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ABSTRACT

A PLATFORM FOR SCALABLE LOW-LATENCY ANALYTICS
USING MAPREDUCE

MAY 2015

BODUO LI

Bachelor, HARBIN INSTITUTE OF TECHNOLOGY, CHINA

Master, HARBIN INSTITUTE OF TECHNOLOGY, CHINA

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Yanlei Diao

Today, the ability to process “big data” has become crucial to the information needs

of many enterprise businesses, scientific applications, and governments. Recently, there

have been increasing needs of processing data that is not only “big” but also “fast”. Here

“fast data” refers to high-speed real-time and near real-time data streams, such as Twitter

feeds, search query streams, click streams, impressions, and system logs. To handle both

historical data and real-time data, many companies have to maintain multiple systems.

However, recent real-world case studies show that maintaining multiple systems cause not

only code duplication, but also intensive manual work to partition the analytics workloads

and determine which data is processed by which system. These issues point to the need for

a general, unified data processing framework to support analytical queries with different

latency requirements.

vi



This thesis takes a further step towards building a general, unified system for big and

fast data analytics. In order to build such a system, I propose to build on existing solutions

on data parallelism and extend them with two new features: incremental processing and

stream processing with latency constraints. This thesis starts with Hadoop, the most popular

open-source MapReduce implementation, which provides proven scalability based on data

parallelism. I answer the following questions: (1) Is Hadoop able to support incremental

processing? (2) What are the necessary architecture changes in order to support incremental

processing? (3) What are the additional design features needed to support stream processing

with latency constraints? The thesis includes three parts that answer each of the questions.

The first part of the thesis validates whether the existing MapReduce implementations

can support incremental processing. Incremental processing means that computation is

performed as soon as the relevant data becomes available. My extensive benchmark study of

Hadoop-based MapReduce systems shows that the widely-used sort-merge implementation

for partitioning and parallel processing poses a fundamental barrier to incremental computa-

tion. I further propose a cost model, and optimize the Hadoop system configuration based

on the model. The benchmark results over the optimized system verify that the barrier to

incremental computation is intrinsic, and cannot be removed by tuning system parameters.

In the second part of the thesis, I employ various purely hash-based techniques to enable

fast in-memory incremental processing in MapReduce, and frequent key based techniques

to extend such processing to workloads that require memory more than available. I evaluate

my Hadoop-based prototype equipped with all proposed techniques. The results show that

the hash techniques allow the reduce progress to keep up with the map progress with up to 3

orders of magnitude reduction of internal disk spills, and enable results to be returned early.

The third part of the thesis aims to support stream processing with latency constraints

based on the incremental processing platform resulted from the second part. I perform a

benchmark study to understand the sources of latency. I then propose a number of nec-

essary architecture changes to support stream processing, and augment the platform with

vii



new latency-aware model-driven resource planning and latency-aware runtime scheduling

techniques to meet user-specified latency constraints while maximizing throughput. Ex-

periments using real-world workloads show that the techniques reduce the latency from

tens or hundreds of seconds to sub-second, with 2x-5x increase in throughput. The new

platform offers 1-2 orders of magnitude improvements over Storm, a commercial-grade

distributed stream system, and Spark Streaming, a state-of-the-art academic prototype, when

considering both latency and throughput.
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CHAPTER 1

INTRODUCTION

Today, data is being generated at an unprecedented rate – so much that 90% of the data

in the world was generated in the last two years [44]. It is estimated that 2.5 quintillion

(1018) bytes of data are generated per day in the world from various sources including

human-initiated data sources such as public web contents and social media, machine logs

that record system and user activities, and sensors that monitor environment and human

body conditions, etc. [88] The ability to process “big data” has become crucial to the

information needs of many enterprise businesses, scientific applications, and governments.

Recently, there have been increasing needs of processing data that is not only “big” but also

“fast”. Here “fast data” refers to high-speed real-time and near real-time data streams, such

as Twitter feeds, search query streams, click streams, impressions, and system logs. For

instance, a breaking news reporting service that monitors the Twitter firehose requires tweet

feeds to be analyzed within seconds to detect hot topics and breaking news events [55]. As

another example, Google’s Zeitgeist pipeline ingests a continuous input of search queries

and detects anomalous queries, which are spiking or dipping, again within seconds [4].

To handle both historical data and real-time data, many companies have to maintain

multiple systems. However, recent real-world case studies point to the need for a unified data

processing framework that supports big and fast data analytics, including analytical queries

with different latency requirements. In particular, a recent study by Twitter’s real-time

search assistance team [65] shows the need to compute statistics across different temporal

granularities with different latency tolerances e.g., evidence at the per-minute level to track

fast moving, breaking events, as well as evidence accumulated across hours, days, or weeks
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for slower moving and tail queries. Using separate systems for batch processing and real-

time processing causes not only code duplication, but also intensive manual work to partition

the analytics workloads and determine which data is processed by which system.

Motivated by these observations, this thesis takes a further step towards a general, unified

data processing framework that supports big and fast data analytics with different latency

requirements. This thesis answers a fundamental question: “What are the necessary design

features of a general, unified system for big and fast data analytics?” In order to build such

a system, I propose to build on existing solutions on data parallelism and extend them

with two new features: (1) incremental processing and (2) stream processing with latency

constraints. In the following, I explain these concepts in more detail.

Data Parallelism is a fundamental mechanism for data processing at scale. It partitions a

large dataset into smaller subsets, following either the storage order (physical partitioning)

or a user-specified logical condition (logical partitioning), and then executes an analytic

task in parallel over these subsets. MapReduce [25, 34, 47, 8, 68, 49, 54, 41] is a popular

parallel processing model that embraces data parallelism, and has shown its scalability

on thousands of machines. It also provides an easy-to-use programming model, and fault

tolerance transparent to users. MapReduce and its most popular open-source implementation,

Hadoop [94], have become the core of a large ecosystem of products for big data analytics.

However, the MapReduce model is not well suited for time-sensitive workloads with

latency requirements since it is primarily designed for batch processing. More concretely,

MapReduce implementations require the entire dataset to be loaded into the cluster before

running analytical queries and the query answers are only returned at the end of a long-

running job, thereby incurring long latencies and making them unsuitable for processing

“fast data”. Since MapReduce provides high scalability based on data parallelism and has

gained tremendous popularity, in this thesis, I study how to support the following design

features in the context of MapReduce. But my key ideas and techniques, once adapted, can

be valuable to other big data systems based on data parallelism as well.
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Incremental Processing means that computation is performed as soon as the relevant data

becomes available. Incremental processing enables tuples to move quickly through a pipeline

of operators, and thus is essential to returning query answers with low latency. Due to the

need of quick movement of tuples between operators, incremental processing requires that no

blocking operator should exist. However, blocking operators such as sort-merge are widely

used in batch-processing systems, including the existing MapReduce systems. To respond to

the needs of low-latency analytics, a variety of new systems have been developed, including

Google’s MillWheel [4] and Percolator [77], Twitter’s Storm [92], Facebook’s Ptail and

Puma [13], Microsoft’s Naiad [70] and Sonora [95], WalmartLabs’ Muppet [55], IBM’s

System S [101], Yahoo’s S4 [72], and academic prototypes such as Spark Streaming [99],

StreamMapReduce [14], StreamCloud [35], SEEP [16] and TimeStream [79]. However,

some systems [72, 92, 16, 70] do not provide built-in support of incremental processing, and

thus impose the significant overhead of implementing incremental processing to users. Other

systems mentioned above [14, 55, 95, 4, 99] provide mechanisms targeting at incremental

processing, but with focus on the case when the memory is sufficiently large. Some of the

systems can handle the situation of insufficient memory but only with simple approaches

such as dropping and recomputing part of data [99], and simply spilling some data to a

storage system backed by disks [55, 95, 4]. They do not provide any mechanism to maximize

the portion of data processed using fast in-memory computation, and hence to perform

incremental computation more efficiently.

In this thesis, I propose to fundamentally transform the batch processing paradigm in

MapReduce systems into incremental processing, i.e., to move processing forward with

newly arriving data items, and to do so efficiently even under constrained memory. Towards

this goal, I propose a new purely hash-based framework with new hash algorithms and

dynamic frequency analysis of data to support high-performance incremental processing

under data parallelism.
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Stream Processing with Latency Constraints is crucial to processing “fast data” in many

applications [55, 65, 4]. For example, the latency constraints can be “news events should be

returned within 3 seconds on average”, and “99% anomalous queries should be identified

within 500 milliseconds”. However, the existing fast data systems [4, 14, 16, 35, 55, 70, 72,

79, 92, 95, 99] are “best-effort only”, where system performance is determined by static

parameter values set manually by system administrators. In practice, enterprise businesses

cannot afford the manual work to find the optimal configuration that meets the latency

constraint for each job.

In this thesis, I propose various techniques to support stream processing with latency

constraints in a platform with data parallelism and incremental processing. I propose

a number of necessary architecture changes to support stream processing, and augment

the platform with new latency-aware model-driven resource planning and latency-aware

runtime scheduling techniques to meet user-specified latency constraints while maximizing

throughput.

In order to build a system with the above design features, I start with the open-source

MapReduce implementation, Hadoop, due to its proven scalability based on data parallelism,

as well as its many compatible software tools, and its broad user community. The work

presented in this thesis answers the following questions: (1) Is Hadoop able to support

incremental processing? (2) What are the necessary architecture changes in order to support

incremental processing? (3) What are the additional design features needed to support

stream processing with latency constraints? To address these questions, my thesis work is

naturally divided into the following three pieces: Hadoop benchmarking and optimization,

incremental processing, and stream processing with latency constraints. The contributions

of each piece of work are discussed in detail in the subsequent section.
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1.1 Thesis Contributions

1.1.1 Hadoop Benchmarking and Optimization

In the first piece of work, I aim to understand whether Hadoop, after tuning its parameters

for optimization, is able to support incremental processing and why if not. In order to

support incremental processing, where computation is performed as soon as the relevant

data becomes available, a MapReduce system should avoid any blocking operations and

also computational and I/O bottlenecks that prevent data from “smoothly” flowing through

map and reduce phases on the processing pipeline.

With the questions and this guideline in mind, I conduct a thorough benchmarking

study, evaluating existing MapReduce platforms including Hadoop and MapReduce Online

(which performs pipelining of intermediate data [22]). The results reveal that the main

mechanism for parallel processing used in these systems, based on a sort-merge technique, is

subject to a significant I/O bottleneck as well as blocking: In particular, I find that the merge

step is potentially blocking and can incur significant I/O costs due to intermediate data.

Furthermore, MapReduce Online’s pipelining functionality only redistributes workloads

between the map and reduce tasks, and is not effective for reducing blocking or I/O overhead.

Building on these benchmarking results, I perform an in-depth analysis of Hadoop,

using a theoretically sound analytical model to explain the empirical results. Given the

complexity of the Hadoop software and its myriad of configuration parameters, I seek to

understand whether the above performance limitations are inherent to Hadoop or whether

tuning of key system parameters can overcome those drawbacks from the standpoint of

incremental processing. The key results are two-fold: (1) It is shown that my analytical

model can be used to choose appropriate values of Hadoop parameters, thereby reducing

I/O and startup costs. (2) Despite a range of optimizations, the I/O bottleneck as well as

blocking persist, and the reduce progress falls significantly behind the map progress, hence

violating the requirements of efficient incremental processing. Both theoretical and empirical
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analyses show that the sort-merge implementation, used to support data parallelism, poses a

fundamental barrier to incremental processing.

1.1.2 Incremental Processing

Based on the insight that the sort-merge implementation in the original MapReduce

model poses a fundamental barrier to incremental processing, my next goal is to propose a

new data analysis platform, based on MapReduce, that is geared for incremental processing.

More concretely, I made two key architecture changes to Hadoop:

My first mechanism replaces the sort-merge implementation in Hadoop with a purely

hash-based framework, which is designed to address the I/O bottleneck as well as the

blocking behavior of sort-merge. I devise two hash techniques to suit different reduce

functions, depending on whether the reduce function permits incremental processing or not.

Besides eliminating the sorting cost from the map tasks, these hash techniques can provide

fast in-memory processing of the reduce function when the memory reaches a sufficient size

as determined by the workload and algorithm.

My second mechanism further brings the benefits of fast in-memory processing to

workloads that require a large key-state space that far exceeds available memory. I propose

both deterministic and randomized techniques to dynamically recognize popular keys and

then update their states using a full in-memory processing path, both saving I/Os and

enabling early answers for these keys. Less popular keys trigger I/Os to stage data to disk

but have limited impact on the overall efficiency.

I implement all these techniques in Hadoop, which results in a prototype, namely

Incremental Hadoop. Experiments on a range of workloads in click stream analysis and web

document analysis show the following main results: (1) My hash techniques significantly

improve the progress of the map tasks, due to the elimination of sorting, and given sufficient

memory, enable fast in-memory processing of the reduce function. (2) For challenging

workloads that require a large key-state space, my dynamic hashing mechanism significantly
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reduces I/Os and enables the reduce progress to keep up with the map progress, thereby

realizing incremental processing. For instance, for sessionization over a click stream, the

reducers output user sessions as data is read and finish as soon as all mappers finish reading

the data in 34.5 minutes, triggering only 0.1GB internal data spill to disk in the job. In

contrast, the original Hadoop system returns all the results towards the end of the 81 minute

job, writing 370GB internal data spill to disk. (3) Further trade-offs exist between my

hash-based techniques under different workload types, data localities, and memory sizes,

with dynamic hashing working the best under constrained memory and most workloads.

1.1.3 Stream Processing with Latency Constraints

The revised MapReduce platform offers data parallelism and incremental processing.

But are they enough for streaming analytical queries with stringent latency requirements?

And if not, which additional design features are needed? These two questions will be

addressed in my last piece of work.

My starting point is a thorough understanding of the sources of latency in a system

supporting data parallelism and incremental processing. I conduct a benchmark study in

the revised MapReduce platform, and it reveals that while incremental processing allows

arriving tuples to be processed one-at-a-time, it does not guarantee the actual latency of

processing each tuple in a large distributed system. (1) A key observation is that to enable

streaming analytics with bounded latency of processing (e.g., 1 second) through a distributed

system, it is crucial to determine the degree of parallelism (e.g., the number of processes

per node) and granularity of scheduling (e.g., batching data items every 5ms for shuffling).

Otherwise, upstream and downstream operators may process data at different speeds, causing

substantial data accumulation in between. This reason, as well as using a large batch size

as granularity for scheduling, will cause long wait time before tuples are processed or

shuffled. The appropriate choices of those parameters vary widely among analytic tasks

due to different computation needs – using the fixed values tuned for one workload is far
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from ideal for other workloads, often resulting in high latency of tuples moving through the

system. (2) When the memory of a cluster is not large enough to process all data in memory,

the tuples spilled to disk experience high latency because their processing is often deferred

to a later phase (e.g., at the end) of the job.

These two key observations call for job-specific resource planning to select the appropri-

ate parameter settings and latency-aware scheduling to determine which tuples to process

and in what order to process them in order to keep latency low, both not being well-addressed

by existing work. Tremendous engineering efforts have been invested in industry on the

resource allocation for critical workloads. The recent development of Hadoop Yarn [93]

separates resource management from data processing frameworks such as MapReduce,

demonstrating the importance of resource management itself. However, Yarn only provides

a friendly interface for users to set key system parameters, but cannot do so automatically

for a given job. Recent fast data systems [4, 14, 16, 35, 55, 70, 72, 79, 92, 95, 99] are

“best-effort only”, where resource configuration does not take latency constraints or job

characteristics as input. Instead, the configuration merely includes static parameter values

set manually by system administrators. In practice, enterprise businesses cannot afford the

manual work to find the optimal configuration for each job.

Different with existing work and effort, I solve the first issue by proposing a model-

driven resource planning with two new unique features and the second issue by devising

two runtime scheduling algorithms, as elaborated below.

Model-driven Resource Planning. To solve the first issue, I propose a model-driven

approach to automatically determining the resource allocation plan for each job. The first

unique aspect of my approach is that I consider performance, including both latency and

throughput, in a holistic manner. A naive approach to minimizing latency may overprovision

resources, e.g., giving all resources to push one tuple at a time through the distributed system,

which limits throughput severely. Instead, I formulate the per-job resource planning problem

as a constrained optimization problem: given a user analytic job and latency constraint L,
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find a resource allocation plan to maximize throughput while subjecting the latency of results

to L. The second feature is the support of a variety of latency models, including per-tuple

latency, per-window latency, and any quantiles associated with these latency distributions.

Then any of these latency metrics can be subjected to the user latency constraint. To

develop this collection of models, I identify and analyze the dominant components of

latency in a complex distributed system. This involves two challenges: First, latency here

covers a wide range of data processing behaviors, e.g., for processing individual tuples,

producing windowed results from a set of tuples, and capturing the variation of each type of

latency. Second, a distributed system based on data parallelism also exhibits complex system

behaviors. My major contribution here lies in a clean extraction of dominant data processing

and system-level behaviors from the Incremental Hadoop I previously implemented with a

maze of complexity.

Latency-aware Scheduling. To solve the second issue, I further propose latency-aware

scheduling at runtime to determine the set of tuples to process and the order to process

them in order to maximize the number of results that meet the latency requirement, i.e.,

the total utility. Such runtime scheduling is helpful because at runtime, the workload

characteristics may differ from those provided earlier to my model-driven resource planning,

e.g., due to bursty inputs and change of computation costs under constrained memory. Thus,

runtime selection and prioritization of tuples greatly affects the overall utility. While the

problem of maximizing total utility is close to online scheduling problems in real-time

operating systems [52, 21], these techniques either incur high time and space complexity for

scheduling a large number of tuples, or do not consider tuple processing costs effectively.

I propose two runtime scheduling algorithms, at batch-level and tuple-level, respectively,

which consider both costs and deadlines of data processing. In particular, my tuple-level

scheduling algorithm has provable results on the quality of runtime schedules and efficiency

of the scheduling algorithm.
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Evaluation using real-world workloads such as click stream analysis and tweet analysis

show the following results: (1) My models can capture the trend of actual latency changes

when tuning system parameters, with error rates within 15% for the average latency metric,

and within 20% for 0.9 and 0.99-quantiles of latency. (2) My model-driven approach to

resource planning can reduce the average latency from 10’s of seconds in Incremental

Hadoop to sub-second, with 2x-5x increase in throughput. (3) For runtime scheduling,

my latency-aware tuple scheduling algorithm outperforms Dover [52], a state-of-the-art

scheduling algorithm with provable optimality in the worse case, and can dramatically

improve the number of tuples meeting the latency constraint, especially under constrained

memory.

I finally compare our system to Twitter Storm [92] and Spark Streaming [99], two

state-of-the-art distributed stream systems. For all workloads tested, my system offers 1-2

orders of magnitude improvements over Storm and Sparking Streaming when considering

both latency and throughput. As a proof-of-concept, my system, which is implemented

in the general Hadoop framework, significantly outperforms custom distributed stream

systems due to the key design features introduced in this work: our performance gains

come from (1) the support of min-batches as the granularity for incremental processing

and shuffling, while Spark Streaming lacks stable support of small batches and incremental

processing of windows, and Storm incurs high scheduling overhead; (2) the job-specific

resource allocation plans, which eliminate data accumulation and long wait in queues, which

the other two systems cannot support.

1.1.4 System Development and Code Release

I have built a prototype of the platform for big and fast data analytics on Hadoop 0.20.1.

And the resulting Hadoop-based prototype can run (1) in the original batch mode, fully

supporting existing analytic tasks in enterprise businesses, or (2) in the new streaming

mode where user-specified latency constraints are handled automatically by the system and

10



used to guide resource planning and scheduling, with tremendous performance benefits over

custom distributed stream systems. The code has been released as SCALLA 0.1 [62]. I also

anticipate that while my implementation is in Hadoop, my key ideas and techniques, once

adapted, can be valuable to other big data systems based on data parallelism.

1.2 Thesis Organization

The related work is discussed in Chapter 2. I perform benchmark study and system

configuration optimization on existing MapReduce platforms in Chapter 3, and show that

even the optimized MapReduce platform is still not well-suited for low-latency analytics

due to the existence of a blocking operator and high I/O cost. In Chapter 4, I present a new

platform for incremental processing that removes the blocking operator and minimizes I/O

costs. To support stream processing with latency constraints, in Chapter 5, I further make

necessary architectural changes and propose model-based configuration optimization as well

as runtime scheduling techniques. I finally summarize the thesis and discuss the future work

in Chapter 6.
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CHAPTER 2

RELATED WORK

This chapter presents a survey of literature relevant to big data and fast data processing.

2.1 A Survey of Data-Parallel Systems

Data parallelism is a fundamental mechanism for data processing at scale. It partitions a

large dataset into smaller subsets, following either the storage order (physical partitioning)

or a user-specified logical condition (logical partitioning), and then executes an analytic task

in parallel over these subsets. This section provides a survey of existing systems that support

data parallelism, and compare them under the important design features for low-latency

analytics. Before the discussion of the systems, we first introduce the key design features.

2.1.1 System Design Features for Low-Latency Analytics

We define a few system design features regarding low-latency analytics as follows.

I Batch Processing is the computation paradigm used to process a large collection of

stored historical data. In batch processing, the results are usually returned at the end

of a long-running job, and hence blocking operators that require all input data before

emitting any output, such as sort-merge, are widely used.

I Incremental Processing means computation is performed as soon as the relevant

data becomes available. With incremental processing, tuples can move quickly through

a pipeline of operators. Incremental processing is a computation paradigm opposed

to batch process in the sense that blocking operators should not exist. We use the

following standard to determine that a system supports incremental processing: The
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time between when an input tuple enters the system and when the tuple is consumed

by the computation in any operator does not depend on the input size.

I (Near) Real-time Latency Constraints are supported if a system takes user-defined

(near) real-time latency requirements into consideration and provides built-in mecha-

nisms to satisfy the requirements.

Besides the above design features, several types of system parameters are closely related

to low-latency analytics, and can be configured differently depending on the design features.

The parameters are described below.

I Granularity of Computation is the data unit at which an operator schedules com-

putation. There are several common granularities. (1) Per-tuple: an operator performs

the computation of a tuple as soon as the tuple arrives. (2) Mini-batch: an operator

collects input data, packs input data into small batches (e.g. every 5ms), and performs

the computation for a batch at a time. (3) Input Chunk: an operator reads input data

from a file system, such as HDFS, where input data is partitioned into physical chunks,

and the operator performs the computation for a chunk at a time. (4) All Data: an

operator waits until all input data is available, and then starts computation.

I Granularity of Shuffling is the data unit at which network transmission is scheduled.

Common granularities are Per-tuple, Mini-batch and Input Chunk, which are defined

similarly as in granularity of computation.

I Degree of Parallelism refers to the number of machines and the number of con-

current processes or threads per machine used to perform the computation of an

operator.

Figure 2.1 shows the dependencies between the above system design features. (1) The

support of (near) real-time latency constraints requires small granularities of computation

and shuffling. The reason is that, in order to achieve low latency, tuples need to move

quickly between operators, which can only happen when the granularities of computation
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Figure 2.1. Dependencies between system design features and system parameters for
low-latency analytics.

and shuffling are small. (2) The support of (near) real-time latency constraints requires

not only appropriate configuration of the granularities of computation and shuffling, but

also appropriate configuration of the degree of parallelism. This is because the degree of

parallelism affects the resource allocation among operators. As we will show in Chapter 5,

inappropriate resource allocation may cause data accumulation between operators, and

thus result in unbounded latency. (3) Small granularities of computation and shuffling

require incremental processing. The reason is that the delay of computation at an operator

may prevent the use of small granularities of computation and shuffling. For example, for

a blocking operator, since it requires all input data before it emits any output, both the

granularity of computation and the granularity of shuffling for the output can only be All

Data. The dependency graph reveals the relationship between two system design features:

the support of latency constraints depends on incremental processing. In this thesis, we first

solve the problem of incremental processing, and then further study how to support latency

constraints.

2.1.2 Comparison of Data-Parallel Systems

We next compare the existing data-parallel systems under the design features and

key system parameters. Although the traditional parallel databases [28, 27] adopt data

parallelism, we exclude them from the comparison due to their limited scalability. We start

by a brief introduction of the state-of-the-art systems.
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MapReduce [25] is a widely-used parallel processing model for big data analytics. At the

API level, MapReduce simply includes two functions: The map function transforms input

data into 〈key, value〉 pairs, and the reduce function is applied to each list of values that

correspond to the same key. This programming model abstracts away complex distributed

systems issues, thereby providing users with rapid utilization of computing resources. To

achieve parallelism, at the system level, MapReduce essentially implements “group data

by key, then apply the reduce function to each group.” This computation model permits

data parallelism because both the extraction of 〈key, value〉 pairs and the application of

the reduce function to each group can be performed in parallel on many nodes. Besides

this computation model, a MapReduce system also implements other functionalities such

as scheduling, load balancing, and fault tolerance. An analytical query can be compiled

(e.g., using a MapReduce-based query compiler [73]) into an acyclic dataflow graph, where

each vertex is a MapReduce job consisting one map function and one reduce function,

and an edge connects two jobs if one job takes the other job’s output as input. Hadoop [37]

is the most popular open-source implementation of MapReduce. The Hadoop Distributed

File System (HDFS) handles the reading of job input data and writing of job output data.

