networks (HetNets) environment, and network densification through deployment of small cells. In particular, the aim of our RRM scheme is to enable the macro base station (BS) to efficiently allocate radio resources for small cell BSs in order to assure quality-of-service (QoS) of moving users/vehicles during handovers. We develop an approximate, but very time- and space-efficient algorithm for radio resource allocation within a HetNet. Experiments on commodity hardware show algorithm running times in the order of a few seconds, thus making it suitable even in cases of fast moving users/vehicles. We also confirm a good accuracy of our proposed algorithm by means of computer simulations

    Enabling virtual radio functions on software defined radio for future wireless networks

    Get PDF
    Today's wired networks have become highly flexible, thanks to the fact that an increasing number of functionalities are realized by software rather than dedicated hardware. This trend is still in its early stages for wireless networks, but it has the potential to improve the network's flexibility and resource utilization regarding both the abundant computational resources and the scarce radio spectrum resources. In this work we provide an overview of the enabling technologies for network reconfiguration, such as Network Function Virtualization, Software Defined Networking, and Software Defined Radio. We review frequently used terminology such as softwarization, virtualization, and orchestration, and how these concepts apply to wireless networks. We introduce the concept of Virtual Radio Function, and illustrate how softwarized/virtualized radio functions can be placed and initialized at runtime, allowing radio access technologies and spectrum allocation schemes to be formed dynamically. Finally we focus on embedded Software-Defined Radio as an end device, and illustrate how to realize the placement, initialization and configuration of virtual radio functions on such kind of devices

    Software Defined 5G Converged Mobile Access Networks: Energy Efficiency Considerations

    Get PDF
    Software Defined Mobile Networks and Software Defined Access Networks bring programmability principle into mobile and optical domains. In this work we propose an integrated control approach and show the benefit in terms of energy efficiency.This work was partially supported by the Italian Government under CIPE resolution no. 135 (December 21, 2012), project INnovating City Planning through Information and Communication Technologies (INCIPICT) and by the EC through the H2020 5G-TRANSFORMER project (Project ID 761536)

    Exploiting flexible functional split in converged software defined access networks

    Get PDF
    5G targets to offer a huge network capacity to support the expected unprecedented traffic growth due mainly to mobile and machine-type services. Thus, the 5G access network has to comply with very challenging architectural requirements. Mobile network scalability is achieved by playing appropriately with the centralization of network functions and by applying the functional split introducing the fronthaul. Although more advantageous in terms of network management and performance optimization, low-layer functional split options require larger bandwidth and lower latency to be guaranteed by the fronthaul in the access network, while preserving other concurrent fiber-to-the-x services. Thus, advanced mechanisms for the efficient management of available resources in the access network are required to control jointly both radio and optical domains. Softwarized mobile and optical segments facilitate the introduction of dedicated protocols to enable the inter-working of the two control planes. This paper proposes a new cooperation scheme to manage the adaptive flexible functional split in 5G networks conditioned to the resource availability in the optical access network. Techniques for the accurate estimation of available bandwidth and the associated real-time selection of the best suitable functional split option are investigated. Results show that the proposed software defined converged approach to wavelength and bandwidth management guarantees the optimal allocation of optical resources. The triple exponential smoothing forecasting technique enables efficient coexistence of mobile fronthaul and fixed connectivity traffic in the network, reducing traffic impairments with respect to other well-known forecasting techniques, while keeping the same level of centralization.This work was partially supported by the Italian Government under CIPE resolution no. 135 (December 21, 2012), project INnovating City Planning through Information and Communication Technologies (INCIPICT) and by the EC through the H2020 5G-TRANSFORMER project (Project ID 761536)

    MIRAI Architecture for Heterogeneous Network

    Get PDF
    One of the keywords that describe next-generation wireless communications is "seamless." As part of the e-Japan Plan promoted by the Japanese Government, the Multimedia Integrated Network by Radio Access Innovation project has as its goal the development of new technologies to enable seamless integration of various wireless access systems for practical use by 2005. This article describes a heterogeneous network architecture including a common tool, a common platform, and a common access. In particular, software-defined radio technologies are used to develop a multiservice user terminal to access different wireless networks. The common platform for various wireless networks is based on a wireless-supporting IPv6 network. A basic access network, separated from other wireless access networks, is used as a means for wireless system discovery, signaling, and paging. A proof-of-concept experimental demonstration system is available

    Software-Defined Networking in Mobile Access Networks

    Get PDF
    • …
    corecore