625 research outputs found

    Content-aware partial compression for textual big data analysis in Hadoop

    Get PDF
    A substantial amount of information in companies and on the Internet is present in the form of text. The value of this semi-structured and unstructured data has been widely acknowledged, with consequent scientific and commercial exploitation. The ever-increasing data production, however, pushes data analytic platforms to their limit. Compression as an effective means to reduce data size has been employed by many emerging data analytic platforms, whom the main purpose of data compression is to save storage space and reduce data transmission cost over the network. Since general purpose compression methods endeavour to achieve higher compression ratios by leveraging data transformation techniques and contextual data, this context-dependency forces the access to the compressed data to be sequential. Processing such compressed data in parallel, such as desirable in a distributed environment, is extremely challenging. This work proposes techniques for more efficient textual big data analysis with an emphasis on content-aware compression schemes suitable for the Hadoop analytic platform. The compression schemes have been evaluated for a number of standard MapReduce analysis tasks using a collection of public and private real-world datasets. In comparison with existing solutions, they have shown substantial improvement in performance and significant reduction in system resource requirements

    Distributed Partitioning and Processing of Large Spatial Datasets

    Full text link
    Data collection is one of the most common practices in today’s world. The data collection rate has rapidly increased over the past decade and is not showing any signs of decline. Data sources are many; the Internet of Things devices, mobile gadgets, social media posts, connected cars, and web servers constantly report on their users’ interactions and habits. Much of the collected data is spatial data which contains attributes that denote the physical origin of the data. As a result of the tremendous growth in data collection, higher demand for new techniques emerged to efficiently process and extract valuable insights in a relatively acceptable time frame. The current standard approach to large-scale data analysis uses distributed parallel processing systems like Apache Hadoop and Apache Spark. However, these systems are designed for general-purpose parallel processing and require an additional layer to recognize and efficiently process spatial datasets. Motivated by its many applications, we examine the several challenges facing spatial data partitioning and processing and propose solutions customized for each task. We detail our techniques for building spatial partitioners over large datasets for use with spatial queries like map-matching and kNN spatial join. Additionally, we present an accuracy benchmarking framework for comparing and classifying the results of two input files based on specific criteria. Our proposed work targets batch processing of large spatial datasets, including structured, unstructured, and semi-structured datasets

    Market Basket Analysis Algorithm with MapReduce Using HDFS

    Get PDF
    Market basket analysis techniques are substantially important to every day’s business decision. The traditional single processor and main memory based computing approach is not capable of handling ever increasing large transactional data. In today’s world, the MapReduce approach has been popular to compute huge volumes of data, moreover existing sequential algorithms can be converted in to MapReduce framework for big data. This paper presents a Market Basket Analysis (MBA) algorithm with MapReduce on Hadoop to generate the complete set of maximal frequent item sets. The algorithm is to sort data sets and to convert it to (key, value) pairs to fit with the MapReduce concept. The framework sorts the outputs of the maps, which are then input to the “reduce” tasks. The experimental results show that the code with MapReduce increases the performance as adding more nodes until it reaches saturation

    Content-aware compression for big textual data analysis

    Get PDF
    A substantial amount of information on the Internet is present in the form of text. The value of this semi-structured and unstructured data has been widely acknowledged, with consequent scientific and commercial exploitation. The ever-increasing data production, however, pushes data analytic platforms to their limit. This thesis proposes techniques for more efficient textual big data analysis suitable for the Hadoop analytic platform. This research explores the direct processing of compressed textual data. The focus is on developing novel compression methods with a number of desirable properties to support text-based big data analysis in distributed environments. The novel contributions of this work include the following. Firstly, a Content-aware Partial Compression (CaPC) scheme is developed. CaPC makes a distinction between informational and functional content in which only the informational content is compressed. Thus, the compressed data is made transparent to existing software libraries which often rely on functional content to work. Secondly, a context-free bit-oriented compression scheme (Approximated Huffman Compression) based on the Huffman algorithm is developed. This uses a hybrid data structure that allows pattern searching in compressed data in linear time. Thirdly, several modern compression schemes have been extended so that the compressed data can be safely split with respect to logical data records in distributed file systems. Furthermore, an innovative two layer compression architecture is used, in which each compression layer is appropriate for the corresponding stage of data processing. Peripheral libraries are developed that seamlessly link the proposed compression schemes to existing analytic platforms and computational frameworks, and also make the use of the compressed data transparent to developers. The compression schemes have been evaluated for a number of standard MapReduce analysis tasks using a collection of real-world datasets. In comparison with existing solutions, they have shown substantial improvement in performance and significant reduction in system resource requirements

    Deep Data Locality on Apache Hadoop

    Full text link
    The amount of data being collected in various areas such as social media, network, scientific instrument, mobile devices, and sensors is growing continuously, and the technology to process them is also advancing rapidly. One of the fundamental technologies to process big data is Apache Hadoop that has been adopted by many commercial products, such as InfoSphere by IBM, or Spark by Cloudera. MapReduce on Hadoop has been widely used in many data science applications. As a dominant big data processing platform, the performance of MapReduce on Hadoop system has a significant impact on the big data processing capability across multiple industries. Most of the research for improving the speed of big data analysis has been on Hadoop modules such as Hadoop common, Hadoop Distribute File System (HDFS), Hadoop Yet Another Resource Negotiator (YARN) and Hadoop MapReduce. In this research, we focused on data locality on HDFS to improve the performance of MapReduce. To reduce the amount of data transfer, MapReduce has been utilizing data locality. However, even though the majority of the processing cost occurs in the later stages, data locality has been utilized only in the early stages, which we call Shallow Data Locality (SDL). As a result, the benefit of data locality has not been fully realized. We have explored a new concept called Deep Data Locality (DDL) where the data is pre-arranged to maximize the locality in the later stages. Specifically, we introduce two implementation methods of the DDL, i.e., block-based DDL and key-based DDL. In block-based DDL, the data blocks are pre-arranged to reduce the block copying time in two ways. First the RLM blocks are eliminated. Under the conventional default block placement policy (DBPP), data blocks are randomly placed on any available slave nodes, requiring a copy of RLM (Rack-Local Map) blocks. In block-based DDL, blocks are placed to avoid RLMs to reduce the block copy time. Second, block-based DDL concentrates the blocks in a smaller number of nodes and reduces the data transfer time among them. We analyzed the block distribution status with the customer review data from TripAdvisor and measured the performances with Terasort Benchmark. Our test result shows that the execution times of Map and Shuffle have been improved by up to 25% and 31% respectively. In key-based DDL, the input data is divided into several blocks and stored in HDFS before going into the Map stage. In comparison with conventional blocks that have random keys, our blocks have a unique key. This requires a pre-sorting of the key-value pairs, which can be done during ETL process. This eliminates some data movements in map, shuffle, and reduce stages, and thereby improves the performance. In our experiments, MapReduce with key-based DDL performed 21.9% faster than default MapReduce and 13.3% faster than MapReduce with block-based DDL. Additionally, key-based DDL can be combined with other methods to further improve the performance. When key-based DDL and block-based DDL are combined, the Hadoop performance went up by 34.4%. In this research, we developed the MapReduce workflow models with a novel computational model. We developed a numerical simulator that integrates the computational models. The model faithfully predicts the Hadoop performance under various conditions
    corecore