The unit of data storage in HDFS is a 64MB block by default (128MB in newer Hadoop

releases) and can be set to other values during configuration. These blocks serve as the

granularity for map computation and also control the granularity of data shuffling between

mappers and reducers. Hadoop uses a sort-merge1 technique to implement the group-by

functionality [94] for parallel processing (Google’s MapReduce system is reported to use

a similar implementation [25], but further details are lacking due to the use of proprietary

code). A large Hadoop-centered ecosystem for parallel processing, including Hive [43],

Pig [78] and HBase [38], etc., has been built and applied widely in industry.

1Detailed description and analysis are available in Chapter 3.

15



MapReduce Online [22] improves MapReduce with pipelining of data. There are two

district features for data pipelining from mappers to reducers. First, as each mapper produces

output, it can push data eagerly to the reducers. The granularity of such data shuffling is

controlled by a parameter. Second, an adaptive control mechanism is in place to balance

work between mappers and reducers. For instance, if the reducers become overloaded,

the mappers will write the output to local disks and wait until reducers are able to keep

up again. MapReduce Online also allows reducers to periodically output snapshots (e.g.,

when reducers have received 25%, 50%, 75%, ..., of the data). This is done by performing

the merge operation over the existing data for every snapshot. Hadoop Online Prototype

(HOP) [36] is an open-source implementation of MapReduce Online based on Hadoop.

Spark [98] is an open-source, fault-tolerant parallel processing system tailored for in-

memory computation. In Spark, data is stored in a distributed in-memory data abstraction,

called Resilient Distributed Datasets (RDDs). Spark transforms an RDD to another RDD

by user-defined coarse-grained transformations, including map and reduce, and other

transformations such as sample, distinct, union and intersection. An ana-

lytical job consists of one or multiple transformations. Spark provides fault-tolerance by

tracking the lineage of each RDD, and re-computing any lost partition of an RDD. Spark

Streaming [99] is a functionality integrated in Spark that enables parallel stream processing.

Spark Streaming periodically creates a mini-batch containing the streaming input data, and

transforms stream processing into a sequence Spark batch jobs over input mini-batches.

Storm [92] is an open-source parallel stream processing system. A Storm cluster runs

topologies that are similar to MapReduce jobs but can run continuously over streams.

A topology is a dataflow graph of logical operators, which are called Spouts and Bolts.

Spouts emit data as source streams of the system and Bolts consume input streams, do

data processing, and possibly emit new streams to downstream operators. Storm supports

shuffling between operators via various types of grouping, where field grouping is the same

as the partitioning of map output in MapReduce. MillWheel [4] and Naiad [70] are two
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Table 2.1. Design features and system parameters of existing data-parallel systems.

Incremental Granularity Granularity Latency
Processing of Computation of Shuffling Constraints

Hadoop No Map: Input Chunk Input Chunk No
Reduce: All Data

HOP No Map: Input Chunk Mini-batch No
Reduce: % of All Data

Storm Require User Tuple Tuple No
Implementition

Spark Suboptimal Mini-batch Mini-batch No
Streaming
MillWheel Suboptimal Mini-batch Mini-batch No

Naiad Suboptimal Mini-batch Mini-batch No

parallel systems that also support continuous execution of a dataflow graph of operators.

Compared to Storm, MillWheel provides a richer API and a stronger support of fault

tolerance, while Naiad supports cyclic dataflow graphs in iterative workloads. Moreover,

MillWheel and Naiad allow batching tuples for computation and shuffling, whereas Storm

only supports per-tuple computation and shuffling.

We now compare the above data-parallel systems in terms of the design features and key

system parameters as shown in Table 2.1. (1) Incremental Processing. As mentioned earlier,

Hadoop and HOP adopt a blocking operator, sort-merge, to implement the partitioning in the

MapReduce model. Hence, they do not support incremental processing. Storm provides a

flexible API for parallel processing but imposes the complexity of the implementation of in-

cremental processing to users. Spark Streaming, MillWheel and Naiad provide mechanisms

for incremental processing, but focus on the case when the memory is sufficiently large.

When the memory is insufficient, Spark Streaming drops part of the data that cannot fit in

memory, and recompute the dropped data later, which incurs high cost due to repeated CPU

computation, disk I/Os and network transmission. MillWheel simply stores data that cannot

fit in memory in a data storage system, such as BigTable [19], without considering a more

efficient way to perform in-memory incremental computation. Naiad lacks the detail about

17



any mechanism dealing with insufficient memory. This thesis proposes efficient techniques

for incremental processing with both sufficient and insufficient memory in Chapter 4. (2)

Granularity of Computation. In Hadoop, due to the sort-merge operation, the execution

of the reduce function cannot start before all data is received by the reducers. Thus, the

reducers can only schedule computation at the granularity of all data. In HOP, since the

output of snapshots is allowed, the reducers can schedule computation at the granularity of

a pre-defined percentage of all data (e.g. every 25% of all data). As introduced earlier, in

Storm, each operator processes a tuple at a time upon the arrival of a tuple. Spark Streaming,

MillWheel and Naiad allow an operator to group tuples into mini-batches and process a

batch at a time. (3) Granularity of Shuffling. The shuffling granularity in Hadoop is all

the map output from an input chunk, while HOP allows more eager shuffling in smaller

mini-batches. In Storm, the shuffling granularity is in individual tuples. In Spark Streaming,

MillWheel and Naiad, the shuffling granularity is in mini-batches. (4) (Near) Real-time

Latency Constraints. Hadoop and HOP do not support any latency constraint due to the

lack of incremental processing. Although Spark Streaming, Storm, MillWheel and Naiad

support incremental processing in some cases, they do not support user-defined latency

constraints. In fact, all these existing systems are best-effort systems. They do not take

latency constraints into consideration, whereas the system configuration merely includes

static parameter values set manually by system administrators. We will further investigate

the necessary system design features required by latency constraints besides incremental

processing in Chapter 5.

Besides Spark Streaming, Storm, MillWheel and Naiad, a variety of other systems have

been developed for parallel stream processing, such as Google’s Percolator [77], Facebook’s

Ptail and Puma [13], Microsoft’s Sonora [95], WalmatLabs’ Muppet [55], IBM’s System

S [101], Yahoo’s S4 [72], and academic prototypes such as StreamCloud [35], SEEP [16],
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TimeStream [79] and StreamMapReduce [14]. We now summarize the techniques used in

these systems from different aspects in the subsequent sections.

2.2 Query Model and Query Language

A parallel stream system (PSS) is typically able to perform multiple continuous queries

(jobs) in parallel. The logical model of a query varies from system to system, but usually

can be generalized as a dataflow graph, where computation units (CUs) are interconnected

by data streams [72, 92, 95, 4, 16, 79, 70]. A CU takes one or multiple input streams from

data source or upstream CUs, and generates one or multiple output streams to downstream

CUs or consumers outside the system. A CU can perform stateless computation such as

filtering and transformation, or stateful computation such as window, group-by, aggregate

and join.

PSSs are usually tailored for the shared-nothing architecture for high scalability. In

order to handle high input rate, most systems provide both pipeline parallelism and data

parallelism in the physical plan of execution. In pipeline parallelism, different CUs can

run in parallel on different machines. In data parallelism, multiple instances (processes or

threads) of a CU can run in parallel across different machines, with each instance performing

a fraction of the workload of the CU. Both types of parallelism allow the execution of a

query to scale out given more machines. Data parallelism requires that the input tuples are

partitioned to multiple instances of a CU. Common partitioning schemes include random

partitioning, key-based partitioning and broadcast. In random partitioning, a tuple is sent to

a randomly selected CU instance. In key-based partitioning, the destination CU instance is

determined by the value of a key attribute in the tuple. In broadcast, a tuple is sent to all

instances of a CU. The partitioning scheme can be chosen based on the workload.

A system usually provides a low-level programming interface using a general program-

ming language, such as Java or C++, to define the dataflow graph of a query and implement

the functionalities of the CUs. The programming interface of a CU typically includes a
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set of user-defined callback functions. The most common callback is a function that is

triggered by each tuple from the input stream. Other callbacks include functions triggered

by timers [4] and functions triggered by system activities for fault tolerance [70, 16]. In

these callbacks, a programmer can update the state of the CU instance if the CU is stateful,

and call a system function to generate tuples to the output stream. In general, there are

two types of low-level programming interfaces. In the first type, the system treats a CU

instance as a black box, and user-defined functions can create and update an arbitrary form

of state of the CU instance [72, 92, 16, 70]. This type of interface is flexible but imposes

significant overhead to the programmer for functionalities such as fault tolerance, scaling

out and memory management. In the second type, the system explicitly manages key-state

pairs for a CU [14, 4]. The system partitions the key-state pairs to all the instances of the CU

based on keys. The input tuples also have a key attribute. Each input tuple can only update

the state that share the same key. The exposure of the computation state enables the system

to provide more functionalities and optimizations that are transparent to the programmer.

Some systems also support high-level query languages, such as LINQ [79]. A query written

in a high-level language is usually automatically compiled into a job written in the low-level

programming interface for execution.

2.3 Out-of-order Processing.

Since some operations are order-sensitive, such as time-based window, the system must

handle out of order data due to delayed network delivery and different progress of workers

in cluster computing. In particular, even if all the tuples arrive from external sources in

time order or they are simply timestamped by the system in arrival order, after they are

partitioned and assigned to different instances of a CU and processed on different nodes,

there is unlikely any guarantee that the tuples will arrive at a downstream CU instance in

time order. Since a CU running time-based window needs to identify the complete set of
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tuples that fall in a window, the system must have a way to tell the CU instance whether it

has seen all the tuples in a time window.

There are two common solutions in the literature: One is to use punctuations [57] or

low watermarks [4], which announce that at time t, an operator has seen all the data up to

time t− δ. If a CU instance receives such an announcement, it can process all the windows

whose end times precede t− δ. However, the most recent study on the MillWheel system [4]

reports that out-of-order data can prevent low watermarks from advancing for large amounts

of time.

The most advanced technique for out-of-order data [53] proposes to process significantly

late data separately in order to reduce latency and buffering cost without dropping data.

Consider an example of 30-second windows, and assume that time is marked using integers

1, 2, 3, ... Tuples that arrive before time 30 belong to the window Wv1
30 , where 30 is the end

time of the window and v1 is the version number. At time 30, the window closes and a result

of Wv1
30 is ready for output (or buffering). For the late tuples that arrive between time 30 and

60 but should belong to W30, the system initiates a new window Wv2
30 (which is possible if

the operation permits incremental updates). At time 60, a result of Wv2
30 is ready for output

(or buffering), and so on.

2.4 Fault-tolerance.

Failure is common to see in a large group of machines. When a CU instance fails, a

PSS should recover the state of the instance and guarantee correct output without causing

high delay of output. Two types of approaches have been adopted by PSSs : (1) upstream

backup and checkpointing [14, 95, 16, 4], and (2) lineage-based re-computation [79, 99].

In the first approach, each CU instance maintains a log of its output, and periodically

creates a checkpoint of its state and the content in its output queues. A checkpoint is created

asynchronously to a reliable storage such as a distributed file system. After that, the upstream

CU instances are notified to prune the content older than the checkpoint in their output logs.
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If the failure of a CU instance is detected, the PSS creates a new instance of the CU and

restores the state and the content of the output queues from the most recent checkpoint of

the failed instance. Then, the output logs of the upstream CU instances are replayed to the

new instance to bring it up-to-date. This approach guarantees at-least-one delivery. The

failed instance and the downstream instances may process some tuples more than once.

The correctness of idempotent operators, such as min, max and union, is guaranteed. For

non-idempotent operators, additional duplicate removal techniques are required [4]. In the

second approach, the system keeps track of the lineage of the states during the processing, a

dependency graph of the states and the operations that generate each state from its parent

states. When the state of a CU instance is lost, it is recomputed from its parent states. If a

parent state is also lost, the system recursively recover any lost states that are required based

on the lineage graph. Based on either of the two approaches, in order to reduce the latency

caused by recovery, techniques have been proposed to recover the state of a CU instance in

parallel using multiple new instances [16, 99].

2.5 Elasticity

Due to the nature of continuous queries, a system should adapt to changes in the workload

characteristics without interrupting the execution of the queries or causing high latency.

Especially in the cloud environment, where users are charged in the pay-as-you-go manner,

elasticity is highly desired to scale out to more machines when overload occurs and scale in

to fewer machines when the machines are under utilized. For stateful operators [95, 16, 79],

the basic idea is to abandon an instance of a CU that needs to scale out, and use fault-

tolerance techniques to recover the abandoned instance with multiple new instances. [82]

proposes techniques for stateless operators to scale out, with focus on finding the optimal

number of processing threads for an operator.
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We have introduced a variety of parallel stream processing systems from different

technical aspects. In the subsequent sections, we discuss other relevant systems.

2.6 MapReduce

In this section, we briefly discuss the literature relevant to the MapReduce model.

Query Processing using MapReduce. [17, 47, 73, 76, 91, 97] has been a research topic

of significant interest lately. To the best of our knowledge, none of these systems support

incremental processing. Dryad [97] uses in-memory hashing to implement MapReduce

group-by but falls back on the sort-merge implementation when the data size exceeds

memory. Merge Reduce Merge [96] implements hash join using a technique similar to our

baseline MR-hash, but lacks further implementation details. SCOPE [17] is a SQL-like

declarative language designed for parallel processing with support of three key user-defined

functions: process (similar to map), reduce (similar to reduce) and combine (similar to a

join operator). SCOPE provides the same functionality as Merge Reduce Merge and does

not propose new hash techniques beyond the state-of-the-art. Several other projects are

in parallel to our work: The work in [8] focuses on optimizing Hadoop parameters and

ParaTimer [68] aims to provide an indicator of remaining time of MapReduce jobs. Neither

of them improves MapReduce for incremental computation.

Cost Models for MapReduce. Recent work presented models to predict total running

time of a MapReduce job over stored data based on analysis of CPU, I/O and network costs

or based on training over profiles of previous jobs [40, 41, 42, 45, 30]. These models differ

from ours as we aim to capture latency, which relates to a different set of system parameters

and concerns, such as the input rate, queue sizes, and latency in each step. ParaTimer [68] is

a progress indictor for MapReduce jobs, which identifies map and reduce tasks on a query’s

critical path. It serves a different purpose from our goal of modeling latency. Zeitler et

al. [100] proposed a model of total CPU cost for distributed continuous queries, a different

goal from ours.
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Computation Models for MapReduce. Karloff et al. [49] suggest a theoretical abstrac-

tion of MapReduce. The abstraction employs a model that is both general and sufficiently

simple such that it encourages algorithm research to design and analyze more sophisticated

MapReduce algorithms. However, this model is based on simple assumptions that are not

suitable for system research like our study. First, no distinction is made between disk and

main memory. Second, the model is only applicable to the case that each machine has

memory O(n1−ε) where n is the size of entire input and ε is a small constant. Third, the

model assumes that all map tasks have to complete before the beginning of the reduce phase,

which makes the model invalid for incremental computation.

2.7 Stream Database Systems

Stream databases [1, 15, 18, 69] laid a foundation for stream processing including

window semantics, optimized implementations, and out-of-order data processing. Our work

leverages state-of-the-art techniques for windowed operations and out of order processing

in the new context of the MapReduce cluster computing. Techniques for QoS including

scheduling and load shedding have been studied in Aurora/Borealis [15, 7, 1, 59, 90,

89]. However, scheduling in Aurora [15] considers latency only based on CPU costs and

selectivity of operators in the single-machine environment, whereas our resource planning

considers many more factors in a distributed system and uses constrained optimization to

support both latency and throughput. Load shedding in Borealis [89] allocates resources

in a distributed environment by solving a linear optimization problem, but only maximizes

throughput without considering latency and only supports pipeline parallelism without data

parallelism.

2.8 Parallel Database Systems

Parallel databases [28, 27] require special hardware and lacked sufficient solutions

to fault tolerance, hence having limited scalability. Their implementations use hashing

24



intensively. In contrast, our work leverages the massive parallelism of MapReduce and

extends it to incremental processing and low-latency analytics. We use MR-hash, a technique

similar to hybrid hash used in parallel databases [28], as a baseline. Our more advanced

hash techniques emphasize incremental processing and in-memory processing for hot keys

in order to support low-latency analytics.

Emerging parallel databases [2, 3, 12, 32] use MapReduce for query processing, lever-

aging its scalability and fault tolerance, but do not support incremental processing or

low-latency analytics.

2.9 Other Systems

DEDUCE [54] extends System S with the capability of executing MapReduce jobs, but

for batch processing. CBP [61] supports stateful bulk processing for incremental analytics,

but not low-latency streaming analytics (e.g., with running time of 10’s to 100’s of minutes).

Photon [5] is designed particularly for joining data streams in real-time, but focuses on

issues other than efficient incremental processing and supporting latency constraints.
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CHAPTER 3

HADOOP BENCHMARKING AND OPTIMIZATION

In this chapter, we answer the following research question: “Are the existing MapReduce

implementations able to support incremental processing?” Incremental processing means

that computation is performed as soon as the relevant data becomes available. Incremental

processing enables tuples to move quickly through a pipeline of operators, and thus is

essential to returning query answers with low latency.

We first conduct a thorough benchmarking study, evaluating existing MapReduce plat-

forms including Hadoop and MapReduce Online (which performs pipelining of intermediate

data [22]). The results reveal that the main mechanism for parallel processing used in these

systems, based on a sort-merge technique, is subject to a significant I/O bottleneck as well

as blocking: In particular, we find that the merge step is potentially blocking and can incur

significant I/O costs due to intermediate data. Furthermore, MapReduce Online’s pipelining

functionality only redistributes workloads between the map and reduce tasks, and is not

effective for reducing blocking or I/O overhead.

Next, building on these benchmarking results, we perform an in-depth analysis of

Hadoop, using a theoretically sound analytical model to explain the empirical results. Given

the complexity of the Hadoop software and its myriad of configuration parameters, we seek

to understand whether the above performance limitations are inherent to Hadoop or whether

tuning of key system parameters can overcome those drawbacks from the standpoint of

incremental processing. The key results are two-fold: (1) It is shown that our analytical

model can be used to choose appropriate values of Hadoop parameters, thereby reducing

I/O and startup costs. (2) Despite a range of optimizations, the I/O bottleneck as well as
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blocking persist, and the reduce progress falls significantly behind the map progress, hence

violating the requirements of efficient incremental processing. Both theoretical and empirical

analyses show that the sort-merge implementation, used to support data parallelism, poses a

fundamental barrier to incremental processing.

This chapter is organized as follows. We first provide a technical background of MapRe-

duce in Section 3.1. We then describe our benchmark results of the MapReduce systems

in Section 3.2. We show the optimization of Hadoop configuration and the analysis of the

results in Section 3.3. We finally conclude in Section 3.4.

3.1 Background

To provide a technical context for the discussion in this chapter, we begin with back-

ground on MapReduce, followed by the overview of Hadoop, the most popular open-source

implementation of MapReduce.

3.1.1 Overview of MapReduce

At the API level, the MapReduce programming model simply includes two functions:

The map function transforms input data into 〈key, value〉 pairs, and the reduce function

is applied to each list of values that correspond to the same key. This programming model

abstracts away complex distributed systems issues, thereby providing users with rapid

utilization of computing resources. As an example, consider how we would parse a click

stream to find the most visited pages. More specifically, we want to count how many times

each page has been visited. Suppose the schema for a visits table is (timestamp, user, url).

Consider the following SQL query:

SELECT COUNT(*) FROM visits GROUP BY url;

Page clicks are grouped by url and then aggregated using COUNT for each url. Now

consider the equivalent MapReduce job for computing page frequencies below. The map

function emits a new <url, count> tuple for each visit in the click stream, where the count
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is 1. The reduce function then groups these tuples by url and sums the number of visits to

each url.

function map(rid, visit) {
emit(visit.url, 1);

}

function reduce(url, iterator<int> count) {
int total = 0;
foreach count c

total += c;
emit(url, total);

}

To achieve parallelism, the MapReduce system essentially implements “group data by

key, then apply the reduce function to each group”. This computation model, referred to

as MapReduce group-by, permits parallelism because both the extraction of 〈key, value〉
pairs and the application of the reduce function to each group can be performed in parallel

on many nodes. The system code of MapReduce implements this computation model (and

other functionality such as load balancing and fault tolerance).

The MapReduce program of an analytical query includes both the map and reduce

functions compiled from the query (e.g., using a MapReduce-based query compiler [73, 43])

and the MapReduce system’s code for parallelism.

3.1.2 Overview of the Hadoop Implementation

We consider Hadoop, the most popular open-source implementation of MapReduce,

in our study. Hadoop uses block-level scheduling and a sort-merge technique [94] to

implement the group-by functionality for parallel processing (Google’s MapReduce system

is reported to use a similar implementation [25], but further details are lacking due to the

use of proprietary code).

The Hadoop Distributed File System (HDFS) handles fault tolerance and replication for

reading job input data and writing job output data. By default, the unit of data storage in
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Figure 3.1. Architecture of the Hadoop implementation of MapReduce.

HDFS is a 64MB block and can be set to other values during configuration. These blocks

serve as the task granularity for MapReduce jobs.

Given a query, its MapReduce job is assigned m map tasks (mappers) and r reduce tasks

(reducers) concurrently on each node. As Figure 3.1 shows, each mapper reads a block

of input data, applies the map function to extract key-value pairs, then assigns these data

items to partitions that correspond to different reducers, and finally sorts the data items in

each partition by the key. Hadoop currently performs a block-level sort on the compound

(partition, key) to achieve both partitioning and sorting in each partition. Given the relatively

small block size, a properly-tuned buffer will allow such sorting to complete in memory.

Then the sorted map output is written to a file using synchronous I/O. A mapper completes

after its output has been persisted for fault tolerance.

Map output is then shuffled to the reducers (in the shuffling phase). To do so, reducers

periodically poll a centralized service asking about completed mappers and once notified,

requests data directly from the completed mappers (pull-based communication). Under

normal circumstances, this data transfer happens soon after a mapper completes and so this

data is often available in the mapper’s memory.
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Table 3.1. Workloads and their running time in the benchmark.

Click Streams Web Documents
Setting Sessionization Page frequency Per-user count Inverted index
Input data 256GB 508GB 256GB 427GB
Map output data 269GB 1.8GB 2.6 GB 150GB
Reduce spill data 370GB 0.2GB 1.4 GB 150GB
Intermediate/input 250% 0.4% 1.0% 70%
Output data 256GB 0.02GB 0.6GB 103GB
Map tasks 3,773 7,580 3,773 6,803
Reduce tasks 40 40 40 40
Completion time 76 min. 40 min. 24 min. 118 min.

Over time, a reducer collects pieces of sorted output from many completed mappers.

Unlike before, this data cannot be assumed to fit in memory for larger workloads. As the

reducer’s buffer fills up, these sorted pieces of data are merged and written to a file on disk.

A background thread merges these on-disk files progressively whenever the number of such

files exceeds a threshold F (in a so-called multi-pass merge phase). When a reducer has

collected all of the map output, it will perform a multi-pass merge if the on-disk files exceed

F; otherwise, it will perform a final merge to produce all key-value pairs in sorted order of

the key. Over the sorted file, the reducer identifies each list of values sharing the same key

and then applies the reduce function to the list. The output of the reduce function is written

back to HDFS.

Finally, when the reduce function is commutative and associative, a combine function

(typically sharing the code with the reduce function) is applied right after the map function,

as shown in Figure 3.1, to perform partial aggregation and reduce the size of map output. It

can be further applied in a reducer when its data buffer fills up.

3.2 Benchmarking and Analysis

We next introduce our benchmark study in detail.
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3.2.1 Experimental Setup

We consider two applications that require incremental processing in benchmarking:

click stream analysis which represents workloads for stream processing, and web document

analysis which represents workloads for one-pass analysis over stored data. The workloads

tested are summarized in Table 3.1.

In click stream analysis, an important task is sessionization, which reorders click logs

into individual user sessions. Its MapReduce program employs the map function to extract

the url and user id from each click log, then groups click logs by user id, and implements the

sessionization algorithm in the reduce function. A key feature of this task is a large amount

of intermediate data due to the reorganization of all click logs by user id. Another task

in click stream analysis is page frequency counting. As a simple variant on the canonical

word counting problem, it counts the number of visits to each url. A similar task counts the

number of clicks that each user has made. For such counting problems, a combine function

can be applied to significantly reduce the amount of intermediate data. For this application,

we use the click logs from the World Cup 1998 website1 and replicate it to larger sizes as

needed.

The second application is web document analysis. A key task is inverted index con-

struction, in which a large collection of web documents (or newly crawled web documents)

is parsed and an inverted index on the occurrences of each word in those documents is

created. In its MapReduce program, the map function extracts (word, (doc id, position))

pairs and the reduce function builds a list of document ids and positions for each word.

The intermediate data is typically smaller than the document collection itself, but still of

a substantial size. Other useful tasks in this application involve word frequency analysis,

which are similar to page frequency analysis mentioned above, hence omitted in Table 3.1.

1http://ita.ee.lbl.gov/html/contrib/WorldCup.html
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For this application, we use the 427GB GOV2 document collection created from an early

2004 crawl of government websites.2

The Hadoop configuration mainly used the default settings with a few changes. We

ran the NameNode and JobTracker daemons on the head node and ran DataNode and

TaskTracker daemons on each of the 10 compute nodes. The HDFS block size was 64MB.

HDFS replication was turned down to 1 from the default 3. The map output buffer was

tuned for each workload to ensure there were no spills to disk. JVM reuse was enabled. The

JVM heap size was set to 1GB.

A variety of tools are used for profiling, all of which have been packaged into a single

program for simplicity. This program launches standard utilities such as iostat and ps,

and logs the output to a file. We use the logged information to track metrics such as disk

utilization and system CPU utilization. Hadoop-specific plots such as the task history were

created by a publicly available parser.

3.2.2 Result Analysis

Table 3.1 shows the running time of the workloads as well as the sizes of input, output,

and intermediate data in our benchmark. Our analysis below focuses on the sessionization

workload that involves the largest amount of intermediate data. We comment on the results

of other workloads in the discussion whenever appropriate. Figure 3.2(a) shows the task

timeline for the sessionization workload, i.e., the number of tasks for the four main operations

in its MapReduce job: map (including sorting), shuffle, merge (the multi-pass part), and

reduce (including the final scan to produce a single sorted run). As can be seen, time is

roughly evenly split between the map and reduce phases, with a substantial merge phase in

between. Also note that some periodic background merges take place even before all map

tasks complete. When the intermediate data is reduced as in other workloads, first the merge

phase shrinks and then the reduce phase also shrinks.

2http://ir.dcs.gla.ac.uk/test collections/gov2-summary.htm

32



(a) Task timeline. (b) CPU utilization.

(c) CPU iowait. (d) Bytes read.

(e) CPU utilization (HDD+SSD). (f) CPU utilization (hybrid architec-
ture).

Figure 3.2. Experimental results using the sessionization workload.

Cost of Parsing. A potential CPU bottleneck can be parsing line-oriented flat text files

into the data types that map functions expect. To investigate this possibility, we prepared

two different formats of the same data to use as input for the sessionization workload. The

first format is the original line-oriented text files, leaving the task of extracting user ids to a

regular expression in the map function. The second format is the same data preprocessed

into Hadoop’s SequenceFile binary format, allowing the map function to immediately

operate on the data without having to do any parsing. We ran the sessionization workload on
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these two inputs and observed almost no difference in either running time or CPU utilization

between the jobs. We therefore concluded that input parsing is a negligible overall cost.

Cost of Map Output. A potential I/O bottleneck can be the writes of map output to disk

using synchronous I/O, required for fault tolerance in MapReduce. In our benchmark, we

observed that although each map task did block while performing this write, it did not take

up a large portion of a map task’s lifetime. In the sessionization workload with a large

amount of map output data, these writes took 1.3 seconds on average, while the average map

task running time took 21.6 seconds. This 6% time did not make a significant contribution to

a map task’s running time relative to other parts. Furthermore, the recent MapReduce Online

system [22] proposes to pipeline map output to the reducers and persists the data using

asynchronous I/O. Hence, it can be used as a solution if the map output may be observed as

an I/O bottleneck elsewhere.

Overhead of Sorting. Recall from Section 3.1 that when a map task finishes processing

its input block, the key-value pairs must be partitioned according to different reducers and

key-value pairs in each partition must be sorted to facilitate the merge in reducers. Hadoop

accomplishes this task by performing a sort on the map output buffer on the compound of

(partition, key).

First, we observe from Figure 3.2(b) that CPUs are busy in the map phase. It is important

to note that the map function in the sessionization workload is relatively CPU light: it parses

each click log into user id, timestamp, url, etc., and emits a key-value pair where the key

is the user id and the value contains other attributes. The rest of cost in the map phase is

attributed to sorting of the map output buffer. To quantify the costs of the map function

and sorting, we performed detailed profiling of CPU cyles consumed by each, as shown

in Table 3.2. In the sessionization workload, roughly 61% of CPU cycles were consumed

by the map function while 39% was by sorting. In the per-user click counting workload,

the map function simply emits pairs in the form of (user id, “1”), and up to 48% of CPU

cycles were consumed by sorting these pairs. We further note that if we expedite click log
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Table 3.2. Average CPU cycles per node, measured by CPU seconds, in the map phase
(256GB worldcup dataset).

Sessionization Per-user count
Map function (%) 566 sec. (61%) 440 sec. (52%)
Sorting (%) 369 sec. (39%) 406 sec. (48%)

parsing in the map function using the recent proposal of mutable parsing [47], the overhead

of sorting will be even more prominent in the map phase.

Conclusion: Sorting of map output can introduce a significant CPU overhead, due to

the use of the sort-merge implementation of the group-by operation in MapReduce.

Overhead of Merging. As map tasks complete and their output files are shuffled to the

reducers, each reducer writes these files to disk (since there is not enough memory to hold

all of them) and performs multi-pass merge: as soon as the number of on-disk files reaches

a configurable threshold, it merges these files to a larger file and writes it back to disk. Such

a merge will be triggered next time when the reducer sees this number of files on disk.

This process continues until all map tasks have completed and the reducer has brought the

number of on-disk files down to the threshold. It completes by merging these on-disk files

and feeding sorted data directly into the reduce function.

In the sessionization workload, the overhead of multi-pass merge is particularly notice-

able when most map tasks have completed. In the CPU utilization plot in Figure 3.2(b),

there is an extended period (from time 1800 to 2400) where the CPUs are mostly idle.

While CPUs could be idle due to both disk I/O and network I/O, the CPU iowait graph in

Figure 3.2(c) shows that it is largely due to outstanding disk I/O requests, and the graph in

Figure 3.2(d) shows a large number of bytes read from disk in the same period. All of these

observations match the merge activities shown between the map and reduce phases in the

task timeline plot in Figure 3.2(a).

Overall, multi-pass merge is a blocking operation. The reduce function cannot be

applied until this operation completes with all the data arranged into a single sorted run.
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Figure 3.3. Task timeline using the inverted index construction workload.

This blocking effect causes low CPU utilization when most map tasks complete and prevents

any answer from being returned by reducers for an extended period.

Moreover, the multi-pass merge operation is also I/O intensive. Our profiling tool shows

that in sessionization, the reducers read and write 370GB data in the multi-pass merge

operation while the input data has only 256 GB, as shown in Table 3.1. The inverted index

workload incurs a somewhat reduced but still substantial I/O cost of 150GB data in this

operation. As shown in Figure 3.3, the blocking merge phase is present in this workload

as well. Progress is stopped until local intermediate data is merged on each node. In

simpler workloads, such as counting the number of clicks per user, there is an effective

combine function to reduce the intermediate data size. However, it is interesting to observe

from Table 3.1 that even if there is ample memory to perform in-memory processing, the

multi-pass merge still causes I/O, e.g., 1.4GB spill from the reducers. This is because when

the memory fills up, each reducer applies the combine function to the data in memory but

still writes the data to disk waiting for all future data to produce a single sorted run.

Conclusion: The multi-pass merge operation is blocking. It is I/O intensive for workloads

with large amounts of intermediate data. It may still cause I/O even if there is enough

memory to hold all intermediate data.
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3.2.3 Architectural Improvements

We next explore some architectural choices to investigate whether these changes can

eliminate the blocking effect and the I/O bottleneck observed in the previous benchmark.

The motivation is that when given a substantial amount of intermediate data, the disk

utilization stays high for most time of a MapReduce job (e.g., over 90% in the sessionization

workload). This is because the disk on each node not only serves the input data from HDFS

and writes the final output to HDFS, but also handles intermediate data including the map

output and the reduce spill in the multi-pass merge. Given a mix of requests from different

MapReduce operations, the disk is often maxed out and subject to random I/Os.

Separate Storage Devices. One architectural improvement is to employ multiple devices

per node for storage, thereby reducing disk contention in MapReduce operations. In this

experiment, in addition to the existing hard disk, we add a solid state drive (64GB Intel SSD)

to each node in the cluster. We use the hard disk to handle the input and output with HDFS

and use the smaller, but faster, SSD to hold all intermediate data. This way, reading input

data from HDFS and managing the intermediate data can proceed in parallel. In addition,

the writes of map output and the reads/writes for multi-pass merge can benefit from the fast

random access offered by the SSD.

We show the CPU utilization (among many other measurements) of the sessionization

workload in Figure 3.2(e). The main observations include the following. Extra storage

devices help reduce the total running time, from 76 minutes to 43 minutes for sessionization.

Detailed profiling shows that roughly 2/3 of the performance benefit comes from having

an extra storage device, and about 1/3 of it comes from the SSD characteristics themselves.

However, there is still a significant period where the CPU utilization is low, demonstrating

that the multi-pass merge continues to be blocking and involving intensive I/Os.

A Separate Distributed Storage System. An alternative way to address the disk con-

tention problem is to use separate systems to host the distributed storage and MapReduce

computation. This is analogous to Amazon’s Elastic MapReduce where the S3 system
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handles distributed storage and the EC2 system handles MapReduce computation with its

local disks reserved for the use of intermediate data. This comes at the price of data locality

though; tasks will no longer be able to be scheduled on the same nodes where data resides

and so this architecture will incur additional network overhead. In our experiment, we

simulate two subsystems by allocating 5 nodes to host the distributed storage and 5 nodes to

serve as compute nodes for MapReduce. We reduce the input data size accordingly to keep

the running time comparable to before.

Similar to the previous experiment, the separation of the distributed storage system

helps reduce the running time of sessionization from 76 minutes to 55 minutes (which,

however, does not have the benefits of SSDs). More importantly, the CPU utilization plot in

Figure 3.2(f) shows that the issues of blocking and intensive I/O remain, which agrees with

the previous experiment.

Conclusion: Architectural improvements can help reduce contention in storage device

usage and decrease overall running time. However, they do not eliminate the blocking effect

or the I/O bottleneck observed about the sort-merge implementation of MapReduce.

3.2.4 MapReduce Online

We finally consider a recent system called MapReduce Online that implements a Hadoop

Online Prototype (HOP) with pipelining of data [22]. This prototype has two distinct

features: First, as each map task produces output, it can push data eagerly to the reducers.

The granularity of such data transmission is controlled by a parameter. Second, an adaptive

control mechanism is in place to balance work between mappers and reducers. For instance,

if the reducers become overloaded, the mappers will write the output to local disks and wait

until reducers are able to keep up again. A potential benefit of HOP is that with pipelining,

reducers receive map output earlier and can begin multi-pass merge earlier, thereby reducing

the time required for the merge work after all mappers finish.
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(a) CPU utilization. (b) CPU iowait.

Figure 3.4. Results for MapReduce Online using the sessionization workload.

However, it is important to note that HOP adds pipelining to an overall blocking im-

plementation of MapReduce based on sort-merge. As is known in the database literature,

the sort-merge implementation of group by is an inherently blocking operation. HOP has a

minor extension to periodically output snapshots (e.g., when reducers have received 25%,

50%, 75%, ..., of the data). This is done by repeating the merge operation for each snapshot.

This is not real incremental computation desired in stream processing, and may incur a

significant I/O overhead in doing so. Furthermore, such pipelining does not reduce CPU

and I/O overhead but only redistributes workloads between mappers and reducers.

Figure 3.4 shows some initial results of MapReduce Online using the sessionization

workload. The most important observation is that the CPU utilization plot shows a similar

pattern of low values in the middle of the job. While CPU can be idle due to both I/O wait

and network wait (given the different communication model used in MapReduce Online),

the CPU iowait graph again shows a spike in the middle of the job. Hence, our previous

observations of blocking and I/O activity due to multi-pass merge still hold here.

There are several subtle differences from the previous results of benchmarking Hadoop.

The total running time is actually longer using MapReduce Online. A possible explanation

for this difference is that MapReduce Online is based off an older version of Hadoop, 0.19.2,

whereas we benchmarked using 0.20.0. Any performance optimizations made during this

time will only be present in the newer version. Another possible reason is that MapReduce
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Online transmits map output eagerly in finer granularity and hence increases network cost,

which in turn causes lower CPU utilization. Another thing to note is that the CPU utilization

in the map phase when running HOP is lower than when running on stock Hadoop. We

verified that the total number of CPU cycles consumed in the map phase are similar across

both implementations by observing that HOP spends a greater amount of time in the map

phase, with a somewhat reduced level of CPU utilization. Finally, this prototype moves

some of the sorting work to reducers, which may also affect the CPU utilization in different

phases of the job. In our ongoing work, we will continue benchmarking MapReduce Online,

including the use of other workloads, to better explain its behavior.

3.2.5 Summary of Results

In this section, we benchmarked Hadoop and MapReduce Online which both use the

sort-merge implementation of the group by operation in MapReduce. Our goal was to

answer the question that we raised at the beginning of the study: Do current MapReduce

systems satisfy the requirements for incremental processing? Our benchmarking results can

be summarized as follows.

I The sorting step of the sort-merge implementation incurs high CPU cost, hence

unsuitable for fast in-memory processing.

I Multi-pass merge in sort-merge is blocking and can incur high I/O cost given substan-

tial intermediate data, hence not suitable for incremental processing or fast in-memory

processing.

I Using extra storage devices and alternative storage architectures do not eliminate

blocking or the I/O bottleneck.

I The Hadoop Online Prototype with pipelining does not eliminate blocking, the CPU

bottleneck, or the I/O bottleneck.
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Table 3.3. Symbols used in Hadoop analysis.

Symbol Description
(1) System Settings

R Number of reduce tasks per node
C Map input chunk size
F Merge factor that controls how often on-disk files are merged

(2) Workload Description
D Input data size

Km Ratio of output size to input size for the map function
Kr Ratio of output size to input size for the reduce function

(3) Hardware Resources
N Number of nodes in the cluster
Bm Output buffer size per map task
Br Shuffle buffer size per reduce task

(4) Symbols Used in the Analysis
U Bytes read and written per node, U = U1 + . . . + U5 where

Ui is the number of bytes of the following types
1: map input; 2: map internal spills; 3: map output;
4: reduce internal spills; 5: reduce output

S Number of sequential I/O requests per node
T Time measurement for startup and I/O cost
h Height of the tree structure for multi-pass merge

3.3 Optimizing Hadoop

Building on our previous benchmarking results, we perform an in-depth analysis of

Hadoop in this section. Our goal is to understand whether the performance issues identified

by our benchmarking study are inherent to Hadoop or whether they can be overcome by

appropriate tuning of key system parameters.

3.3.1 An Analytical Model for Hadoop

The Hadoop system has a large number of parameters. While our previous experiments

used the default setting, we examine these parameters more carefully in this study. After a

nearly year-long effort to experiment with Hadoop, we identified several parameters that

impact performance from the standpoint of incremental processing, which are listed in

Part (1) of Table 3.3. Our analysis below focuses on the effects of these parameters on

I/O and startup costs. We do not aim to model the actual running time because it depends

on numerous factors such as the actual server configuration, how map and reduces tasks
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are interleaved, how CPU and I/O operations are interleaved, and even how simultaneous

I/O requests are served. Once we optimize these parameters based on our model, we will

evaluate performance empirically using the actual running time and the progress with respect

to incremental processing.

Our analysis makes several assumptions for simplicity: The MapReduce job under

consideration does not use a combine function. Each reducer processes an equal number

of 〈key, value〉 pairs. Finally, when a reducer pulls a mapper for data, the mapper has just

finished so its output can be read directly from its local memory. The last assumption frees

us from the onerous task of modeling the caching behavior at each node in a highly complex

system.

3.3.1.1 Modeling I/O Cost in Bytes

We analyze the I/O cost of the existing sort-merge implementation of Hadoop. We first

consider the I/O cost in terms of the number of bytes read and written. Our main result is

summarized in the following proposition.

Proposition 3.3.1. Given the workload description (D, Km, Kr) and the hardware descrip-

tion (N, Bm, Br), as defined in Table 3.3, the I/O cost in terms of bytes read and written in a

Hadoop job is:

U =
D
N
· (1 + Km + KmKr) +

2D
CN
· λF(

CKm

Bm
, Bm) · 1[C·Km>Bm]

+ 2R · λF(
DKm

NRBr
, Br), (3.1)

where 1[·] is an indicator function, and λF(·) is defined to be:

λF(n, b) =
(

1
2F(F− 1)

n2 +
3
2

n− F2

2(F− 1)

)
· b. (3.2)

Proof. Our analysis includes five I/O-types listed in Table 3.3. Each map task reads a data

chunk of size C as input, and writes C · Km bytes as output. Given the workload D, we have
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D/C map tasks in total and D/(C · N) map tasks per node. So, the input cost, U1, and

output cost, U3, of all map tasks on a node are:

U1 =
D
N

and U3 =
D · Km

N
.

The size of the reduce output on each node is U5 = D·Km·Kr
N .

Map and reduce internal spills result from the multi-pass merge operation, which can

take place in a map task if the map output exceeds the memory size and hence needs to use

external sorting, or in a reduce task if the reduce input data does not fit in memory.

We make a general analysis of multi-pass merge first. Suppose that our task is to merge

n sorted runs, each of size b. As these initial sorted runs are generated, they are written

to spill files on disk as f1, f2, . . . Whenever the number of files on disk reaches 2F − 1,

a background thread merges the smallest F files into a new file on disk. We label the

new merged files as m1, m2, . . . Figure 3.5 illustrates this process, where an unshaded box

denotes an initial spill file and a shaded box denotes a merged file. For example, after the

first 2F− 1 initial runs generated, f1, . . . , fF are merged together and the resulting files on

disk are m1, fF+1, . . . , f2F−1 in order of decreasing size. Similarly, after the first F2 + F− 1

initial runs are generated, the files on disk are m1, . . . , mF, fF2+1, . . . , fF2+F−1. Among

them, m1, fF2+1, . . . , fF2+F−1 will be merged together and the resulting files on disk will

be mF+1, m2, . . . , mF in order of decreasing size. After all initial runs are merged, a final

merge combines all the remaining files (there are at most 2F− 1 of them).

For the analysis, let αi denote the size of a merged file on level i (2 ≤ i ≤ h) and let α1 =

b. Then αi = αi−1 + (F− 1)b. Solving this recursively gives αi = (i− 1)Fb− (i− 2)b.

Hence, the total size of all the files in the first h levels is:

F(αh +
h−1

∑
i=1

(αi + (F− 1)b)) = bF
(

hF +
(F− 1)(h− 2)(h + 1)

2

)
.
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Figure 3.5. Analysis of the tree of files created in multi-pass merge.

If we count all the spill files (unshaded boxes) in the tree, we have n = (F + (F− 1)(h−
2))F. Then we substitute h with n and F using the above formula and get

λF(n, b) =
(

1
2F(F− 1)

n2 +
3
2

n− F2

2(F− 1)

)
· b

Then, the total I/O cost is 2λF(n, b) as each file is written once and read once. The remaining

issue is to derive the exact numbers for n and b in the multi-pass merge in a map or reduce

task.

In a map task, if its output fits in the map buffer, then the merge operation is not needed.

Otherwise, we use the available memory to produce sorted runs of size Bm each and later

merge them back. So, b = Bm and n = C·Km
Bm

. As each node handles D/(C · N) map tasks,

we have the I/O cost for map internal spills on this node as:

U2 =





2D
C·N · λF(

C·Km
Bm

, Bm) if C · Km > Bm;

0 otherwise.

In a reduce task, as we do not have a combine function, the input for reduce usually

cannot fit in memory. The size of input to each reduce task is D·Km
N·R . So, b = Br and

n = D·Km
N·R·Br

. As each node handles R reduce tasks, we have the reduce internal spill cost:
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U4 = 2R · λF(
D · Km

N · R · Br
, Br)

Summing up U1, . . . , U5, we then have Equation 3.1 in the proposition.

3.3.1.2 Modeling the Number of I/O requests

In our analysis we also model the number of I/O requests in a Hadoop job, which allows

us to estimate the disk seek time when these I/O requests are performed as random I/O

operations. Again we summarize our result in the following proposition.

Proposition 3.3.2. Given the workload description (D, Km, Kr) and the hardware descrip-

tion (N, Bm, Br), as defined in Table 3.3, the number of I/O requests in a Hadoop job

is:

S =
D

CN

(
α + 1 + 1[CKm>Bm] ·

(
λF(α, 1)(

√
F + 1)2 + α− 1

))

+ R
(

βKr(
√

F + 1)− β
√

F + λF(β, 1)(
√

F + 1)2
)

,

where α = CKm
Bm

, β = DKm
NRBr

, λF(·) is defined in Equation 3.2, and 1[·] is an indicator

function.

Proof. We again consider the five types of I/O listed in Table 3.3. For each map task, a

chunk of input data is sequentially read until the map output buffer fills up or the chunk is

completely finished. So, the number of I/O requests for the map input C·Km
Bm

. All map tasks

on a node will trigger the number of I/O requests, S1, as:

S1 = (
D

CN
) · (CKm

Bm
).

If the map output fits in memory, there is no internal spill and the map output is written

to disk using one sequential I/O. Considering all map tasks on a node, we have

S2 + S3 =
D

CN
if CKm ≤ Bm .
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If the map output exceeds the memory size, it is sorted using external sorting which involves

multi-pass merge.

Since both map and reduce tasks may involve multi-pass merge, we first do a general

analysis of the I/O requests incurred in this process. How many I/O requests to make

depends not only on the data size but also on the memory allocation scheme, which can vary

with the implementation and system resources available. Hence, we consider the optimal

scheme regarding the I/O requests below.

Suppose that a merge step is to merge F files, each of size f , into a new file with memory

size B. For simplicity, we assume the buffer size for each input file is the the same, denoted

by Bin. Then the buffer size for the output file is B− F · Bin. The number of read and write

requests is

s =
F · f
Bin

+
F · f

B− F · Bin
.

By taking the derivative with respect to Bin we can minimize s, which is:

sopt =
F · f

B
(
√

F + 1)2 when Bopt
in =

B
F +
√

F
.

Revisit the tree of files in multi-pass merge in Figure 3.5. Each merge step, numbered j

in the formula below, corresponds to the creation of a merged file (shaded box) in the tree.

When we sum up the I/O requests of all these steps, we can apply our previous result on the

total size of all the files:

∑
j

sopt
j =

∑j F · f j

B
(
√

F + 1)2 =
λF(n, b)

B
(
√

F + 1)2,

where n is the number of initial spill files containing sorted runs and b is the size of each

sorted run. But this above analysis does not include the I/O requests of writing the n initial

sorted runs from memory to disk, so we add n requests and have the total number:

smerge = n +
λF(n, b)

B
(
√

F + 1)2. (3.3)
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The value of n and b in map and reduce tasks have been analyzed previously. In a map

task, if CKm > Bm, then multi-pass merge takes place. For the above formula, B = Bm,

b = Bm and n = CKm
Bm

. Considering all D
CN map tasks on a node, we have:

S2 + S3 =
D

CN

(
CKm

Bm
+ λF(

CKm

Bm
, 1)(
√

F + 1)2
)

if CKm > Bm.

For a reduce task, we have B = Br, b = Br and n = DKm
NRBr

. We can get the I/O requests

by plugging these values in Equation 3.3. However, this result includes the disk requests for

writing output in the final merge step, which does not actually exist because the output of

the final merge is directly fed to the reduce function. The overestimation is the number of

requests for writing data of size DKm
NR with an output buffer of size Br − F · Bopt

in = Br√
F+1

.

So, the overestimated number of requests is DKm(
√

F+1)
NRBr

. Given R reduce tasks per node, we

have:

S4 = R
(

λF(
DKm

NRBr
, 1)(
√

F + 1)2 − DKm

NRBr
·
√

F
)

.

Finally, the output size of a reducer task is DKmKr
NR , written to disk with an output buffer

of size Br√
F+1

. So, we can estimate the I/O requests for all reduce tasks on a node, S5, with

S5 = R
(

DKm

NRBr
· Kr(
√

F + 1)
)

.

The sum of S1, . . . , S5 gives the result in the proposition.

We note that for common workloads, the I/O cost is dominated by the cost of reading

and writing all the bytes, not the seek time. We provide detailed empirical evidence in

Section 3.3.2.

3.3.1.3 Modeling the Startup Cost

We further consider the cost of starting map and reduce tasks as it has been reported to

be a nontrivial cost [76]. Since the number of map tasks is usually much larger than that of
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reduce tasks, we mainly consider the startup cost for map tasks. If cm is the cost in second

of creating a map task, the total map startup cost per node is cstart · D
CN .

3.3.1.4 Combining All in Time Measurement

Let U be the number of bytes read and written in a Hadoop job and let S be the number

of I/O requests made. Let cbyte denote the sequential I/O time per byte and cseek denote

the disk seek time for each I/O request. We define the time measurement T that combines

the cost of reading and writing all the bytes, the seek cost of all I/O requests, and the map

startup cost as follows:

T = cbyte ·U + cseek · S + cstart ·
D

CN
. (3.4)

The above formula is our complete analytical model that captures the effects of all of the

involved parameters.

3.3.2 Optimizing Hadoop based on our Analytical Model

Our analytical model enables us to predict system behaviors as Hadoop parameters vary.

Then, given a workload and system configuration, we can choose values of these parameters

that minimize the time cost in our model, thereby optimizing Hadoop performance.

3.3.2.1 Optimizations

To show the effectiveness of our model, we compare the predicted system behavior

based on our model and the actual running time measured in our Hadoop cluster. We used

the sessionization task and configured the workload, our cluster, and Hadoop as follows:

(1) Workload: D=97GB, Km=Kr=1;3 (2) Hardware: N=10, Bm=140MB, Br=260MB; (3)

Hadoop: R=4 or 8, and varied values of C and F. We also fed these parameter values to our

3We used a smaller dataset in this set of experiments compared to the benchmark because changing
Hadoop configurations often required reloading data into HDFS, which was very time-consuming.
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(d) Effects of the map input chunk
size C and the merge factor F on the
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Figure 3.6. Validating our model against actual measurements in a Hadoop cluster.

analytical model. In addition, we set the constants in our model by assuming sequential disk

access speed to be 80MB/s, disk seek time to be 4 ms, and the map task startup cost to be

100 ms.

Our first goal is to validate our model. In our experiment, we varied the map input

chunk size, C, and the the merge factor, F. Under 100 different combinations of (C, F), we

measured the running time in a real Hadoop system, and calculated the time cost predicted

by our model. The result is shown as a 3-D plot in Figure 3.6(a).4 Note that our goal is

not to compare the absolute values of these two time measurements: In fact, they are not

directly comparable, as the former is simply a linear combination of the startup cost and I/O

4For both the real running time and modeled time cost, the respective 100 data points were
interpolated into a finer-grained mesh.
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costs based on our model, whereas the latter is the actual running time affected by many

system factors as stated above. Instead, we expect our model to predict the changes of

the time measurement when parameters are tuned, so as to identify the optimal parameter

setting. Figure 3.6(a) shows that indeed the performance predicted by our model and the

actual running time exhibit very similar trends as the parameters C and F are varied. We

also compared the I/O costs predicated by our model and those actually observed. Not only

do we see matching trends, the predicted numbers are also close to the actual numbers.

As shown in Figure 3.6(c), the differences between the predicted numbers and the actual

numbers are mostly within 5%. Here the errors are mainly due to the fact that our analysis

assumes the multi-pass merge tree to be full but this is not always true in practice.

Our next goal is to show how to optimize the parameters based on our model. To

reveal more details from the 3-D plots, we show the results of a smaller range of (C, F) in

Figure 3.6(b) and Figure 3.6(d) where the solid lines are for the actual measurements from

the Hadoop cluster and the dashed lines are for predication using our model.

Optimizing the Chunk Size. When the chunk size C is very small, the MapReduce job

uses many map tasks and the map startup cost dominates in the total time cost. As C

increases, the map startup cost reduces. However, once the map output exceeds its buffer

size, multi-pass merge is incurred with increased I/O cost, as shown in Figure 3.6(d). As

a result, the time cost jumps up at this point, and then remains nearly constant since the

reduction of startup cost is not significant. When C exceeds a large size (whose exact value

depends on the merge factor, e.g., size 256 when F=4 shown in Figure 3.6(d)), the number

of passes of on-disk merge goes up, thus incurring more I/Os. The overall best performance

in running time is observed at the maximum value of C that allows the map output to fit in

the buffer. Given a particular workload, we can easily estimate Km, the ratio of output size

to input size, for the map function and estimate the map output buffer size Bm to be about 2
3

of the total map memory size (given the use of other metadata). Then we can choose the

maximum C such that C · Km ≤ Bm.
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Optimizing the Merge Factor. We then investigate the merge factor, F, that controls how

frequently on-disk files are merged in the multi-pass merge phase. Figure 3.6(b) shows three

curves for three F values. The time cost decreases with larger values of F (from 4 to 16),

mainly due to fewer I/O bytes incurred in the multi-pass merge as shown in Figure 3.6(d).

When F goes up to the number of initial sorted runs (around 16), the time cost does not

decrease further because all the runs are merged in a single pass. For several other workloads

tested, one-pass merge was also observed to provide the best performance.

Our model can also reveal potential benefits of small F values. When F is small, the

number of files to merge in each step is small, so the reads of the input files and the writes

of the output file are mostly sequential I/O. As such, a smaller F value incurs more I/O

bytes, but fewer disk seeks. According to our model, the benefits of small F values can be

shown only when the system is given limited memory but a very large data set, e.g., several

terabytes per node, which is beyond the current storage capacity of our cluster.

Effect of the Number of Reducers. The third relevant parameter is the number of reducers

per node, R. The original MapReduce proposal [25] has recommended R to be the number

of cores per node times a small constant (e.g., 1 or 2). As this parameter does not change

the workload but only distributes it over a variable number of reduce workers, our model

shows little difference as R varies. Empirically, we varied R from 4 to 8 (given 4 cores on

each node) while configuring C and F using the most appropriate values as reported above.

Interestingly, the run with R=4 took 4,187 seconds, whereas the run with R=8 took 4,723

seconds. The reasons are two-fold. First, by tuning the merge factor, F, we have minimized

the work in multi-pass merge. Second, given 4 cores on each node, we have only 4 reduce

task slots per node. Then for R=8, the reducers are started in two waves. In the first wave,

4 reducers are started. As some of these reducers finish, a reducer in the second wave can

be started. As a consequence, the reducers in the first wave can read map output soon after

their map tasks finish, hence directly from the local memory. In contrast, the reducers in

the second wave are started long after the mappers have finished. So they have to fetch
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Figure 3.7. Performance of optimized Hadoop based on our model.

map output from disks, hence incurring high I/O costs in shuffling. Our conclusion is that

optimizing the merge factor, F, can reduce the actual I/O cost in multi-pass merge, and is a

more effective method than enlarging the number of reducers beyond the number of reduce

task slots available at each node.

In summary, the above results demonstrate two key benefits of our model: (1) Our

model predicts the trends in I/O cost and time cost close to the observations in real cluster

computing. (2) Given a particular workload and hardware configuration, one can run our

model to find the optimal values of the chunk size C and merge factor F, and choose an

appropriate value of R based on the recommendation above.

3.3.2.2 Analysis of Optimized Hadoop

We finally reran the 240GB sessionization workload described in our benchmark (see

Section 3.1). We optimized Hadoop using 64MB data chunks, one-pass merge, and 4
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reducers per node as suggested by the above results. The total running time was reduced

from 4,860 seconds to 4,187 seconds, a 14% reduction of the total running time.

Given our goal of delivering a query answer as soon as all relevant data has arrived, a

key requirement is to perform incremental processing. In this regard, we propose metrics

for the map and reduce progress, as defined below.

Definition 1 (Incremental Map and Reduce Progress). The map progress is defined to be

the percentage of map tasks that have completed. The reduce progress is defined to be: 1
3 · %

of shuffle tasks completed + 1
3 · % of combine function or reduce function completed + 1

3 · %
of reduce output produced.

Note that our definition differs from the default Hadoop progress metric where the reduce

progress includes the work on multi-pass merge. In contrast, we discount multi-pass merge

because it is irrelevant to a user query, and emphasize the actual work on the reduce function

or combine function and the output of answers.

Figure 3.7(a) shows the progress of optimized Hadoop in bold lines (and the progress of

stock Hadoop in thin lines as a reference). The map progress increases steadily and reaches

100% around 2,000 seconds. The reduce progress increases to 33% in these 2,000 seconds,

mainly because the shuffle progress could keep up with the map progress. Then the reduce

progress slows down, due to the overhead of merging, and lags far behind the map progress.

The optimal reduce progress, as marked by a dashed line in this plot, keeps up with the map

progress, thereby realizing fast incremental processing. As can be seen, there is a big gap

between the optimal reduce progress and what the optimized Hadoop can currently achieve.

Figure 3.7(b), 3.7(c), and 3.7(d) further show the CPU utilization, CPU iowait, and the

number of bytes read using optimized Hadoop. We make two main observations: (1) The

CPU utilization exhibits a smaller dip in the middle of a job compared to stock Hadoop in

Figure 3.2(b). However, the CPU cycles consumed by the mappers, shown as the area under

the curves before 2,000 seconds, are about the same as those using stock Hadoop. Hence,

the CPU overhead due to sorting, as mentioned in our benchmark, still exists. (2) The CPU
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(c) MR Online: CPU utilization.
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(d) MR Online: CPU iowait.
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(f) MR Online with 4 snapshots.

Figure 3.8. Performance of MapReduce Online with pipelining of data.

iowait plot still shows a spike in the middle of job and remains high in the rest of the job.

This is due to the blocking of CPU by the I/O operations in the remaining single-pass merge.

3.3.3 Pipelining in Hadoop

Another attempt to optimize Hadoop for incremental processing would be to pipeline

data from mappers to reducers so that reducers can start the work earlier. This idea has been

implemented in MapReduce Online [22], as described in Section 3.2.4. In our benchmark,
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we made the following observations about pipelining data from mappers to reducers in the

Hadoop framework:

(1) Benefits of Pipelining. We first summarize the benefits of pipelining that were observed

in our benchmark. First, pipelining data from mappers to reducers can result in small

performance benefits. For instance, for sessionization, Figure 3.8(a) shows 5% improvement

in total running time over the version of stock Hadoop, 0.19.2, on which MapReduce

Online’s code is based. However, the overall performance gain of MapReduce Online

over Hadoop is small (e.g., 5%), less that the gain of our model-based optimization (e.g.,

14%). Second, pipelining also makes the performance less sensitive to the HDFS chunk

size. As Figure 3.8(b) shows, when the chunk size is increased from 64MB to 256MB, the

performance of MapReduce Online, denoted by the bold lines, stays about the same as that

of 64MB, whereas the performance of stock Hadoop, denoted by the thin lines, degrades.

This is because a larger block size places additional strain on the map output buffer and

therefore increases the chance of having to spill the map output to disk in order to perform

sorting. Pipelining, however, is able to mitigate this effect by eagerly sending data at a finer

granularity to the reducers with the intention to use merging later to bring all the data in

sorted order.

(2) Limitations of Pipelining. However, we observe that adding pipelining to an overall

blocking implementation based on sort-merge is not an effective mechanism for incremental

processing. Most importantly, the reduce progress lags far behind the map progress, as

shown in Figure 3.8(a) and 3.8(b). To explain this behavior, we observe from Figure 3.8(c)

that the CPU utilization still has low values in the middle of the job and is on the average

50% or below over the entire job. While CPU can be idle due to I/O wait or network wait

(given the different communication model used), the CPU iowait in Figure 3.8(d) again

shows a spike in the middle of the job and overall high values during the job. Hence, the

problems with blocking and intensive I/O due to multi-pass merge still exist.

55



(3) Effect of Adding Reducers. We further investigate whether using more reducers can

help close the gap between the map progress and reduce progress. It is important to note

that pipelining does not reduce the total amount of work in sort-merge but rather rebalances

the work between the mappers and reducers. More specifically, eager transmission of data

from mappers to reducers reduces the sorting work in the mappers but increases the merge

work in the reducers. To handle more merge work, increasing the number of reducers helps

improve the overall running time, as shown in Figure 3.8(e) where the number of reducers is

increased from 4 per node to 8 per node. However, the reduction of the running time comes

at the cost of significantly increased resource consumption and the gap between the map

progress and the reduce progress is not reduced much. Moreover, further increasing the

number of reducers, e.g., to 12 per node, starts to perform worse due to the drawbacks of

using multiple waves of reducers mentioned in Section 3.3.2.1.

(4) Effect of using Snapshots. Finally, MapReduce Online has an extension to periodically

output snapshots (e.g., when reducers have received 25%, 50%, 75%, ..., of the data).

However, this is done by repeating the merge operation for each snapshot, not by incremental

in-memory processing. As a result, the simple snapshot-based mechanism can incur high

I/O overheads and significantly increased running time, as shown in Figure 3.8(f).

Summary We close the discussion in this section with the summary below:

I Our analytical model can be used to choose appropriate values of Hadoop parameters,

thereby improving performance.

I Optimized Hadoop, however, still has a significant barrier to fast incremental pro-

cessing: (1) The remaining one-pass merge can still incur blocking and a substantial

I/O cost. (2) Due to the above reason, the reduce progress falls far behind the map

progress. (3) The map tasks still have the high CPU cost of sorting.

I Pipelining from mappers to reducers does not resolve the blocking or I/O overhead in

Hadoop, hence not an effective mechanism for providing fast incremental processing.
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3.4 Summary

In this chapter, we examined whether the existing MapReduce implementations can

support incremental processing by tuning system parameters, and the architectural design

changes that are necessary to bring the benefits of the MapReduce model to incremental

processing. Our empirical and theoretical analysis showed that the widely-used sort-merge

implementation for MapReduce data parallelism poses a fundamental barrier to incremental

analytics, despite optimizations.
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CHAPTER 4

INCREMENTAL PROCESSING

Based on the insight from the last chapter that the sort-merge implementation in the

original MapReduce model poses a fundamental barrier to incremental processing, we next

answer the question: “What are the necessary architecture changes in MapReduce in order

to support incremental processing?” Incremental processing means that computation is

performed as soon as the relevant data becomes available. In this chapter, we propose a new

data analysis platform based on MapReduce that is geared for incremental processing. We

first consider a finite input from disk in this chapter and will extend to stream inputs in the

next chapter. We made two key architecture changes to Hadoop:

Our first mechanism replaces the sort-merge implementation in Hadoop with a purely

hash-based framework, which is designed to address the computational and I/O bottlenecks

as well as the blocking behavior of sort-merge. We devise two hash techniques to suit

different reduce functions, depending on whether the reduce function permits incremental

processing or not. Besides eliminating the sorting cost from the map tasks, these hash

techniques can provide fast in-memory processing of the reduce function when the memory

reaches a sufficient size as determined by the workload and algorithm.

Our second mechanism further brings the benefits of fast in-memory processing to

workloads that require a large key-state space that far exceeds available memory. We

propose both deterministic and randomized techniques to dynamically recognize popular

keys and then update their states using a full in-memory processing path, both saving I/Os

and enabling early answers for these keys. Less popular keys trigger I/Os to stage data to

disk but have limited impact on the overall efficiency.
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Experiments on a range of workloads in click stream analysis and web document analysis

show the following main results: (1) Our hash techniques significantly improve the progress

of the map tasks, due to the elimination of sorting, and given sufficient memory, enable fast

in-memory processing of the reduce function. (2) For challenging workloads that require

a large key-state space, our dynamic hashing mechanism significantly reduces I/Os and

enables the reduce progress to keep up with the map progress, thereby realizing incremental

processing. For instance, for sessionization over a click stream, the reducers output user

sessions as data is read and finish as soon as all mappers finish reading the data in 34.5

minutes, triggering only 0.1GB internal data spill to disk in the job. In contrast, the original

Hadoop system returns all the results towards the end of the 81 minute job, writing 370GB

internal data spill to disk. (3) Further trade-offs exist between our hash-based techniques

under different workload types, data localities, and memory sizes, with dynamic hashing

working the best under constrained memory and most workloads.

This chapter is organized as follows. We first show the hash-based techniques in

Section 4.1. We then describe our prototype implementation in Section 4.2. Finally, we

present the evaluation results in Section 4.3, and conclude in Section 4.5.

4.1 A New Hash-based Platform

To build the new platform, our first mechanism is to devise a hash-based alternative to

the widely used sort-merge implementation for data parallelism, with the goal to minimize

computational and I/O bottlenecks as well as blocking. The hash implementation can be

particularly useful when analytical tasks do not require the output of the reduce function

to be sorted across different keys.1 More specifically, we design two hash techniques for

1Our implementation offers a knob for a MapReduce job to be configured with either the hash im-
plementation or the sort-merge implementation. When our platform is used to build a query processor
on top of MapReduce, if both sort-merge and hashing algorithms are available for implementing
an operator like join, our system will enable the query processor to quickly implement the hash
algorithm of choice by utilizing the internal hashing functionality of our MapReduce platform.
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Figure 4.1. MR-hash: hashing in mappers and two phase hash processing in reducers.

two different types of reduce functions, respectively, which we describe in Section 4.1.1 and

Section 4.1.2, respectively. These techniques enable fast in-memory processing when there

is sufficient memory for a given workload. In addition, our second mechanism brings the

benefits of such fast in-memory processing further to workloads that require a large key-state

space far exceeding available memory. Our techniques dynamically identify popular keys

and update their states using a full in-memory processing path. These dynamic techniques

are described in Section 4.1.3. In Section 4.1.4, we discuss the optimization of key Hadoop

system parameters in our hash-based framework.

4.1.1 A Basic Hash Technique (MR-hash)

Recall from Section 3.1 that to support parallel processing, the MapReduce computation

model implements “group data by key, then apply the reduce function to each group”.

The main idea underlying our hash framework is to implement the MapReduce group-by

functionality using a series of independent hash functions h1, h2, h3, . . ., across the mappers

and reducers.

As depicted in Figure 4.1, the hash function h1 partitions the map output into subsets

corresponding to the scheduled reducers. Hash functions h2, h3, . . ., are used to implement

group-by at each reducer. We adopt the hybrid-hash algorithm [85] from parallel databases
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as follows: h2 partitions the input data to a reducer to n buckets, where the first bucket,

say, D1, is held completely in memory and other buckets are streamed out to disks as their

write buffers fill up. This way, we can perform group-by on D1 using the hash function

h3 and apply the reduce function to each group in memory. Other buckets are processed

subsequently, one at a time, by reading the data from the disk. If a bucket Di fits in memory,

we use in-memory processing for the group-by and the reduce function. Otherwise, we

recursively partition Di using hash function h4, and so on. In our implementation, we use

standard universal hashing to construct a series of independent hash functions.

Following the analysis of the hybrid hash join [85], simple calculation shows that if

h2 can evenly distribute the data into buckets, recursive partitioning is not needed if the

memory size is greater than 2
√
|D|, where |D| is the number of pages of data sent to the

reducer, and the I/O cost is 2(|D| − |D1|) pages of data read and written. The number of

buckets, h, can be derived from the standard analysis by solving a quadratic equation.

The above technique, called MR-hash, exactly matches the current MapReduce model

that collects all the values of the same key into a list and feeds the entire list to the reduce

function. This baseline technique in our work is similar to the hash technique used in

parallel databases [29], but implemented in the MapReduce context. Compared to stock

Hadoop, MR-hash offers several benefits: First, on the mapper side, it avoids the CPU cost

of sorting as in the sort-merge implementation. Second, this hash implementation offers a

step towards incremental processing: It allows answers for the first bucket, S0, to be returned

from memory after all the data arrives, and answers for other buckets to be returned one

bucket at a time. In contrast, sort-merge cannot return any answer until all the data is sorted.

However, such incremental processing is very coarse-grained, as a bucket can contain a

large chunk of data. Moreover, in many cases the total I/O is not significantly better than the

I/O of sort-merge [80].
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4.1.2 An Incremental Hash Technique (INC-hash)

Our second hash technique is designed for reduce functions that permit incremental

processing, including simple aggregates like sum and count, and more complex problems

that have been studied in the area of sublinear-space stream algorithms [71]. For such reduce

functions, we propose a more efficient hash algorithm, called incremental hash (INC-hash).

Algorithm The algorithm is illustrated in Figure 4.2 (the reader can ignore the darkened

boxes for now, as they are used only in the third technique). In Phase 1, as a reducer receives

map output, called tuples for simplicity, we build a hash table H (using hash function h2)

that maps from a key to the state of computation for all the tuples of that key that have

been seen so far. When a new tuple arrives, if its key already exists in H, we update the

key’s state using the new tuple. If its key does not exist in H, we add a new key-state pair

to H if there is still memory. Otherwise, we hash the tuple (using h3) to a bucket, place

the tuple in the write buffer, and flush the write buffer when it becomes full (similar to

Hybrid Cache [39] in this step). At the end of Phase 1, the reducer has seen all the tuples

and returned final answers for all the keys in H. Then in Phase 2, it reads disk-resident

buckets back one at a time, repeating the procedure above to process each bucket. If the

key-state pairs produced from a specific bucket fit in memory, no further I/O will be incurred.
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Otherwise, the algorithm will again process some keys in memory and write the tuples of

other keys to disk-resident buckets, i.e., applying recursive hashing.

INC-hash offers two major advantages over MR-hash: (1) Reduced data volume and

I/O: For those keys held in memory, their tuples are continuously collapsed into states in

memory, hence avoiding I/O’s for those tuples altogether. I/O’s can be completely avoided

in INC-hash if the memory is large enough to hold all key-state pairs, in contrast to all the

data in MR-hash. (2) Earlier results: For those keys held in memory, query answers can

be returned before all the data is seen. In particular, earlier results are possible for filter

queries (e.g., when the count of a URL exceeds a threshold), join queries (whose results

can be pipelined out), and window queries (whose results can be output whenever a window

closes).

Partial Aggregation An opportunity for further optimization is that some reduce functions

that permit incremental processing are also amenable to partial aggregation, which splits

incremental processing to a series of steps on the processing pipeline with successively

reduced data volume. Classical examples are the aggregates sum, count, and avg. To

support partial aggregation in the MapReduce context, we define three primitive functions:

I The initialize function, init(), reduces a sequence of data items of the same key to a

state;

I The combine function, cb(), reduces a sequence of states of the same key to a new

state;

I The finalize function, f n(), produces a final answer from a state.

The initialize function is applied immediately when the map function finishes processing.

This changes the data in subsequent processing from the original key-value pairs to key-state

pairs. The combine function can be applied to any intermediate step that collects a set of

states for the same key, e.g., in updating a key-state pair in the hash table with a new data
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item (which is also a key-state pair) or in packing multiple data items in the write buffer of a

bucket. Finally, the original reduce function is implemented by cb() followed by f n().

Partial aggregation provides several obvious benefits: The initialize function reduces

the amount of data output from the mappers, thereby reducing the communication cost in

shuffling and the CPU and I/O costs of subsequent processing at the reducers. In addition,

the reducers can apply cb() in all suitable places to collapse data aggressively into compact

states, hence reducing the I/O cost.

In implementation, the INC-hash algorithm is applied to “group data by key” in both

init() and cb(). The operation within each group, in both init() and cb(), is very similar to

the user-specified reduce function, as in the original proposal of combiner functions [25].

Memory and I/O Analysis We next analyze the INC-hash algorithm for its memory

requirements and I/O cost. Let D be the size of data input to the algorithm (e.g., data

sent to a reducer), U be the size of the key-state space produced from the data, and B be

the memory size, all in terms of the number of pages covered. Let h be the number of

buckets created in the INC-hash algorithm. In Phase 1, we need 1 page for the input data

and h pages for write buffers of the disk-resident buckets. So, the size of the hash table is

B− h− 1 ≥ 0. Assume that the key-state pairs not covered by the hash table, whose size is

U − (B− h− 1), are evenly distributed across h buckets. To make sure that the key-state

pairs produced from each bucket fit in memory in Phase 2, the following equality has to

hold: U − (B− h− 1) ≤ h · (B− 1). Rewriting both constraints, we have:

U − 1
B− 2

− 1 ≤ h ≤ B− 1. (4.1)

The above analysis of memory requirements has several implications:

• When the memory size B reaches U+1, all the data is processed in memory, i.e.,

h = 0.
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Figure 4.3. Determining the number of buckets h given memory size B and key-state space
size U.

• When B is in the range [
√

U + 1, U], given a particular value of B, the number of

buckets h can be chosen between the lower bound (U − 1)/(B − 2) − 1 and the

upper bound B− 1, as marked by the shaded area in Figure 4.3.

• Also for the above range of B, under the assumption of uniform distribution of keys

in the data, no recursive partitioning is needed in INC-hash: those tuples that belong

to the in-memory hash table are simply collapsed into the states, and other tuples are

written out and read back exactly once. In this case, the fraction of the data that is not

collapsed into the in-memory hash table is (U − (B− h− 1))/U. So the I/O cost of

INC-hash is:

2 · (1− B− h− 1
U

) · D. (4.2)

• To minimize I/O according to the above formula, we want to set the number of buckets

h to be its lower bound (U − 1)/(B− 2)− 1.

We note that for common workloads, the memory size is expected to exceed
√

U. All

modern computers with several GB’s of memory can meet this requirement for any practical

value of U.

Sensitivity to Parameters The above analysis reveals that the optimal I/O performance

of INC-hash requires setting the right number of buckets, h, which depends on the size of

the key-state space, U. This issue is less a concern in traditional databases because the
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DBMS can collect detailed statistics from stored data and size estimation for relational

operators has been well studied. For our problem of scalable, incremental analytics, the lack

of knowledge of the key space often arises when data is streamed over the wire or from

upstream complex operators (coded in user-defined functions) in the processing pipeline.

Consider the performance loss when we do not know the key space size. According to

Equation 4.1, without knowing U we do not know the lower bound of h and hence the only

safe value to choose would be the upper bound B− 1. Given this worst choice of h, we pay

the following extra I/O according to Equation 4.2:

(
(B− 1)2

U
− 1
)
· D

B− 2
.

For example, when U = 20GB and B = 10GB, the extra I/O paid amounts to the data size

D, which can be quite large.

To mitigate such performance loss, we would like to acquire an accurate estimate of

the key-state space size U. Since many workloads use fixed-sized states, estimating U is

equivalent to estimating the number of distinct keys in the data set. In today’s analytics

workloads, the key space can be very large, e.g., tens of billions of URLs on the Web. So

estimating the number of keys can itself consume a lot of memory. Hence, we propose

to perform approximate estimation of the key space size using fast, memory-efficient

“mini-analysis”: state-of-the-art sketch techniques [48] can provide 1 + ε approximation

for the number of distinct keys in space about O(ε−2) with low CPU overheads. Hence,

given memory of modest size, these techniques can return fairly accurate approximations.

Such “mini-analysis” can be applied in two ways: If the data is to be first loaded into the

processing backend and later analyzed repeatedly, mini-analysis can be piggybacked in data

loading with little extra overhead. For streaming workloads, such mini-analysis can be run

periodically at data sources and the resulting statistics can be transferred to the MapReduce

processing backend to better configure our hash algorithms. A detailed mechanism for
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communication between data sources and the processing backend is beyond the scope of

this chapter and will be addressed in our future work.

4.1.3 A Dynamic Incremental Hash Technique (DINC-hash)

Our last technique is an extension of the incremental hash approach where we dynami-

cally determine which keys should be processed in memory and which keys will be written to

disk for subsequent processing. The basic idea behind the new technique is to recognize hot

keys that appear frequently in the data set and hold their states in memory, hence providing

incremental in-memory processing for these keys. The benefits of doing so are two-fold.

First, prioritizing these keys leads to greater I/O efficiency since in-memory processing of

data items of hot keys can greatly decrease the volume of data that needs to be first written

to disks and then read back to complete the processing. Second, it is often the case that

the answers for the hot keys are more important to the user than the colder keys. Then this

technique offers the user the ability to terminate the processing before data is read back

from disk if the coverage of data is sufficiently large for those keys in memory.

Below we assume that we do not have enough memory to hold all states of distinct

keys. Our mechanism for recognizing and processing hot keys builds upon ideas in a widely

used data stream algorithm called the FREQUENT algorithm [66, 11] that can be used to

estimate the frequency of different values in a data stream. While we are not interested in

the frequencies of the keys per se, we will use estimates of the frequency of each key to date

to determine which keys should be processed in memory. However, note that other “sketch-

based” algorithms for estimating frequencies, such as Count-Sketch [20], Count-Min [23]

and CR-Precis [33], will be unsuitable for our purposes because they do not explicitly

encode a set of hot keys. Rather, additional processing is required to determine frequency

estimates and then use them to determine approximate hot keys, which is too costly for us to

consider.
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Dynamic Incremental (DINC) Hash We propose to perform dynamic incremental hash

using a caching mechanism governed by the FREQUENT algorithm, i.e., to determine which

tuples should be processed in memory and which should be written to disk. We use the

following notation in our discussion of the algorithm: Let K be the total number of distinct

keys. Let M be the total number of key-data item pairs in input, called tuples for simplicity.

Suppose that the memory contains B pages, and each page can hold np key-state pairs with

their associated auxiliary information. Let up be an update function that collapses an data

item v into a state u to make a new state, up(u, v).

Figure 4.2 illustrates the DINC-hash algorithm. While receiving tuples, each reducer

divides the B pages in memory into two parts: h pages are used as write buffers, one for

each of h files that will reside on disk, and B− h pages for “hot” key-state pairs. Hence, the

number of keys that can be processed in-memory is s = (B− h)np.2

The sketch of our algorithm is shown in Algorithm 1. The algorithm maintains s

counters c[1], . . . , c[s], s associated keys k[1], . . . , k[s] referred to as “the keys currently

being monitored”, and the state s[i] of a partial computation for each key k[i]. Initially,

all the counters are set to 0, and all the keys are marked as empty (Line 1). When a new

tuple (k, v) arrives, if this key is currently being monitored, the corresponding counter is

incremented and the state is updated using the update function (Line 4). If k is not being

monitored and c[j] = 0 for some j, then the key-state pair (k[j], s[j]) is evicted and k starts

to be monitored by c[j] (Line 7-8). If k is not monitored and all c > 0, then the tuple

needs to be written to disk and all c[i] are decremented by one (Line 10-11). Whenever the

algorithm decides to evict a key-state pair in-memory or write out a tuple, it always first

assigns the item to a hash bucket and then writes it out through the write buffer of the bucket,

as in INC-hash.

2If we use p > 1 pages for each of the h write buffers (to reduce random-writes), then s =
np · (B− hp). We omit p below to simplify the discussion.
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Once the tuples have all arrived, most of the computation for the hot keys may have

already been performed. At this point we have the option to terminate if the partial com-

putation for hot keys is “good enough” in a sense we will make explicit shortly. If not, we

proceed with performing all the remaining computation: we first write out each key-state

pair currently in memory to disk to the appropriate bucket file. We then read each bucket

file into memory and complete the processing for each key in the bucket file.

To compare the different hash techniques, first note that the improvement of INC-hash

over the baseline MR-hash is only significant when the total number of keys K is small.

Otherwise, the keys processed incrementally in main memory will only account for a small

fraction of the tuples, hence limited performance benefits. DINC-hash mitigates this problem

in the case when, although K may be large, some keys are considerably more frequent then

other keys. By ensuring that it is these keys that are usually monitored in memory, we ensure

that a large fraction of the tuples are processed before the remaining data is read back from

disk.

Algorithm 1 Sketch of the DINC-hash algorithm
1: c[i]← 0, k[i]← ⊥ for all i ∈ {1, 2, · · · , s}
2: for each tuple (k, v) from input do
3: if k is being monitored then
4: Suppose k is monitored by c[j], do c[j]← c[j] + 1, and s[j]← update(s[j], v)
5: else
6: if ∃j such that c[j] = 0 then
7: Evict key-state pair (k[j], s[j]) to disk
8: c[j]← 1, k[j]← k, and s[j]← v
9: else

10: Write tuple (k, v) to disk
11: c[i]← c[i]− 1 for all i ∈ {1, 2, · · · , s}
12: end if
13: end if
14: end for

We note that besides the FREQUENT algorithm, our DINC-hash technique can also be

built on a closely related variant called the Space-Saving algorithm [64]. Like the FREQUENT

algorithm, Space-Saving monitors frequent items in memory and for each monitored item,
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maintains a counter as an estimate of the item’s frequency. When the two algorithms are

used as the caching mechanism in DINC-hash, they perform the same in the following two

cases:

Case I: If a monitored key is received, both algorithms increment the associated

counter by 1.

Case II: If an unmonitored key is received and there is at least one counter of value 0

under the FREQUENT algorithm, both algorithms evict a monitored key-state pair with

the smallest counter (which must be 0 in the FREQUENT algorithm), monitor the new

key-state pair with that counter, and increment the counter by 1.

The two algorithms only differ in the following case:

Case III: The arriving key is not monitored and all the counters of the monitored keys

are greater than 0 in the FREQUENT algorithm. In this case, Space-Saving evicts a

key-state pair with the smallest counter to make room for the new key-state pair as in

Case II, whereas the FREQUENT algorithm does not take in the new key-state pair but

simply decrements all counters by 1.

In most real-world workloads, the distribution of the frequencies of keys is naturally skewed.

Consequently, in the FREQUENT algorithm when there is no key with counter 0, it is likely

that a large number of infrequent keys have counter 1 as they appear only once in a long

period of time. When Case III occurs, the counters of these infrequent keys are reduced to

0, which prevents Case III from happening again in the near future. As a result, Case III

occurs infrequently under real-world workloads, and the two algorithms perform the same

most of the time. We will show that the difference in performance of the two algorithms is

less than 1% in the evaluation section. Due to this reason, we focus our discussion in the

rest of the section on the widely used FREQUENT algorithm.

4.1.3.1 Analysis of the DINC Algorithm

We next provide a detailed analysis of the DINC algorithm.
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I/O Analysis. Suppose that there are fi tuples with key ki. Then we have the total number

of tuples M = ∑i fi. Without loss of generality assume f1 ≥ f2 ≥ . . . ≥ fK. Since the

memory can hold s keys, the best we can hope for is to process ∑1≤i≤s fi arriving tuples in

memory, i.e., to collapse them into in-memory states as they are sent to the reducer. This

is achieved if we know the “hot” keys, i.e., the top-s, in advance. Existing analysis for the

FREQUENT algorithm can be applied to our setting to show that using the above strategy, at

least M′ tuples can be collapsed into states, where

M′ = ∑
1≤i≤s

max
(

0, fi −
M

s + 1

)

If the data is highly skewed, our theoretical analysis can be improved by appealing to a

result of [11]. Specifically if the data is distributed with Zipfian parameter α our strategy

guarantees that at least

M′ = ∑
1≤i≤s

max
(

0, fi −
M

max(s + 1, (s/2)α)

)

tuples have been collapsed into states. Since every tuple that is not collapsed into an existing

state in memory triggers a write-out, the number of tuples written to disk is M− s−M′+ s,

where the first s in the formula corresponds to the fact that the first s keys do not trigger

a write-out, and the second s comes from the write out of the hot key-state pairs in main

memory. Hence, the upper bound of the number of tuples that trigger I/O is M−M′.

This result compares favorably with the offline optimal if there are some very popular

keys, but does not give any guarantee for non-skewed data if there are no keys whose relative

frequency is more than 1/(s + 1). For example, suppose that the r = εs most popular keys

have total frequency ∑r
i=1 fi ≥ (1− ε)M, i.e., a (1− ε) fraction of the tuples have one of

r keys. Then we can conclude that

M′ = ∑
1≤i≤s

max
(

0, fi −
M

s + 1

)
≥ ∑

1≤i≤r
fi −

M
s + 1

≥ (1− 2ε)M
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i.e., all but a 2ε fraction of the tuples are collapsed into states.

Note that even if we assume the data is skewed, in INC-hash there is no guarantee on

the number of tuples processed in-memory before the hash files are read back from disk.

This is because the keys chosen for in-memory processing are just the first keys observed.

Sensitivity to Parameters. We further investigate whether the parameters used in the

DINC-hash algorithm can affect its performance. By analyzing the memory requirements as

for the INC-hash algorithm, we can obtain the following constraints:

U
B− 1

≤ h ≤ B− 1, for B ∈ [
√

U + 1, U]

where U is the total size of key-state pairs, B is the memory size, and h is the number of

buckets created when evicting key-state pairs from memory to disk and writing tuples of

unmonitored keys to disk. Intuitively, we again want to minimize h so that we minimize the

memory consumed by the write buffers of the buckets. This way, we maximize the number

of keys held in memory, s, and hence the lower bound of the number of tuples collapsed in

memory, M′. The sketch-based mini-analysis proposed in the previous section can again be

used here to estimate U and help set h to be its lower bound U/(B− 1).

However, it is worth noting that setting the number of buckets h to be its optimal value

may not guarantee the optimal performance of DINC-hash. This is because DINC-hash is

a dynamic caching-based scheme whose performance depends not only on the parameters

used in the hash algorithm but also on the temporal locality of the keys in the input data. We

detail the impact of the second factor when discussing the potential flooding behavior below.

Approximate Answers and Coverage Estimation. One of the features of DINC-hash is

that a large fraction of the update operations for a very frequent key will already have been

performed once all the tuples have arrived. To estimate the number of update operations

performed for a given key we use the t values: these count the number of tuples that have
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been collapsed for key k since most recent time k started being monitored. Define the

coverage of key ki to be

coverage(ki) =





t[j]/ fi if k[j] = ki for some j

0 otherwise
.

Hence, once the tuples have arrived, the state corresponding to ki in main-memory repre-

sents the computation performed on a coverage(ki) fraction of all the tuples with this key.

Unfortunately we do not know the coverage of a monitored key exactly, but we know that

t[j] ≤ fi ≤ t[j] + M/(s + 1) (4.3)

from the analysis of FREQUENT. We propose two methods to return results earlier given a

user-determined threshold φ. For the first method, we have the following under-estimate of

coverage based on Equation 4.3

γi :=
t[j]

t[j] + M/(s + 1)
≤ t[j]

fi
= coverage(ki) ≤ 1

which is very accurate when t[j] or fi is sufficiently larger that M/(s + 1). Hence, if

γi ≥ φ we can opt to return the state of the partial computation rather than to complete the

computation. However, we only know if the state for key i can be output at the end of input,

and we still have to spill data to disk in reducers for the keys that do not meet the coverage

threshold. We can further reduce disk I/Os for the workloads that only require results of

keys with frequencies higher than a threshold f ∗ (i.e. fi ≥ f ∗). Based on Equation 4.3, we

have the following under-estimate of coverage

γ′i := 1− M/(s + 1)
f ∗

≤ fi −M/(s + 1)
fi

≤ t[j]
fi

= coverage(ki) ≤ 1.

Since γ′i does not rely on t[j], if γ′i ≥ φ, there is no need to spill data to disk in reducers.
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Potential Pathological Behaviors. Using the FREQUENT algorithm as described above

leads to a deterministic policy for updating the keys being monitored. Unfortunately, by

analogy to online page-replacement policies [86], it is known that any deterministic policy

is susceptible to flooding and that the competitive ratio (i.e., the worst-case ratio between

the number of I/O operations required by the algorithm and the optimal number) is at least a

factor s, the number of keys held in memory. We note that this analysis also applies to other

page-replacement policies such as LRU because they are also deterministic. For a simple

example, consider the behavior of the FREQUENT algorithm on a sequence that consists of

repeating the following sequence of M keys:

〈k1, k2, . . . , ks, ks+1, ks+2, . . . , k2s+1〉 .

The FREQUENT algorithm will require (M− s) I/O operations corresponding to all but the

first s terms requiring a tuple to be written to disk. In contrast, the optimal solution would

be to monitor only k1, . . . , ks and this would require M · s+1
2s+1 I/O operations.

4.1.3.2 Heuristic Improvement and the Marker Algorithm

In our implementation of FREQUENT we added a simple random heuristic that helps

avoid the pathological cases described above. When evicting a currently monitored key (and

its associated state), our heuristic is to randomly select from those keys whose counters are

zero, rather than simply picking the first such key each time. For example, when processing

〈k1, k2, . . . , ks, ks+1, ks+2, k1, k1, k1, . . .〉,

the heuristic means that k1 is unlikely to be replaced by ks+2 (as would happen without the

heuristic) due to randomization and hence we are able to combine all the k1’s in the sequence

in memory. Note that the heuristic does not jeopardize the above performance guarantees.

This behavior is inspired in part by the Marker algorithm [31, 63], a paging algorithm that is
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known to have good I/O performance (under a worst-case analysis) as a paging algorithm,

but no analysis has been conducted to determine their abilities to recognize frequent keys.

The algorithm is sketched in Algorithm 2. The basic algorithm is relatively simple

and can be described in terms of the difference to the FREQUENT algorithm with our

heuristic: we do not increment the counters c[i] beyond 1. More specifically, the algorithm

maintains s bits (binary counters) c[1], . . . , c[s], s associated keys k[1], . . . , k[s] currently

being monitored, and the state s[i] for each key k[i]. Initially, all the bits are set to 0, and

all the keys are marked as empty (Line 1). When a new tuple (k, v) arrives, if this key is

currently being monitored, the corresponding bit is set to 1 and the state is updated using the

update function (Line 4). If k is not being monitored and there exists at least one bit c = 0,

the algorithm randomly picks a j such that c[j] = 0, evicts the key-state pair (k[j], s[j]), and

let c[j] monitor k (Line 7-9). If k is not monitored and all c = 1, then the tuple needs to be

written to disk and all c[i] are set to 0 (Line 11-12).

Algorithm 2 Sketch of the Marker algorithm
1: c[i]← 0, k[i]← ⊥ for all i ∈ {1, 2, · · · , s}
2: for each tuple (k, v) from input do
3: if k is being monitored then
4: Suppose k is monitored by c[j], do c[j]← 1, and s[j]← update(s[j], v)
5: else
6: if {i : c[i] = 0} 6= ∅ then
7: j← randomly pick from {i : c[i] = 0}
8: Evict key-state pair (k[j], s[j]) to disk
9: c[j]← 1, k[j]← k, and s[j]← v

10: else
11: Write tuple (k, v) to disk
12: c[i]← 0 for all i ∈ {1, 2, · · · , s}
13: end if
14: end if
15: end for

Marker versus Frequent Policies for DINC. The randomization of the Marker algorithm

plays a key role in minimizing pathological behavior. Specifically it is known that com-

petitive ratio of the enchanted Marker algorithm [63] has the competitive ratio O(log s)
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and that this is optimal. Note that this should not be understood to mean that the Marker

algorithm is immune to flooding. However, the fact that the counters saturate at 1 in the

Marker algorithm (in contrast to the unbounded counters in the FREQUENT algorithm) has

a significant effect on the ability of the algorithm to identify frequent keys. In particular,

if an otherwise popular key becomes temporarily infrequent, the Marker algorithm will

quickly stop monitoring this key. Hence, there is no guarantee that the frequent elements

are identified and therefore a policy based on the Marker algorithm would not support

coverage estimation and early approximate answers as detailed above. On the other hand,

the FREQUENT algorithm is more sensitive to keys have been historically popular. This is

because a popular key ki that is being monitored will have a high counter value c[i] and

therefore it will require the processing of at least c[i] more tuples before ki is in danger of

being evicted. The extent to which it is advisable to use the historical frequency of an item

to guide the monitoring of future keys is dependent on the data set. We will explore the issue

further empirically in Section 4.3.3 but the summary is that because the Marker algorithm

adapts more quickly to changes in the key distribution, it can end up generating more or less

I/O depending on whether or not (respectively) the changes in the distribution are temporary.

4.1.4 Optimizing Other System Parameters

We finally discuss the optimization of key parameters of MapReduce systems such as

the Hadoop system. We have described the optimization of Hadoop parameters under the

sort-merge implementation in Section 3.3. Those key parameters, such as the chunk size C

and the number of reducers R, are important to our hash-based implementation as well. In

particular, when the chunk size is small, we incur high startup cost due to a large number of

map tasks. An excessively large chunk size is not favorable, either. One reason is that when

a combine function is used in the mappers, the hash algorithm used in the reducers is also

applied in the mappers. When the chunk size is large, the output size of a map task may

exceed the map buffer size and hence the hash algorithm applied to the map output incurs
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internal I/O spills, adding significant overheads. The second reason is that a large chunk size

delays the delivery of data to the reducers, which is undesirable for incremental processing.

Considering both reasons, we use the insights from Section 3.3 and set the chunk size C

to the largest value that keeps the output of a map task fit in the map buffer. Regarding the

number of reduce tasks R, we set it such that there is only one wave of reduce tasks, i.e. R

equals the number of reduce task slots. Using multiple waves of reduce tasks incurs more

I/Os because only the first wave of reduce tasks can fetch map output directly from local

memory, while the reduce tasks in other waves are likely to read data from disks.

4.2 Prototype Implementation

We have built a prototype of our incremental analytics platform on Hadoop. Our proto-

type is based on Hadoop version 0.20.1 and modifies the internals of Hadoop by replacing

key components with our Hash-based and fast in-memory processing implementations.

Figure 4.4 depicts the architecture of our prototype; the shaded components and the enlarged

sub-components show the various portions of Hadoop internals that we have built. Broadly

these modifications can be grouped into two main components.

Hash-based Map Output Vanilla Hadoop consists of a Map Output Buffer component

that manages the map output buffer, collects map output data, partitions the data for reducers,

sorts the data by partition id and key (external sort if the data exceeds memory), and feeds

the sorted data to the combine function if there is one or writes sorted runs to local disks

otherwise. Since our design eliminates the sort phase, we replace this component with

a new Hash-based Map Output component. Whenever a combine function is used, our

Hash-based Map Output component builds an in-memory hash table for key-value pairs

output by hashing on the corresponding keys. After the input has been processed, the values

of the same key are fed to the combine function, one key at a time. In the scenario where

no combine function is used, the map output must be grouped by partition id and there is
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Figure 4.4. Architecture of our Hadoop-based platform for incremental processing.

no need to group by keys. In this case, our Hash-based Map Output component records the

number of key-value pairs for each partition while processing the input data chunk, and

moves records with the same key to a particular segment in the buffer, while scanning the

buffer once.

HashThread Component. Vanilla Hadoop comprises an InMemFSMerge thread that

performs in-memory and on-disk merges and writes data to disk whenever the shuffle buffer

is full. Our prototype replaces this component with a HashThread implementation, and

provides a user-configurable option to choose between MR-hash, INC-hash, and DINC-hash

implementations within HashThread.
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In order to avoid the performance overhead of creating a large number of Java objects,

our prototype implements its own memory management by placing key data structures into

byte arrays. Our current prototype includes several byte array-based memory managers

to provide core functionality such as hash table, key-value or key-state buffer, bitmap, or

counter-based activity indicator table, etc., to support our three hash-based approaches.

We also implement a bucket file manager that is optimized for hard disks and SSDs

and provide a library of common combine and reduce functions as a convenience to the

programmer. Our prototype also provides a set of independent hash functions, such as in

recursive hybrid hash, in case such multiple hash functions are needed for analytics tasks.

Also, if the frequency of hash keys is available a priori, our prototype can customize the

hash function to balance the amount of data across buckets.

Finally, we implement several “utility” components such as a system log manager, a

progress reporter for incremental computation, and CPU and I/O profilers to monitor system

status.

Pipelining. In our current system, the granularity of data shuffling is determined by the

chunk size (with a default value of 64MB), which is fairly small compared with typical

sizes of input data (e.g., a terabyte) and hence suitable for incremental processing. In the

future, if data needs to be shuffled at a higher frequency, our hash-based framework for

incremental processing can be extended with the pipelining approach used in MapReduce

Online [22]. The right granularity of shuffling will be determined based on the application

latency requirement, the extra network overhead of fine-grained data transmission, and the

existence of the combine function or not. With some of these issues addressed in MapReduce

Online, we will treat them thoroughly in the hash framework in our future work.

Integration within the Hadoop Family. Our system can be integrated with other software

in the Hadoop family with no or minimal effort. Any storage system in the Hadoop family,

such as HBase, can serve as input to your data analytics system. This is because our internal

modification to Hadoop does not require any change of input. Any query processing or
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data analytics system that is built over Hadoop, such as Hive, can directly benefit from our

hash-based system because all our changes are encapsulated in the MapReduce processing

layer. The only slight modification required in the query processing layer is transforming

the reduce function for Hadoop to init(), cb() and f n() functions tailored for incremental

computation. The effort of the transformation is typically minimal for analytics tasks.

4.3 Performance Evaluation

We present an experimental evaluation of our analytics platform and compare it to

optimized Hadoop 0.20.1, called 1-pass SM, as described in Section 3.3. We evaluate all

three hash techniques, MR-hash, INC-hash and DINC-hash, described in Section 4.1 in

terms of running time, the size of reduce spill data, and the progress made in map and

reduce.

In our evaluation, we use three real-world datasets: 236GB of the WorldCup click

stream, 52GB of the Twitter dataset, and 156GB of the GOV2 dataset3. We use workloads

over the WorldCup dataset: (1) sessionization where we split the click stream of each

user into sessions; (2) user click counting, where we count the number of clicks made

by each user; (3) frequent user identification, where we find users who click at least 50

times. We also use a fourth workload over both the Twitter and the GOV2 datasets, trigram

counting, where we report word trigrams that appear more than 1000 times. Our evaluation

environment is a 10-node cluster as described in Section 3.2. Each compute node is set to

hold a task tracker, a data node, four map slots, and four reduce slots. In each experiment, 4

reduce tasks run on each compute node.

3http://ir.dcs.gla.ac.uk/test collections/gov2-summary.htm
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4.3.1 Small Key-state Space: MR-hash versus INC-hash

We first evaluate MR-hash and INC-hash under the workloads with small key-state

space, where the distinct key-state pairs fit in memory or slightly exceed the memory size.

We consider sessionization, user click counting, and frequent user identification.

Sessionization. To support incremental computation of sessionization in reduce, we

configure INC-hash to use a fixed-size buffer that holds a user’s clicks. A fixed size buffer

is used since the order of the map output collected by a reducer is not guaranteed, and yet

online sessionization relies on the temporal order of the input sequence. When the disorder

of reduce input in the system is bounded, a sufficiently large buffer can guarantee the input

order to the online sessionization algorithm. In the first experiment, we set the buffer size,

i.e. the state size, to 0.5KB.

Figure 4.5(a) shows the comparison of 1-pass SM, MR-hash, and INC-hash in terms

of map and reduce progress. Before the map tasks finish, the reduce progress of 1-pass

SM and MR-hash is blocked by 33%. MR-hash blocks since incremental computation is

not supported. In 1-pass SM, the sort-merge mechanism blocks the reduce function until

map tasks finish; a combine function can’t be used here since all the records must be kept

for output. In contrast, INC-hash’s reduce progress keeps up with the map progress up

to around 1,300s, because it performs incremental in-memory processing and generates

pipelined output until the reduce memory is filled with states. After 1,300s, some data is

spilled to disk, so the reduce progress slows down. After map tasks finish, it takes 1-pass

SM and MR-hash longer to complete due to the large size of reduce spills (around 250GB

as shown in Table 4.1). In contrast, INC-hash finishes earlier due to smaller reduce spills

(51GB).

Thus by supporting incremental processing, INC-hash can provide earlier output, and

generates less spill data, which further reduces the running time after the map tasks finish.
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(a) Sessionization (0.5KB state).

�

��

��

��

��

���

� ��� ����� ����� �����

��
�
�
��
��
�
�
��
�
�

����������������

�������������
����������������

�����������
��������������
������������

���������������

(b) User click counting.
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(c) Frequent user identification
(number of clicks ≥ 50).

Figure 4.5. Progress report using hash implementations.

User click counting & Frequent user identification. In contrast to sessionization, user-

click counting can employ a combine function and the states completely fit in memory at

the reducers.

Figure 4.5(b) shows the results for user click counting. 1-pass SM applies the combine

function in each reducer whenever its buffer fills up, so its progress is more of a step function.

Since MR-hash does not support the combine function, its overall progress only reaches

33% when the map tasks finish. In contrast, INC-hash makes steady progress through 66%

due to its full incremental computation. Note that since this query does not allow any early

output, no technique can progress beyond 66% until all map tasks finish.

This workload generates less shuffled data, reduce spill data, and output data when

compared to sessionization (see Table 4.1). Hence the workload is not as disk- and network-

I/O- intensive. Consequently both hash-based techniques have shorter running times, when
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compared to 1-pass SM, due to the reduction in CPU overhead gained by eliminating the

sort phase.

We further evaluate MR-hash and INC-hash with frequent user identification. This query

is based on user click counting, but allows a user to be output whenever the counter of the

user reaches 50. Figure 4.5(c) shows 1-pass SM and MR-hash perform similarly as in user

click counting, as the reduce function cannot be applied until map tasks finish. The reduce

progress of INC-hash completely keeps up with the map progress due to the ability to output

early.

In summary, given sufficient memory, INC-hash performs fully in-memory incremental

processing, due to which, its reduce progress can potentially keep up with the map progress

for queries that allow early output. Hash techniques can run faster if I/O and network are

not bottlenecks due to the elimination of sorting.

4.3.2 Large Key-state Space: INC-hash versus DINC-hash

We next evaluate INC-hash and DINC-hash for incremental processing for workloads

with a large key-state space, which can trigger substantial I/O. Our evaluation uses two

workloads below:

Sessionization with varying state sizes. Figure 4.6(a) shows the map and reduce progress

of INC-hash under three state sizes: 0.5KB, 1KB, and 2KB. A larger state size means that

the reduce memory can hold fewer states and that the reduce progress diverges earlier from

the map progress. Also, larger states cause more data to be spilled to disk, as shown in

Table 4.2. So after map tasks finish, the time for processing data from disk is longer.

To enable DINC-hash for sessionization, a streaming workload, we use the state of a

monitored key to hold the clicks of a user in her recent sessions. We evict a state from

memory if: (1) all the clicks in the state belong to an expired session; (2) the counter of the

state is zero. Rather than spilling the evicted state to disk, the clicks in it can be directly

output. As shown in Table 4.2, DINC-hash only spills 0.1 GB data in reduce with 2KB state
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(a) Sessionization with INC-hash.
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(b) Sessionization with DINC-hash.
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(c) Trigram counting with INC- & DINC-
hash.

Figure 4.6. Progress report using hash implementations.

size, in contrast to 203 GB for the same workload in INC-hash. As shown in Figure 4.6(b),

the reduce progress of DINC-hash closely follows the map progress, and spends little time

processing the on-disk data after mappers finish.

We further quote numbers about stock Hadoop for this workload (see Table 3.1). Using

DINC-hash, the reducers output continuously and finish as soon as all mappers finish reading

the data in 34.5 minutes, with 0.1GB internal spill. In contrast, the original Hadoop system

returns all the results towards the end of the 76 minute job, causing 370GB internal data

spill to disk, 3 orders of magnitude more than DINC-hash.

Trigram Counting. Figure 4.6(c) shows the map and reduce progress plot for INC-hash

and DINC-hash with the Gov2 dataset. The reduce progress in both keeps growing below,

but close to the map progress, with DINC-hash finishing a bit faster. In this workload, the
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Table 4.1. Comparing optimized Hadoop (using sort-merge), MR-hash, and INC-hash.

Sessionization 1-Pass SM MR-hash INC-hash
Running time (s) 4135 3618 2258
Map CPU time per node (s) 1012 659 571
Reduce CPU time per node (s) 518 566 565
Map output / Shuffle (GB) 245 245 245
Reduce spill (GB) 250 256 51
User click counting 1-Pass SM MR-hash INC-hash
Running time (s) 1430 1100 1113
Map CPU time per node (s) 853 444 443
Reduce CPU time per node (s) 39 41 35
Map output / Shuffle (GB) 2.5 2.5 2.5
Reduce spill (GB) 1.1 0 0
Frequent user identification 1-Pass SM MR-hash INC-hash
Running time (s) 1435 1153 1135
Map CPU time per node (s) 855 442 441
Reduce CPU time per node (s) 38 38 34
Map output / Shuffle (GB) 2.5 2.5 2.5
Reduce spill (GB) 1.1 0 0

Table 4.2. Comparing sessionization to INC-hash with 0.5KB state, INC-hash with 2KB
state, and DINC-hash with 2KB state.

INC (0.5KB) INC (2KB) DINC (2KB)
Running time (s) 2258 3271 2067
Reduce spill (GB) 51 203 0.1

reduce memory can only hold 1/30 of the states, but less than half of the input data is spilled

to disk in both approaches. This implies that both hash techniques hold a large portion of

hot keys in memory. DINC-hash does not outperform INC-hash like with sessionization

because the trigrams are distributed more evenly than the user ids, so most hot trigrams

appear before the reduce memory fills up. INC-hash naturally holds them in memory. The

reduce progress in DINC-hash falls slightly behind that of INC-hash because if the state

of a key is evicted, and the key later gets into memory again, the counter in its state starts

from zero again, making it harder for a key to reach the threshold of 1,000. Both hash

techniques finish the job in the range of 4,100-4,400 seconds. In contrast, 1-pass SM takes

9,023 seconds. So both hash techniques outperform Hadoop.
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In summary, for workloads that require a large key-state space, our frequent-key

mechanism significantly reduces I/Os and enables the reduce progress to keep up with

the map progress, thereby realizing incremental processing

4.3.3 Dynamic Hashing with Alternative Caching Algorithms

We have compared INC-hash with dynamic hashing based on the deterministic FRE-

QUENT algorithm. Now we further extend the evaluation to dynamic hashing technique

based on the randomized Marker algorithm, as described in Section 4.1.3. We refer the

two dynamic hashing techniques as DINC-Frequent, and DINC-Marker, respectively. We

compare the sizes of reduce intermediate files across these schemes. We consider three

workloads: trigram counting on the Twitter dataset, trigram counting on the Gov2 dataset,

and sessionization on the WorldCup dataset with 2KB state.

Different Workloads. To enable an in-depth analysis of these hashing techniques, we

characterize our workloads as in one of the following two types:

I Non-streaming: When a key-state pair is evicted from memory, it is written to a reduce

intermediate file for further processing. Trigram counting belongs to this type of

workload. If a trigram is evicted, its state, which is a counter, is written to disk and

later summed with other counters for the same trigram.

I Streaming: For streaming workloads, the decision to monitor a new key in memory is

based both on the existence of a state containing complete data for reduce processing,

e.g., when a window closes, and on how the paging algorithm used in each hashing

technique finds such a state in memory to evict: (1) For DINC-Frequent, the states

with zero counters are scanned to find a qualified state with complete data for reduce

processing. (2) For DINC-Marker, the states with zero markers are scanned in a

random order to find a qualified state. (3) INC-hash does not allow any state to be

replaced. If such a key-state pair exists for eviction, it is output directly but not written

to a file on disk. Sessionization belongs to this type of workload. For each user, its
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Table 4.3. Comparing INC-hash, DINC-Frequent and DINC-Marker in terms of reduce
spill (GB).

Workload INC-hash DINC-Frequent DINC-Marker
Trigram counting (Twitter) 318 288 316
Trigram counting (Gov2) 221 176 188
Sessionization (2KB) 203 0.1 0

state is a window containing the user’s recent clicks. The window closes when the

user’s click session is considered complete. If a user’s state needs to be replaced, it is

directly output at the time of eviction.

As shown in Table 4.3, for the non-streaming workloads, i.e. trigram counting using

Twitter and Gov2 datasets, DINC-Frequent has the smallest intermediate file size because it

maintains more history information and is thus more effective to identify hot key than the

others. For sessionization, the streaming workload, the two dynamic hashing techniques

perform remarkably better than INC-hash. INC-hash incurs significant intermediate I/O

because it does not allow a state to be replaced, and thus all the input tuples with keys not in

memory are written to files. Both dynamic hashing techniques have negligible intermediate

I/O. Their I/O numbers are slightly different due to the way we use them to find a qualified

state to evict. It does not show intrinsic difference of the two techniques.

Effects of Locality and Memory Size. We further evaluate our hashing techniques under

different data locality properties and different memory sizes using trigram counting on the

Twitter dataset. To explore different localities, we construct two datasets: (1) In the original

dataset, tweets in various languages are mixed together. (2) The manipulated dataset is

generated from the original dataset. We group the tweets that belong to 8 language families

into 8 subsets. The set of trigrams from one subset hardly overlaps that from another subset.

The subsets are arranged sequentially in the input to each algorithm, and thus show strong

locality. This type of locality is similar to the evolving trends of hot topics in real world

social networks. In our evaluation we also explore the effect of the memory size by using

two settings: Constrained memory with 100MB per reducer, which can hold 2% of all
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key-states across all reducers; Larger memory with 600MB per reducer, which can hold

11%-15% of all key-states, depending on the meta data size in different techniques.

Besides DINC-Frequent and DINC-Marker, we also take this opportunity to report the

performance of dynamic hashing using another deterministic algorithm, the Space-Saving

algorithm (referred to as DINC-SS), as we vary the data locality and memory size. For

fair comparison, each technique allocates the given memory for both key-state pairs and

meta data. Meta data includes the data structures that organize key-states as a hash-table in

order to efficiently search any state by its key, and additional data structures for realizing

a replacement policy efficiently. All the techniques share the same meta data for the hash

table. The sizes of additional meta data for cache management vary. INC-hash has no

additional meta data since it does not support state replacement. DINC-Frequent maintains

a set of counters with distinct values, and the two-way mapping between a key-state and

its corresponding counter. The implementation of DINC-SS does not include the data

structures in the Space-Saving algorithm that do not affect the replacement policy. As a

result, DINC-SS has the same data structures for meta data as DINC-Frequent. DINC-

Marker maintains the two-way mapping between a key-state and two static markers: 0 and 1.

So, the comparison of meta data sizes of the three techniques is: INC-hash < DINC-Marker

< DINC-Frequent = DINC-SS.

The comparison of intermediate file sizes is shown in Table 4.4. In all the combinations

of data locality types and memory sizes, DINC-Frequent and DINC-SS differ less than 1%

in terms of intermediate I/Os. The reason is the intrinsic similarity of the two algorithms

as explained in Section 4.1.3. With constrained memory size, DINC-Frequent/SS outper-

forms the others on both the original dataset and the manipulated dataset. This is because

DINC-Frequent/SS recognizes hot keys more efficiently based on the history memorized

by the counters, and thus makes better use of limited memory. It is also noticeable that the

advantage of DINC-Frequent/SS over DINC-Marker is less with the manipulated dataset.

This shows the trade-off between DINC-Frequent/SS and DINC-Marker. On one hand,
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Table 4.4. Comparing INC-hash, DINC-Frequent, DINC-SS and DINC-Marker with the
trigram counting workload over the Twitter dataset in terms of reduce spill (GB).

Language Memory per INC-hash DINC-Frequent (DINC-SS) DINC-Marker
reducer(MB)

Mixed 100 318 288 (288) 316
Separate 100 502 266 (265) 272
Mixed 600 217 241 (241) 244

Separate 600 455 251 (251) 212

DINC-Frequent/SS is still better at identifying hot keys than DINC-Marker. On the other

hand, as stated in Section 4.1.3, when a subsequent subset of data is read from the manipu-

lated dataset, the states from the previous subset are protected by counters in memory. Since

the keys from the new subset are different from the old subset, some tuples from the new

subset are written to disk due to this reason until the counters of old states become zero. To

the contrary, DINC-Marker protects states with markers, which are boolean counters. So,

DINC-Marker is more I/O efficient in the process of clearing states from an old subset for a

new subset. We will show this trade-off again with the larger memory setting.

In the larger memory setting using the original dataset, INC-hash performs the best.

INC-hash covers the hot keys very well for two reasons. First, there is no strong locality in

the dataset. That is, the distinct keys are quite evenly distributed in the dataset. Second, the

memory is sufficiently large such that most hot keys are likely to show up in the first s keys.

In this case, since INC-hash can hold more keys than the others due to the smallest meta

data size as explained before. Hence, it has the least intermediate I/O. In the larger memory

setting using the manipulated dataset, INC-hash becomes much worse and DINC-Marker

performs the best. INC-hash incurs more I/O because the first s keys do not cover hot keys

well due to data locality. DINC-Marker outperforms DINC-Frequent/SS, demonstrating their

trade-off again. But with larger memory, the advantage of DINC-Frequent/SS on identifying

hot keys is not as significant as before. Thus, DINC-Marker outperforms DINC-Frequent/SS.

In this set of experiments, we show that for streaming workloads, all dynamic hashing

techniques have significantly less intermediate I/O than INC-hash. For non-streaming
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Figure 4.7. Disk spills of reducers in Twitter trigram counting when we tune the coverage
requirement for the trigrams that occur more than 1000 times, under different input data
sizes and reducer memory sizes.

workloads with constrained memory, DINC-Frequent (or similarly, DINC-SS) outperforms

the others because it recognizes hot keys more efficiently and thus makes better use of limited

memory. For non-streaming workloads with larger memory, when keys are evenly distributed

in the data INC-hash outperforms the others due to the early appearance of hot keys and

the small meta data used, whereas in the presence of strong locality in the key distribution,

dynamic hashing works better than INC-hash and in particular DINC-Marker performs the

best for the type of locality of evolving trends.

4.3.4 Dynamic Hashing under Coverage Requirements

We now evaluate the DINC-hash optimization technique in Section 4.1.3.1 for workloads

with coverage requirements. Figure 4.7 shows the disk spills in reducers in the Twitter

trigram counting workload when we tune the coverage requirement for the frequent trigrams

(occur more than 1000 times) under different input data sizes (13GB and 52GB) and reducer

memory sizes (100MB and 600MB per reducer). Under 52GB input data and 100MB

memory size, up to 80% coverage can be supported without reduce spill. In all the other

settings, at least 94% coverage can be supported without incurring any reduce spill.
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4.3.5 Validation using Amazon EC2

We further validate our evaluation results using much larger datasets in the Amazon

Elastic Compute Cloud (EC2). Our EC2 cluster consists of 20 standard on-demand extra

large instances (4 virtual cores and 15GB memory per instance) launched with 64-bit

Amazon Linux AMI 2012.03 (based on Linux 3.2). One of the instances serves as a head

node running the name node and the job tracker. The other 19 instances serve as slave

nodes, where each node carries a data node and a task tracker. Each slave node is attached

with three Elastic Block Store (EBS) volumes: an 8GB volume for the operating system, a

200GB volume for HDFS, and another 200GB volume for intermediate files. Each slave

node is configured with 3 map task slots and 4 reduce task slots.4 Due to the constraints of

the physical memory size and the EC2 setting, the maximum buffer size that we can set for

a map task or a reduce task is slightly more than 700MB of memory.5 Therefore, we set the

buffer size for a map or reduce task to be 700MB by default, unless we intentionally reduce

the buffer size to evaluate our techniques in the case of constrained memory.

Click Stream Analysis We first validate the results of click stream analysis on EC2. We

use 1TB of the WorldCup click stream, the size of which is increased by a factor of 4 in

order to keep the data-to-memory ratio close to that in our previous experiments.

The first set of experiments compare INC-hash with 1-pass SM and MR-hash in the

case that memory is sufficiently large for holding most (but not all) key-state pairs. The

progress plots of three workloads, namely sessionization, user click counting, and frequent

user identification, are shown in Figure 4.8(a), 4.8(b) and 4.8(c), respectively. These results

4Due to the limited performance of a virtual core in EC2 (in contrast to a real core in our previous
cluster), the data shuffling progress cannot keep up with the map progress under the setting of 4 map
task slots and 4 reduce task slots per node, which was used in our previous experiments. To solve the
problem, we set 3 map task slots and 4 reduce task slots per node in EC2.

5The details of our memory allocation scheme are the following: On a slave node, we are able
to allocate 1.4GB JVM heap space for each of the 7 map and reduce task slots, while reserve the
remaining memory for the data node, task tracker and the other services in the operating system. And
we are able to allocate about half of the JVM heap space, 700MB per task, as the buffer.
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(a) Sessionization (0.5KB state).
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(b) User click counting.
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(c) Frequent user identification
(number of clicks ≥ 50).
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(d) Sessionization with INC-hash.

Figure 4.8. Progress report using hash implementations on EC2.

agree with the observations in Section 4.3.1: (1) When the memory is sufficiently large,

INC-hash is able to perform incremental processing fully in memory, which allows the

reduce progress to get closer to the map progress when early output can be generated for the

query; this is shown in Figure 4.8(a) for sessionization before the map progress reaches 50%

and in Figure 4.8(c) for frequent user identification over the entire job. (2) The INC-hash

technique runs faster than 1-pass SM and MR-hash due to the elimination of sorting and

less I/O, which can be seen in all of the three experiments.

We next compare the performance of INC-hash (Figure 4.8(d)) and that of DINC-hash

(Figure 4.9) using the sessionization workload that involves a large key-state space far

exceeding available memory. These results validate our observations in Section 4.3.2: When

the memory cannot hold all key-state pairs, DINC-hash dramatically reduces I/O to realize

incremental processing, and enables the reduce progress to keep up with the map progress.
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Figure 4.9. Sessionization with DINC-hash on EC2.

The results on EC2 also show some different characteristics. We list the performance

measurements of the above experiments in Table 4.5 and Table 4.6. (1) Higher CPU cost:

All the experiments have higher per-node CPU cost than our previous experiments, as shown

in Table 4.5. This is because each node on EC2 processes more data whereas the virtual

cores on each node have less processing power than the real cores used in our previous

experiments. (2) More I/O for the hash-based techniques: Comparing the reduce spill

numbers in Table 4.6 and the corresponding numbers in Table 4.2, we can see that the I/O

cost of reduce spill on EC2 increases by a factor ranging between 4.8 and 10.7, more than

the factor 4 by which the data increases. This is because the total buffer size on EC2 is less

than 4 times the buffer size in our previous experiments, as we explained earlier, which

aggregates the memory pressure and causes more I/Os. (3) Longer running time: As shown

in Table 4.5 and Table 4.6, the running times of all the experiments are longer than our

pervious experiments. Both the increase in CPU cost and the increase in I/O contribute

to the longer running times. We finally note that we also encountered unexpected CPU

measurements largely due to the interference from other jobs, such as the reduce CPU time

of MR-hash for sessionization in Table 4.5, which illustrates the difficulty of doing CPU

studies in shared environments like EC2.

Trigram Counting We next validate the results of trigram counting using the Twitter

dataset. The goal is to evaluate different hash-based techniques under different data locality
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Table 4.5. Comparing optimized Hadoop (using sort-merge), MR-hash, and INC-hash on
EC2.

Sessionization 1-Pass SM MR-hash INC-hash
Running time (s) 6605 6694 4895
Map CPU time per node (s) 1872 1121 1112
Reduce CPU time per node (s) 1353 3080 1648
Map output / Shuffle (GB) 1087 1087 1087
Reduce spill (GB) 1048 1126 547
User click counting 1-Pass SM MR-hash INC-hash
Running time (s) 2965 1641 1674
Map CPU time per node (s) 1949 960 960
Reduce CPU time per node (s) 107 91 84
Map output / Shuffle (GB) 8.5 8.5 8.5
Reduce spill (GB) 4.8 0 0
Frequent user identification 1-Pass SM MR-hash INC-hash
Running time (s) 2951 1626 1616
Map CPU time per node (s) 1953 961 958
Reduce CPU time per node (s) 93 82 84
Map output / Shuffle (GB) 8.5 8.5 8.5
Reduce spill (GB) 4.8 0 0

Table 4.6. Comparing sessionization to INC-hash with 0.5KB state, INC-hash with 2KB
state, and DINC-hash with 2KB state on EC2.

INC (0.5KB) INC (2KB) DINC (2KB)
Running time (s) 4895 6252 3523
Reduce spill (GB) 547 978 0.9
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Table 4.7. Comparing INC-hash, DINC-Frequent and DINC-Marker with the trigram
counting workload over the Twitter dataset on EC2 in terms of reduce spill (GB).

Language Memory per reducer(MB) INC-hash DINC-Frequent DINC-Marker
Mixed 100 825 754 820

Separate 100 1189 597 612
Mixed 700 557 581 572

Separate 700 1074 542 428

properties and reduce buffer sizes. Since the maximum total size of reduce buffers on EC2 is

approximately 2.25 times that in our previous experiments, in order to validate results using

the same data-to-buffer ratio, we also increase the input data by a factor of 2.25, to 117GB.

Similar to our previous experiments, we use two datasets: the Original dataset, where tweets

in various languages are mixed together; and the Manipulated dataset, where the tweets are

grouped into multiple language families and fed into each algorithm sequentially. We also

vary the reduce buffer size using two settings: Constrained memory with 100MB per reducer,

and Larger memory with 700MB per reducer. The comparison of intermediate file sizes is

shown in Table 4.7. In the constrained memory setting, DINC-Frequent performs the best on

both datasets. In the larger memory setting using the original dataset, INC-hash outperforms

the other two. In the larger memory setting using the manipulated dataset, DINC-Marker

performs the best. The results agree with our previous experiments, as summarized in

Section 4.3.3.

Summary. The results in this section are summarized below:

I Our incremental hash technique provides much better performance than optimized

Hadoop using sort-merge and the baseline MR-hash: INC-hash significantly improves

the progress of the map tasks, due to the elimination of sorting, and given sufficient

memory, enables fast in-memory processing of the reduce function.

I For a large key-state space, dynamic hashing based on frequency analysis can signif-

icantly reduce intermediate I/O and enable the reduce progress to keep up with the

map progress for incremental processing.
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I For streaming workloads, our dynamic hashing techniques can provide up to 3 orders

of magnitude reduction of intermediate I/O compared to other techniques.

I For non-streaming workloads, there are trade-offs between hashing techniques de-

pending on the data locality and memory size. Dynamic hashing using the frequency

analysis tends to work well under constrained memory. When there is sufficiently

large memory, other hashing techniques may perform better for various data locality

properties.

4.4 Related Work

The FREQUENT algorithm [66, 11], also known as the Misra-and-Gries algorithm, is

a deterministic algorithm to identify ε-approximate frequent items in a entire data stream

with 1/ε counters. Each counter corresponds to an item monitored in memory, and gives an

underestimate about the frequency of the item. The algorithm makes no assumption on the

distribution of the item frequencies, and can be implemented such that each update caused by

a data item takes O(1) time. The Space-Saving algorithm [64] employs a mechanism similar

to that in the FREQUENT algorithm. Each counter in Space-Saving gives an overestimate

about the frequency of the corresponding monitored item. In addition, an upper bound for

the error of each counter from the true frequency is maintained. Thus, Space-Saving is also

able to give an underestimate of the frequency for each monitored item. However, when

Space-Saving is used as a paging algorithm, the paging behavior relies only on the counters,

but not affected by the error bounds.We explained the similar performance for paging

between the above algorithms in Section 4.1.3 and exhibited it empirically in Section 4.3.3.

The algorithm proposed in [56] aims to find frequent elements in sliding windows, which

combines the FREQUENT algorithm with another existing algorithm. Nevertheless, the

update time scales with the number of monitored keys, and hence renders poor performance

without window operators. This work is related to our future work of extending our

incremental analytics platform to support stream processing.
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4.5 Summary

In this chapter, we proposed a new MapReduce platform that employs a purely hash-

based framework, with various techniques to enable incremental processing and fast in-

memory processing for frequent keys. Evaluation of our Hadoop-based prototype showed

that it can significantly improve the progress of map tasks, allows the reduce progress to

keep up with the map progress with up to 3 orders of magnitude reduction of internal data

spills, and enables results to be returned early.
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CHAPTER 5

STREAM PROCESSING WITH LATENCY CONSTRAINTS

We have removed the intrinsic blocking operator in the original MapReduce implemen-

tation. The revised MapReduce platform offers data parallelism and incremental processing.

We ask the following two questions. Are data parallelism and incremental processing

enough for streaming analytical queries with stringent latency requirements? If not, which

additional design features are needed? As discussed in Chapter 1, many existing systems

tailored for “fast data” also provide data parallelism, and target at incremental processing

in ways different from ours: they either impose the significant overhead of implementing

incremental processing to users, or only support incremental processing efficiently when

memory is sufficient. These systems share the same questions as we asked here.

In order to answer the first question, we understand the sources of latency by conducting

a benchmark study over our revised Hadoop platform (Incremental Hadoop). The study

reveals that while incremental processing allows arriving tuples to be processed one-at-a-

time, it does not guarantee the actual latency of processing each tuple in a large distributed

system for two reasons. (1) Upstream and downstream operators may process data at

different speeds, causing high latency due to substantial data accumulation in between.

Hence, it is crucial to consider workload characteristics of each job, and allocate resource

to operators by configuring the degree of parallelism (e.g., the number of processes per

node) and granularity of scheduling (e.g., batching data items every 5ms for shuffling) in

each operator. (2) When the memory of a cluster is not large enough to process all data in

memory, the tuples spilled to disk experience high latency because their processing is often

deferred to a later phase (e.g., at the end) of the job. These two key observations call for

98



job-specific resource planning to select the appropriate parameter settings and latency-aware

scheduling to determine which tuples to process and in what order to process them in order

to keep latency low. In this thesis, we propose resource planning and runtime scheduling

techniques as summarized below.

Model-driven Resource Planning. We propose a model-driven approach to automatically

determining the resource allocation plan for each job. We formulate the per-job resource

planning problem as a constrained optimization problem: given a user analytic job and

latency constraint L, find a resource allocation plan to maximize throughput while subjecting

the latency of results to L. We model a variety of latency metrics, including per-tuple

latency, per-window latency, and any quantiles associated with these latency distributions.

Then any of these latency metrics can be subjected to the user latency constraint. To

develop this collection of models, we identify and analyze the dominant components of

latency in a complex distributed system. This involves two challenges: First, latency here

covers a wide range of data processing behaviors, e.g., for processing individual tuples,

producing windowed results from a set of tuples, and capturing the variation of each type of

latency. Second, a distributed system based on data parallelism also exhibits complex system

behaviors. Our major contribution here lies in a clean extraction of dominant data processing

and system-level behaviors from the Incremental Hadoop with a maze of complexity.

Latency-aware Scheduling. We further propose latency-aware scheduling at runtime to

determine the set of tuples to process and the order to process them in order to maximize

the number of results that meet the latency requirement, i.e., the total utility. Such runtime

scheduling is helpful because at runtime, the workload characteristics may differ from those

provided earlier to my model-driven resource planning, e.g., due to bursty inputs and change

of computation costs under constrained memory. Thus, runtime selection and prioritization

of tuples greatly affects the overall utility. We propose two runtime scheduling algorithms,

at batch-level and tuple-level, respectively, which consider both costs and deadlines of data

99



processing. In particular, our tuple-level scheduling algorithm has provable results on the

quality of runtime schedules and efficiency of the scheduling algorithm.

Evaluation using real-world workloads such as click stream analysis and tweet analysis

show the following results: (1) Our models can capture the trend of actual latency changes

when tuning system parameters, with error rates within 15% for the average latency metric,

and within 20% for 0.9- and 0.99-quantiles of latency. (2) Our model-driven approach

to resource planning can reduce the average latency from 10’s of seconds in Incremental

Hadoop to sub-second, with 2x-5x increase in throughput. (3) For runtime scheduling, our

latency-aware tuple scheduling algorithm outperforms Dover [52], a state-of-the-art schedul-

ing algorithm with provable optimality in the worse case, and can dramatically improve

the number of tuples meeting the latency constraint, especially under constrained memory.

(4) We finally compare our system to Twitter Storm [92] and Spark Streaming [99], two

state-of-the-art distributed stream systems. For all workloads tested, our system offers 1-2

orders of magnitude improvements over Storm and Sparking Streaming when considering

both latency and throughput.

This chapter is organized as follows. We first show our benchmark study in Section 5.1

and some necessary architectural changes in Section 5.2. We then introduce our model-based

resource planning in Section 5.3 and runtime scheduling in Section 5.4. Finally, we present

the evaluation results in Section 5.5, and conclude in Section 5.7.

5.1 An Initial Benchmark Study

We begin by benchmarking Hadoop and our Hadoop-based incremental processing

platform to understand the causes of latency. The key observations from this study motivated

us to propose necessary architectural changes and new techniques in later sections which

dramatically boost performance.

In this study, we consider analytical queries in the domains of (a) Twitter feed analysis,

for which we collected 13GB of tweets; (b) click stream analysis, for which we collected
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Table 5.1. Streaming workloads in Twitter feed and click analysis.

Type of Workload Twitter Feed[55, 65] Click Stream[65]
Incre- Aggr (1) – word frequency – url frequency
mental – bi/tri-gram counting – per-user counting
Update – co-occurrence of words – per-topic counting

UDF (2) – reputation score for – click stream
each user as he tweets sessionization

Windowed Aggr (3) windowed version of workload type (1)
Operations UDF (4) windowed version of workload type (2)

236GB of WorldCup click data (described in Section 3.2). We identified streaming workloads

from recent studies in these domains [55, 65], which are based on real-world applications.

We classify these workloads in four types, as summarized in Table 5.1. For now, we focus

on the first two types under the category of “incremental update” (while postponing the

discussion of windows to the next section). These workloads follow a general pattern:

map() extracts key-value pairs (tuples) and performs filtering; the tuples are then grouped

by the key; finally reduce() performs analytics within each group. Type-1 workloads use

standard aggregates in reduce(), such as counting the frequency of each word or each tri-

gram in tweets. “Incremental update” means that the state for a key (e.g., a counter) is

updated incrementally when a new tuple arrives. The state of a key can be output based

on a user-specified frequency or when the counter exceeds a threshold. Type-2 workloads

differ by using a user-defined function (UDF) in reduce(). Examples include computing the

co-occurrence of each pair of words in user-defined contexts [65], or breaking clicks into

sessions based on user-defined criteria. The state of a key (e.g., the current session of a user)

can still be updated when a tuple arrives.

To measure latency, we break down the lifetime of a tuple, a key-value pair output by

the map function, into a number of phases.

I Map Function (MF): This phase begins when the input data chunk that contains the

tuple is read, and completes when the chunk is fully processed by map().

I Map Materialization (MM): This phase begins after MF and completes when the

map output is completely written to disk.
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I Shuffle Wait (SW): This phase starts after MM and ends when the map output

containing the tuple starts to be shuffled.

I Shuffle Transfer (ST): This phase starts after SW and captures the actual time spent

during shuffling.

I Reduce Wait (RW): This phase is after ST and before the tuple is consumed by the

reduce function.

I Reduce Update (RU): The cost of updating a state in-memory using this tuple in

reduce().

We sum the time measurements of these phases as the tuple latency.

We perform the benchmark study using a cluster of 10 compute nodes, each equipped

with an Intel Xeon X3360 Processor (4 cores), 8GB RAM, and a 2TB Western Digital RE4

HDD. We run the DataNode and TaskTracker daemons on each compute node, and configure

3 map tasks and 3 reduce tasks running in parallel per node. In each job, only one wave of

reduce tasks is used (30 reduce tasks).1 The HDFS block size is 32MB. We compare stock

Hadoop (sort-merge) and Incremental Hadoop (INC-hash that we proposed in Chapter 4).

Both approaches are based on Hadoop 0.20.1 for fair comparison.

We first consider the case that the aggregate memory in reducers can hold all key-state

pairs in memory. We illustrate our main observations using a word counting query (type-1

workload) over the Twitter dataset. Figure 5.1(a) shows the breakdown of average tuple

latency of the two systems. Compared to Incremental Hadoop, stock Hadoop cannot apply

the reduce function until all mappers complete, causing high delay in the Reduce Wait phase

and hence not suitable for low-latency analytics as reported in Chapter 3. Now we focus on

Incremental Hadoop and look into its latency issues.

(1) Latency Caused by Data Accumulation. Incremental Hadoop has significant latency

in both Shuffle Wait (SW), e.g., 39 sec, and Reduce Wait (RW), e.g., 20 sec. The reason

1We manually tuned the configuration to achieve best performance for these workloads. The
effect of configuration on latency is studied in detail in Section 5.3.
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(a) Latency breakdown of stock Hadoop and
Incremental Hadoop w/o reduce spill.
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(b) Latency breakdown of stock Hadoop and
Incremental Hadoop with reduce spill.

Figure 5.1. A latency benchmark study of stock Hadoop and Incremental Hadoop.

is that reducers cannot keep up with mappers in processing, and hence data accumulates

between them. Specifically, as map output fills up a large shuffle buffer, it takes long for the

reducer to process the data, causing increased RW latency. Further, when the shuffle buffer

becomes full, the reducer will not pull more data from newly completed mappers — such

blocking of shuffling from mappers causes high SW latency.

(2) Latency Caused by a Large Chunk Size. For Incremental Hadoop, each phase of a

tuple’s lifetime contains at least seconds of latency. This is caused by the relative large input

chunk size (32MB in this benchmark, and even larger sizes are used in Hadoop such as

64MB and 128MB). It is well known that large chunks are used in existing MR systems to

reduce per-chunk overhead, but they hurt latency. Hence, stream systems should consider

a smaller chunk size as the granularity of scheduling, without incurring high per-chunk

overhead.

(3) Latency Caused by Disk Spills. We next consider the case that the aggregate memory

in reducers is insufficient to hold all key-state pairs. We use trigram counting (type-1

workload) over the Twitter dataset to show the observations as it has the largest key-state

space, e.g., 4-5 times of the aggregate memory of reducers. As Figure 5.1(b) shows, the

latency in the Reduce Wait phase of Incremental Hadoop becomes significantly higher

(70 sec) than that in the sufficient memory case, but less than sort-merge. This is because
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Incremental Hadoop performs incremental updates only to the keys held in-memory. The

tuples spilled to disk are processed at the end of the job and hence suffer from high RW. To

reduce such latency, a better scheduling strategy is needed to determine the order to process

tuples.

Summary. The above observations were also made when we ran type-2 workloads

involving UDFs. These observations suggest that to enable streaming analytics with bounded

latency of processing (e.g., 1 second) through a distributed system: (1) A new architecture is

needed to create and process mini-batches of streaming data without incurring high overhead.

(2) It is crucial to determine the degree of parallelism (e.g., the number of mappers/reducers

per node) and granularity of scheduling (e.g., batching data items every 5 ms for shuffling).

(3) Under constrained memory, a latency-aware scheduling strategy is needed to determine

which tuples to process and in what order to process them. We address these issues in the

next three sections.

5.2 System Design

Based on the insights learned from the benchmark study, we now propose a series of

architectural changes to transform Incremental Hadoop to a new platform for “fast data”

processing. We also outline the overall system design, which provides a technical context

for our discussion in the following sections.

5.2.1 Overview of A Scalable Stream System

At a high level, an analytical query in our scalable stream system is modeled as a

direct acyclic graph (DAG) of computation units. A computation unit is a pair of map()

and reduce(), called an MR-pair. Similar to the traditional MapReduce model, map() is

a stateless operation, usually used to extract and filter tuples, while reduce() is a stateful
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Figure 5.2. A query modeled as a dataflow DAG.

operation used to perform analytics over a group of tuples of the same key. In an MR-pair,

map() can be an empty, or reduce() can be empty, but not both.2

More precisely, a query in our system is defined as a dataflow DAG, as shown in

Figure 5.2. A vertex in the DAG is either a data distributer (“D” vertex) or an MR-pair

(“MR” vertex), and an edge represents a stream of tuples flowing between the vertexes.

Each tuple is encoded as a triplet 〈timestamp, key, value〉. A distributor can take one or

multiple streams of tuples from external sources or upstream MR-pairs, as well as files from

a distributed file system (DFS). It feeds the received tuples to one or multiple downstream

MR-pairs. An MR-pair takes an input stream from a distributor, performs computation over

the stream, and outputs a stream to web UI, DFS, or one or multiple distributors.

Incremental Updates. Our system provides a low-level API to program an MR-pair.

Like before, a map function is applied to transform each input tuple (a triplet here) to a list

of output tuples.

map(time,key1,val1) → list(time,key2,val2)

where all the arguments here indicate data types. For reduce processing, two functions are

used:

init(key2) → state
update(time,key2,val2,state) → (state,list(time,key3,val3))

2How to compile a query into a DAG of MR-pairs is within the purview of MapReduce query
compilers such as PigLatin [34], while in this thesis we focus on system support to run a given query
plan with low latency.
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Reduce is stateful, and a computation state is maintained for each map output key. init

is called to create an empty state when a new key is received from map output. update

is triggered by each tuple received, which takes the unique state for a given key and

updates it using the tuple. The update function can also emit a list of output tuples. This

programming model is similar to those in [14] and [55], and has been used in a range of

real-world applications.

Time windows. Our work also provides an API for time window based operations. A

query defines time windows by specifying the range r and slide s. Given a system starting

time t0, the 〈r, s〉 pair defines a series of time windows, (t0 + i · s, t0 + r + i · s], where

i = 0, 1, · · · . These windows can be tumbling (non-overlaping) or sliding (overlapping)

windows. After a query is compiled, those time windows that overlap with the lifetime of

the query will trigger actual processing. More specifically, the map API remains unchanged,

and the reduce API consists of the following three functions:

init(key2,wtime) → state
update(time,key2,wtime,val2,state) → state
finalize(key2,wtime,state) → list(time,key3,val3)

Now the system maintains a state for each combination of key and time window. Each time

window can be identified by its end time, denoted by wtime. Hence, the 〈key, wtime〉 pair,

called a partitioned window, indicates a unique instance of windowed operation. For each

partitioned window, init is called when a new key is seen from map output, and update

is triggered by each arriving tuple, which takes the state for the relevant partitioned window

and updates it with the tuple. Since windows may overlap in time, a tuple will trigger

update for all relevant 〈key, wtime〉 pairs. Finally, finalize is called to complete the

computation of a partitioned window and generate output tuples.

We now show how to use our API to implement query workloads, including examples

of type 2 and type 3 workloads listed in Table 5.1.
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Example 5.2.1 (Incremental Updates with UDF – Type 2). Consider a click stream with

attributes (time, userId, url). For each click, determine if the click starts a new session of a

user based on user-defined criteria. If so, close the previous session and output it.

This workload can be coded using the API for incremental updates:

map(Time time, SrcID key, Click value):
// input: click time, resource id, click record
Emit(time,value.userId(),value);

init(UserID key):
return new Session();

update(Time time, UserID key, Click value,
Session state):

// input: click time, user id, a new click,
// the existing session as the state
if (state.isNewSession(time,value))

Emit(time, key, state);
state.add(time,value);

For each click, map emits the time of the click as timestamp, user id as key, and the click

as value. init creates an empty state of a user-defined type, Session, for each user id.

update checks whether a click starts a new session of a user using a UDF. If so, it outputs

a triplet including the time of the click, the user id, and the entire session. Otherwise, the

state is extended with the new click.

Example 5.2.2 (Windowed Aggregates – Type 3). Return the words that occur more than

100 times in the past 30 seconds from the Twitter firehose. Output every 30 seconds.

This query uses 30 second tumbling windows. The range and slide of windows are first

set for an MR-pair before the job starts.

mr.setWindowRange(30); mr.setWindowSlide(30);

Then the MR-pair can be implemented using the windowed API:
map(Time time, SrcID key, String value):

// input: tweet time, resource id, tweet
for each word w in value: Emit(time,w,1);

init(String key, Time wtime):
// input: word, end time of a window
return new Long(0);
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update(Time time, String key, Time wtime,
Long value, Long state):

// input: tweet time, word, end time of the window,
// constant 1, work count in the window
state = state + value;

finalize(String key, Time wtime, Long state):
// input: word, end time of the window,word count
if (state > 100) Emit(wtime, key, state);

Here init initializes a counter for each partitioned window, i.e., a (word, wtime) pair,

if the word occurs in the specified time period. update increments the counter by 1 for

each occurrence of the word in the partitioned window. finalize checks whether the

counter of each partitioned window is over 100 and if so, emits a new tuple with the window

end time, key, and counter value.

When our system (which is a runtime system) is integrated with a MapReduce query

compiler, such as Pig/Latin and Hive, a high-level SQL-based stream query can be compiled

into a DAG query plan in our system. For example, the following stream query will be

transformed to a single MR-pair as described in Example 5.2.2.

SELECT word, COUNT(*)
FROM FlatternedTweets [Range 30 sec, Slide 30 sec]
GROUP BY word
HAVING COUNT(*) > 100

5.2.2 Extended MapReduce Architecture

We next propose necessary changes of the MapReduce architecture to support stream

queries with low-latency. We explain these design differences using a single MR-pair as

shown in Figure 5.3.

Handling stream data using mini-batches and queues. The first set of changes is

proposed to break stream input into mini batches and process them with low overhead,

including the use of data distributors, queues, and long-living mappers.

We add a distributor (D) that can take streaming input from an external data source or an

upstream MR-pair. For an external data source, the distributor tags each input tuple with a
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Figure 5.3. MapReduce architecture extended with distributor & queues of mini batches.

system timestamp. The distributor packs the input tuples into a mini batch every Bin seconds,

as opposed to large batch, to reduce the delay of tuples at the distributor. It places the batch

in an in-memory queue, QD, such that mappers can fetch data from memory without I/O

overhead. The distributor can optionally materialize the mini batches to a DFS for fault

tolerance. The distributor can run in multiple processes and nodes to avoid becoming the

bottleneck of the system.

We modify a mapper (M) to be able to live forever, rather than terminate after processing

a batch. Thus, we can avoid high mapper startup cost caused by each mini batch. We also

add several in-memory queues to each mapper. A mapper requests input batches from the

distributor, and places the fetched batches in the input queue QMI. It then applies the map

function to each input tuple from QMI, and emits intermediate tuples, which are further

packed into shuffle mini batches every Bsh seconds. A shuffle batch is added to the queue

QMM, where it is materialized for fault tolerance, and then split into partitions and placed

into the queues QMO corresponding to different reducers to send. The mapper then informs

the coordinator (C) of the availability of each shuffle batch.

On the reducer side, we add an in-memory queue QRI to a reducer (R). A reducer

asks the coordinator for the available shuffle batches every Bch seconds, then fetches the
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batches, and places them in QRI. We also add a key-value store (currently implemented

using BerkeleyDB) to store key-state pairs when memory is not enough.

Handling out-of-order data. Since windowed operations are order-sensitive, the system

must handle out of order data due to delayed network delivery and different progress of

workers in cluster computing. In particular, even if all the tuples arrive from external sources

in time order or they are simply timestamped by the system in arrival order, after they are

partitioned and assigned to different mappers and processed on different nodes, there is no

guarantee that the tuples with the same key will arrive at a reducer in time order. Since

each reducer needs to identify the complete set of tuples that fall in a time window, the

system must have a way to inform the reducer whether it has delivered all the tuples in a

time window.

There are two common solutions in the literature: One is to use punctuations [57] or low

watermarks [4], which announce that at time t, an operator has seen all the data up to time

t− δ. If a reducer receives such an announcement, it can process all the windows whose end

times precede t− δ. However, the most recent study on the MillWheel system [4] reports

that out-of-order data can prevent low watermarks from advancing for large amounts of

time.

The most advanced technique for out-of-order data [53] proposes to process significantly

late data separately in order to reduce latency and buffering cost without dropping data.

We adapt this idea in our system as follows. Consider our example of 30-second windows,

and assume that time is marked using integers 1, 2, 3, ... Tuples that arrive before time

30 belong to the window Wv1
30 , where 30 is the end time and v1 is the version number. At

time 30, the window closes and a result of Wv1
30 is ready for output (or buffering). For the

late tuples that arrive between time 30 and 60 but should belong to W30, we initiate a new

window Wv2
30 (which is possible because the reduce task permits incremental updates). At

time 60, a result of Wv2
30 is ready for output (or buffering), and so on. At the same time, the

MR coordinator asks mappers to report the range of timestamps that they have processed
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recently. The coordinator can use this information to estimate how many late tuples have

not been shuffled to reducers, which can be communicated to the reducers to estimate the

“completeness” of the current result of each window. Then the system can be configured to

output results of a window only when completeness reaches 100%, which is the same as the

low watermark mechanism, or to output results early together with the estimated measure

for completeness.

Fault tolerance. Finally, fault tolerance has been intensively studied in MapReduce-style

stream systems such as MillWheel [4], Spark Streaming [99], and Storm [92]. Since it is

an issue orthogonal to our goal of analyzing latency, we simply adopt the fault-tolerance

mechanism of MillWheel [4]. This mechanism combines upstream backup, which writes

mini-batches to disk using synchronous I/O before sending them to downstream operators,

and checkpointing, which writes the states of windows to disk periodically to reduce the

recovery cost. These costs are included in our analysis below.

Maintaining states. For the API for incremental updates, a reducer maintains a state for

each key in a hash table. At the execution time of each tuple in a reducer, the reducer looks

up the state based on the key in the hash table, and executes the update function. For the

API for time windows, a reducer maintains a state for each 〈key, wtime〉 pair. We maintain

a hash table for each distinct wtime, which organizes the key-state pairs associated with the

wtime. For tumbling windows, a tuple falls in exactly one window, and for sliding windows,

a tuple may fall in multiple windows. At the execution time of each tuple, the reducer first

identifies all the wtimes of the windows the tuple falls in, then looks up the states based

on the key in all the hash tables of the wtimes, and finally executes the update function

over all the retrieved states. After the execution of the finalize function for a wtime, we

remove the corresponding hash table to save memory. For both APIs, when memory is not

enough, we add a key-value store (currently implemented using BerkeleyDB) in reducers,

and govern the paging of key-state pairs between memory and the key-value store with

DINC-hash (Section 4.1.3), which keeps the frequent keys in memory to minimize disk I/O.
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Table 5.2. System parameters in modeling.

Symbol Description
S The number of slave nodes
M The number of mappers per node
R The number of reducers per node

Bin The distributer packs input tuples into an input batch
every Bin seconds

Bsh A mapper packs map output tuples into a shuffle
batch every Bsh seconds

Bch A reducer checks the available shuffle batches from
each mapper every Bch seconds

5.3 Resource Planning

Our previous benchmark study indicates that to enable streaming analytics with bounded

latency of processing, it is crucial to determine the degree of parallelism (e.g., the number of

mappers/reducers per node) and granularity of scheduling (e.g., batching data items every 5

ms for shuffling). The appropriate choices of those parameters vary widely among analytic

tasks due to different computation needs – using the fixed values tuned for one workload is

far from ideal for other workloads, often resulting in high latency of tuples moving through

the system. We refer to this problem as job-specific resource planning.

To offer best usability, in this section we propose a model-driven approach to auto-

matically determining the resource allocation plan for each job. Below, we explain how

our approach addresses performance (latency and throughput) in a holistic manner and

supports a variety of latency models, including per-tuple latency, per-window latency, and

any quantiles associated with these latency distributions.

5.3.1 Model-driven Resource Planning

Given the job of an analytical query, an estimated data input rate λ0, and a latency

constraint L, our goal is to find the optimal resource allocation plan for the job. To do so,

we start by considering the relationship among latency, throughput, and resources. A naive

approach may minimize latency by giving all resources to push one tuple at a time through

the distributed system, which limits throughput severely. Instead, we aim to support both
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latency and throughput by taking latency as constraint and maximizing throughput under

this constraint. To further take resources into account, we consider a cluster of S̄ available

slave nodes. For each number of slave nodes S ∈ {1, . . . , S̄}, we compute the maximum

input rate, ΛL(S), that can be sustained by S nodes under L, as well as the optimal setting

of key system parameters, denoted as ΘL(S), that reaches the maximum input rate. Then,

to configure the system for “a job with input rate λ0 and latency constraint L”, the smallest

value of S that satisfies ΛL(S) ≥ λ0, denoted by S∗, is the minimum number of nodes to

use, and ΘL(S∗) is the optimal configuration for the S∗ nodes. Finally, our approach returns

(S∗, ΘL(S∗)) as the resource allocation plan for the analytic job.

In this approach, a key task is to find the maximum input rate that can be sustained

(throughput), ΛL(S), and the optimal setting of parameters, ΘL(S), for each S ∈ {1, . . . , S̄}.
Let λ denote an input rate in number of tuples per second, θ be a vector of key system

parameters, and Ψλ,(S,θ) be the latency3 under the input rate λ and resource allocation plan

(S, θ). Then, we obtain ΛL(S) and ΘL(S) by solving a constrained optimization problem

for each S as follows:

ΛL(S) = max
θ

λ, subject to Ψλ,(S,θ) ≤ L;

ΘL(S) = arg max
θ

λ, subject to Ψλ,(S,θ) ≤ L.
(5.1)

At the core of our approach is the analytical model of Ψλ,(S,θ), which is built on λ

and (S, θ), as well as job-specific characteristics and hardware specification of the cluster.

Table 5.2 summarizes all the parameters in (S, θ) for each MR-pair (a computation unit as

defined in Section 5.2.1). More specifically, θ includes the numbers of mappers and reducers

per node, and the mini-batch sizes of various queues placed in our architecture. While the

hardware specification of the cluster can be obtained once for all analytical jobs, job-specific

characteristics are provided by the programmer or learned at runtime by the system. (We

3The metric can be the average latency or a quantile of latency.

113



will explain these characteristics more when presenting the detailed models.) Then with the

model, Ψλ,(S,θ), Equation 5.1 can be solved by a general non-linear constrained optimization

solver, such as MinConNLP in JMSL4.

To develop accurate latency models, we identify the major challenges as follows:

(1) Dominant components of latency: A thorough understanding of the system is re-

quired to identify all possible dominant components that contribute to latency. Existing

models of MapReduce jobs [40, 41, 45, 30] are designed to predict the running time of

a job on stored data. They are not suitable for latency analysis because they ignore key

parameters such as the input rate and queue sizes, and factors such as queuing delay and

wait time to create a mini-batch, which affect latency strongly. (2) Shared resources: Each

latency component has to be modeled in a complex environment where system resources are

shared by different system modules. Concurrent execution of the map, shuffle and reduce

phases are necessary for incremental processing and minimizing latency of output tuples.

Existing models [40, 45], however, assume that the map, shuffle and reduce phases do not

run in parallel. (3) Diverse models based on simple statistics: To offer high usability, it is

desirable to support a diverse set of latency metrics, including per-tuple latency, per-window

latency, and different quantiles of these latency distributions, while using only the basic job

statistics that can be easily provided by the programmer or learned at runtime. None of the

existing models can support these latency metrics.

To address these challenges, we choose to model the mean and variance of per-tuple

and per-window latency because they enable us to build more complex models for quantiles

of latency, while allowing a clean abstraction of various data processing and system-level

behaviors using appropriate statistical tools.

4http://www.roguewave.com/products/imsl-numerical-libraries.aspx
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5.3.2 (µ, σ2) of Per-Tuple Latency

We begin with the incremental updates workload as defined in Section 5.2.1. For ease of

composition, we first focus on one round of MapReduce computation, i.e., one MR-pair. In

incremental updates, a result is output when a map output tuple is processed by the update

function and triggers the current state to satisfy an output criterion. Therefore, we define

tuple latency as follows:

Definition 2 (Tuple Latency). Consider a map output tuple e. Let e′ be the (unique) map

input tuple that generates e. The latency L̈ of e is the time difference from the distributor

receiving e′ to the update function completing the processing of e.

We assume that the latencies of all tuples are independent, identically distributed (i.i.d.)

random variables. Then the observed latency of each tuple can be viewed as a sample drawn

from the same underlying tuple latency distribution, denoted as f L̈(l). Our goal is to model

E(L̈) and Var(L̈).

Latency components: With a detailed analysis of the architecture in Figure 5.3, we break

L̈ into 12 distinct phases as listed in Table 5.3. Since these phases run sequentially, we have

L̈ = ∑12
i=1 L̈i. We further assume that L̈i and L̈j are independent (i 6= j). Then

E(L̈) =
12

∑
i=1

E(L̈i), Var(L̈) =
12

∑
i=1

Var(L̈i).

Thus, we can model E(L̈i) and Var(L̈i), the mean and variance of latency in each phase,

separately.

More fundamentally, we classify these latency components into six types as shown in

the last column in Table 5.3: (1) CPU, (2) network, (3) disk I/O, (4) queuing, (5) batching

tuples, and (6) heartbeat, i.e, waiting a reducer to ask for new map output. We develop a

unified approach to modeling latency types (1), (2) and (3), and show the main principles

below. Then we briefly introduce the challenge and our solution to model type (4). Last, we

model model (5) and (6).
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Table 5.3. Latency breakdown of a map output tuple e (e′ is the map input tuple that
generates e).

Symbol Description Causes of Latency
L̈1 From when e′ reaches the distributor to when e′ is packed Batching

into an input mini batch.
L̈2 Queuing delay seen by input batch at queue QD prior to Queuing

network transfer.
L̈3 Network latency to transfer the input batch containing e′. Network
L̈4 Queuing delay seen by the input batch at queue QMI Queuing

prior to map processing.
L̈5 CPU latency needed by map function to process the input CPU

batch and generate e.
L̈6 From when e is generated to when e is packed into a Batching

shuffle mini batch.
L̈7 Queuing delay seen by the shuffle batch at queue QMM Queuing

prior to disk write.
L̈8 Disk latency to write out the shuffle batch containing e. Disk I/O
L̈9 From when the shuffle batch is added to queue QMO to Queuing+Heartbeat

when the network begins transferring the batch.
L̈10 Network latency to transfer the shuffle batch containing e. Network
L̈11 Queuing delay seen by the shuffle batch at queue QRI . Queuing
L̈12 CPU latency needed by the update function to process CPU

the shuffle batch containing e.

CPU, network and disk latencies under shared resources: The latency in this category

is determined by the processing time of a batch by the respective resource, i.e. CPU cycles,

network bandwidth, or disk bandwidth. E(L̈i) in this category can be generally modeled

as u/v, where u is the total resource required by a batch on average, and v is the resource

available to the batch per second. (1) Estimate u: We estimate u by m · ut, where m is the

average number of tuples per batch and ut is the average resource required per tuple. In

general, m can be computed from the data rate and the batch size. Depending on where the

batch is in the MR system, the data rate needs to be revised based on the number of mappers

or reducers, and input-to-output ratio, α, of the map function (in number of tuples) if the

batch is downstream of map. The statistics required to estimate u, i.e., ut and α, can be

provided by the programmer from historical data or computed by the system from recent

batches. (2) Estimate v: Due to the nature of incremental processing, the resources on a
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Table 5.4. Hardware specification in modeling.

Symbol Description
n Num. of CPU cores per node
C Available CPU cycles of all cores per node in unit time
N Network bandwidth per node
D Disk bandwidth per node

compute node are shared by many threads on the node (one thread per mapper/reducer).

Hence, v is less than the total resources V available on the node. To address the issue of

shared resources, we seek to estimate v using a lower bound by assuming that the other

threads have higher priority–such a conservative estimate will make our predicted latency an

upper bound of the actual latency, which entails still a valid resource allocation plan through

constrained optimization. Our approach is to first estimate p, the fraction of the relevant

resource required by all other threads on the same node. Then, we model v = (1− p)V.

For Var(L̈i) in these types, we directly model them using the sample variance, which is

empirically measured from the test runs of the workload.

CPU Latency. The latency components, L̈5 and L̈12, model the CPU processing latency

of the map and update functions over a batch of tuples, respectively. Since they model

the time from the start of the processing of a batch to when a specific tuple in the batch is

processed, and a tuple is in a uniformly random position in the batch, E(L̈5) and E(L̈12)

can be modeled as half of the processing time of the batch. Then we model the average

processing time l of a batch using the above approach. Here, u is the number of CPU cycles

used to process a batch on average, which can be obtained by testing the average CPU cost

per tuple and estimating the size of a batch. V is the number of processing cycles that the

CPU has per unit time. If we know p, the fraction of CPU cycles consumed by all other

threads on the same node, we can model l = u/((1− p) ·V). Further, consider that each

CPU has n cores, and a mapper (or reducer) has a single thread to run map (or update),

the fraction of CPU cycles available to the batch is bounded by 1/n. We then model the

average time to process the batch as:
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E(L̈cpu) =
u

2 ·min(1− p, 1/n) ·V . (5.2)

To model p, let cm (cr) be the CPU cycles required by a mapper (reducer) per unit time,

which can be computed from the number of tuples processed by a mapper (reducer) in unit

time. The total CPU cycles required per unit time on a node is

ctotal = M · cm + R · cr.

When we estimate the running time of a batch in a mapper or reducer, we exclude the cost

of the current thread itself from ctotal, and model p as (ctotal − cm)/C, or (ctotal − cr)/C.

Plugging p into Equation 5.2, we obtain the model of E(L̈cpu).

We model network and disk I/O latency in a similar fashion.

Network latency. The latency components L̈3 and L̈10 model the network transmission

time of a batch. Suppose the network bandwidth is N, and the average size of a batch is b.

Given p, the fraction of bandwidth used by all other network activities on the same node,

we can model the average transmission time of the batch as

E(L̈net) =
b

(1− p) · N .

p can be modeled by considering r, the total size of data transferred in unit time on the same

node by all other senders or receivers. Then, we model p = r/N.

Disk I/O latency. The latency component L̈8 models the average time to write a map

output batch to local disk. Suppose D is the disk bandwidth on a node, and the average size

of a map output batch is b. Given p, the fraction of bandwidth used by all other mappers on

the same node, we can model the average time to write a batch as

E(L̈disk) =
b

(1− p) · D .
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p can be modeled by considering d, the total size of data written in unit time on the same

node by all other mappers. Then, we model p = d/D. In general, the disk bandwidth D

is sensitive to q, the number of writes per unit time. Hence, rather than modeling D as a

constant, we model D as a function of q, and estimate an empirical model with one-time

cost.

Queuing delays have been well studied in the area of queuing theory. The challenge in

our problem is to select an accurate model based on the characteristics that can be easily

obtained. After surveying of a wide range of queueing models [74, 46, 50, 6], we decide to

model each queue as a G/G/1 queue because the more restrictive models, such as M/M/1,

make assumptions that are not true in MR systems, while the more general models, such as

queuing network, further complicate our model and may require statistics hard to obtain.

Queuing theory of the G/G/1 model [50, 6] states that the mean and variance of the queuing

delay can be modeled based on the first, second and third moments of Ta and Ts, where Ta

and Ts are the random variables for the inter-arrival time between two consecutive batches

and the service time of a batch, respectively:

E(L̈queue) =
Var(Ta) + Var(Ts)

2(E(Ta)− E(Ts))
,

Var(L̈queue) = E(L̈2
queue)− E(L̈queue)

2,

where

E(L̈2
queue) ≈

E(T2
a )− 2E(Ta)E(Ts) + E(T2

s )

E(Ta)− E(Ts)
· E(L̈queue) +

E(T3
a )

3(E(Ta)− E(Ts))

−E(T3
a )− 3E(T2

a )E(Ts) + 3E(Ta)E(T2
s )− E(T2

s )

3(E(Ta)− E(Ts))
.

We have modeled E(Ts) for CPU-, network- and disk-type consumers, i.e. E(L̈i) in these

types. E(Ta) can be computed from the average number of batches added to the queue per

unit time. Higher moments of Ta and Ts can be measured empirically.
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Batching delay. The latency components L̈1 and L̈6 arise when creating batches of tuples.

L̈1 and L̈6 capture the latency from when a tuple arrives at the batching phase to when a batch

is created. Since a batch is created periodically and we assume the arrival time of a tuple to

be evenly distributed, we model E(L̈1) and E(L̈6) as half of the time between the creation of

two consecutive batches: E(L̈1) = Bin/2 and E(L̈6) = Bsh/2, where parameters Bin and

Bsh denote the periods to create batches in the distributor and a mapper. Also, based on the

assumption of even distribution, we model Var(L̈1) = B2
in/12 and Var(L̈6) = B2

sh/12.

Heartbeat. A portion of latency component L̈9 is caused by the gap between two consec-

utive times a reducer inquires for map output, which is controlled by the parameter Bch.

Assuming that the map output batch creation is evenly distributed between two consecutive

reduce inquiries, we model the second part of E(L̈9) by Bch/2 and the second part of

Var(L̈9) by B2
ch/12.

5.3.3 (µ, σ2) of Per-Window Latency

Unlike incremental update workloads, the results in the windowed workloads are com-

puted only after a reducer has received all the tuples in a time window. Therefore, the

per-tuple latency cannot reflect the latency of a windowed result. In this section, we define

and model the latency of a windowed result. Recall from Section 5.2.1 that a window query

defines a series of time windows, (t0 + i · s, t0 + r + i · s], where r is the window size, s is

the slide, and i=0, 1, . . . For each time window, tuples can be further partitioned by the key,

resulting in a set of partitioned windows, each of which produces a unique windowed result

(if non-empty).

Definition 3 (Window Latency). The latency L̃ of a partitioned window, denoted as

〈key,window〉, is the time difference from the end-time of the window to the point that

the finalize function completes the processing of 〈key,window〉.

We assume that latencies of all partitioned windows are i.i.d random variables. Then,

the observed latency of each partitioned window can be viewed as a sample from the same
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Figure 5.4. An example of window latencies.

window latency distribution, denoted as f L̃(l), and our goal is to model E(L̃) and Var(L̃).

As we shall show shortly, a new major latency component of L̃ is the delay of the last tuple

of the partitioned window received by a reducer. The challenge is to choose appropriate

tools to model such delay based on easy-to-obtain statistical measurements.

Latency components. Our key observation of the window processing behavior is that

once the wall-clock time reaches the end-time tw of a window, all of its partitioned windows

are processed at the same time in two phases: In Phase 1, the system executes the update

function until all tuples with timestamps earlier than tw are processed. We denote the

completion time of this phase as t1. Then, in Phase 2, the system executes the finalize

function over all the related non-empty partitioned windows and completes at t2.

Figure 5.4 shows the tw, t1 and t2 of an example window in a reducer, with input

from two mappers. Tuple e1 is the last tuple of the window received by the reducer from

mapper 1, e2 is the last tuple from mapper 2, and they correspond to the two distinct keys

in the window. At time t1, when both e1 and e2 have been processed by update (), the

reducer executes finalize() on the non-empty partitioned windows corresponding to

key1 and key2 sequentially. The observed latencies of the two partitioned windows are

marked as L̃〈key1,w〉 and L̃〈key2,w〉, both of which contain (t1− tw) and a portion of (t2− t1)

determined by the completion time of the corresponding finalize execution. Denote

the observed tuple latencies of e1 and e2 by L̈e1 and L̈e2 . We estimate (t1 − tw) with
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max(L̈e1 , L̈e2). Then, we can approximate: L̃〈key1,w〉 ≈ max(L̈e1 , L̈e2) + (t2 − t1)/2, and

L̃〈key2,w〉 ≈ max(L̈e1 , L̈e2) + (t2 − t1).

Model. Formally, the quantity (t1 − tw) is uncertain, and we model it using a random

variable U. Let t′ denote the time when the finalize function completes the execution of

a particular partitioned window (t1 ≤ t′ ≤ t2). Since the quantity (t′ − t1) is also uncertain,

we model it using a random variable F. It is easy to get L̃ = U + F. Assume that U and F

are independent. Then,

E(L̃) = E(U) + E(F), Var(L̃) = Var(U) + Var(F).

We only need to model the mean and variance of U and F separately.

Mean and Variance of U. In the above example, L̃〈key1,w〉 and L̃〈key2,w〉 are two samples

drawn from the distribution of L̃. Based on the insights from the above example, we model

U = max(L̈e1 , · · · , L̈eS·M),

where ei is the last tuple of the window received by the reducer from mapper i. The

moments of max(L̈e1 , · · · , L̈eS·M) are studied in order statistics [24]. We have assumed that

L̈e1 , · · · , L̈eS·M , L̈ are i.i.d. in Section 5.3.2. Since we observe the distribution of L̈ to be well

centered at its mean in most workloads, we assume that L̈ follows a Gaussian distribution

N (µ̈, σ̈2). Based on Fisher-Tippett-Gnedenko theorem, the following approximation can be

applied [24]:

E(max(L̈e1 , · · · , L̈eS·M)) ≈µ̈ + a · σ̈,

Var(max(L̈e1 , · · · , L̈eS·M)) ≈
(
a′ · σ̈

)2 ,

where a and a′ are constants relying only in the total number of mappers (S ·M):

a = γΦ−1
(

1− e−1

S ·M

)
− (γ− 1)Φ−1

(
1− 1

S ·M

)
,
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a′ =
π√

6

(
Φ−1

(
1− e−1

S ·M

)
−Φ−1

(
1− 1

S ·M

))
.

We can see that µ̈= E(L̈) and σ̈2= Var(L̈) are required, which we have modeled in

Section 5.3.2.

Mean and Variance of F. Assume that each time window has the k non-empty partitioned

windows on average, and sk is the CPU cycles required to process a partitioned window by

finalize(). k and sk can be estimated by the average measured empirically. Then, we

model (t2 − t1) = (k · sk)/v, where v is the CPU resources available to a reducer, which

has been modeled in Section 5.3.2. As shown in the above example, for a time window,

(t′ − t1) of the ith partitioned window processed by finalize() can be modeled with

i · (t2 − t1)/k. Treating (t′ − t1) for all i values as samples of F, we use the sample mean

(1 + 1/k)(t2 − t1)/2 and sample variance (1 + 1/k)(t2 − t1)
2/12 to model E(F) and

Var(F), respectively.

5.3.4 Quantiles of Latency

To simplify notation, we use L to generally refer to L̈ if the workload is an incremental

update, or L̃ if it is a windowed workload. We have modeled µ and σ2 of L in both types

of workloads. Now we model any quantile of L, based on µ and σ2. Let Q(x) denote the

x-quantile of L, which has the following property:

Pr (L ≤ Q(x)) = x. (5.3)

When the distribution of L is known or can be well approximated, we can model Q(x) =

F−1(x), where F−1 is the inverse CDF of L, and F−1 can be expressed using µ and σ2 in

many cases. For example, when the distribution of L can be approximated by a normal

distribution, we can model Q(x) = µ + σ ·Φ−1(x), where Φ−1(x) is the inverse CDF of

the standard normal distribution. When the distribution of L is not observed, we use an
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Table 5.5. Job-specific statistics required by the model.

Symbol Description (∗Required only in a windowed workload.)
α Avg. input-to-output ratio of map() in num. of tuples

bm, br Avg. num. of bytes per tuple in map() or update() input
sm, sr Avg. CPU cycles req. to proc. a tuple in map() or update()

sk Avg. CPU cycles req. to proc. a 〈key, win〉 in finalize()
E(T2

a ), E(T3
a ) 2nd, 3rd moments of batch inter-arrival time in each queue

E(T2
s ), E(T3

s ) 2nd, 3rd moments of service time of a batch in each queue
k ∗Avg num of non-empty partitioned windows of a window

upper bound of the quantile to model Q(x) in order to provision enough resources to meet

the latency constraint. According to Cantelli’s inequality,

Pr
(

L ≤ µ +

√
x

1− x
· σ
)
≥ x. (5.4)

According to Equation 5.3 and 5.4, we can have µ +
√

x
1−x · σ as an upper bound of Q(x).

Therefore, we model Q(x) = µ +
√

x
1−x · σ.

5.3.5 Job-Specific Statistics

Finally, we summarize all the job-specific statistics used in our model in Table 5.5, which

can be measured with test runs or at runtime. α, bm, br and sm can be obtained by tracking

the following metrics of a mapper: the number and size of input tuples, the number and size

of output tuples, and the number of consumed CPU cycles5. sr can be measured by tracking

the number of input tuples and the consumed CPU cycles of a reducer during the execution

of the update function. k and sk can be measured by tracking the number of non-empty

partitioned windows and the consumed CPU cycles of a reducer during the execution of the

finalize function. E(T2
a ), E(T3

a ), E(T2
s ) and E(T3

s ) could be measured at each queue

when batches are added or removed from the queue. All the above metrics can be collected

in a period of time to obtain stable numbers.

5A mapper or a reducer is a process. Consumed CPU cycles of a process can be collected from a
profiler such as the ps command.
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5.3.6 Supporting Multiple MapReduce Rounds

Now, we consider a query defined as a DAG of MR-pairs as we described in Section 5.2.1.

Given the latency constraint L for the query, we first break it down to a series of constraints

Li for each MR-pair i, such that on every path p from an external data source to an external

data consumer,

∑
MR-pair i is on p

Li ≤ L.

Then, we solve the resource planning for each MR-pair i with latency constraint Li as

described earlier in this chapter, and allocate each MR-pair on a separate set of nodes6.

To assign each Li, the difference in the costs of MR-pairs should be considered. To

satisfy the job-wise latency constraint L, assigning a tight constraint to a costly MR-pair

while assigning a lose constraint on a cheap MR-pair may require a resource allocation

plan with a unnecessarily large number of nodes in total. As a heuristic, we assign Li

proportionally to the CPU cost of MR-pair i,

Li = ci · L′,

where ci is the CPU cycles required by MR-pair i under the estimate data input rate, and L′

is a value we will solve shared by all MR-pairs. We also allow hints from users to decide ci

for each MR-pair.

When ci for each MR-pair is known, we have a constraint for each path p from an

external data source to an external data consumer: L′ ·∑i is on p ci ≤ L. Since we favor to

use fewer number of nodes, and thus to set L′ as lose as possible, we obtain the maximum

value of L′ while satisfy all the above constraints:

L′ = min
p

{
L

∑MR-pair i is on p ci

}
.

6This way, we avoid the interference in resource consumption between different MR-pairs, which
may further complicate resource allocation.
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5.4 Runtime Scheduling

While our model-based approach to resource planning can reduce latency, it may not

always offer optimal performance at time. This occurs if the job-specific characteristics

previously provided to the model change at runtime, such as the increase in processing cost

due to constrained memory and bursty inputs at runtime. In this section, we propose runtime

scheduling as an optimization, which selects and prioritizes tuples to be processed by the

update function in each reducer in order to maximize the total utility gained from such

processing. We define the scheduling problem as follows:

Problem Statement. Each tuple e can be represented by (te, t̃e, ce), where te is the time

when the distributor receives the input that generates e, t̃e is the time when the reducer

receives e, and ce is the time cost of processing e by the update function. The problem is

to design an online algorithm for each reducer (i.e. the algorithm knows nothing about e

before t̃e) to decide an order to process tuples sequentially in order to maximize ∑ U(e, t̂e),

where U is a utility function for tuple e and t̂e is the time when update(e) completes.

We first explain how we obtain the time cost ce for running update() on tuple e. In a

reducer, we maintain key-state pairs in an in-memory hash table, where each arriving tuple

triggers the update of the computation state for its key. When memory is insufficient to

hold all key-state pairs, some of them are staged to a key-value store on local disk (using

SSD for better performance). To minimize I/O, we use the FREQUENT algorithm (described

in Section 4.1.3) to decide the keys in memory. Then to estimate ce, we partition tuples

into two groups: one group for tuples with keys in memory, and the other for tuples that

are staged to disk. Which group a tuple belongs to can be determined by checking the

in-memory hash table with low cost. We measure the average per-tuple cost in each group

at runtime, and estimate ce with the average value of the group.

We next present a simple yet popular utility function. Given a user-defined latency

constraint L, U(e, t̂e) = 1 if t̂e ≤ te + L (deadline of e); U(e, t̂e) = 0, otherwise. That is,

if the latency of a tuple is within L, we gain utility 1. Otherwise, we gain 0.
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The problem of maximizing total utility in this context is close to online scheduling

problems in real-time operating systems [52, 21], where computation tasks are scheduled to

maximize utility. The two major differences in our problem are: (1) a tuple represents a task

so the number of tasks to schedule is much larger, and (2) processing a tuple is relatively

cheap compared to processing a complex task. Therefore, existing scheduling techniques do

not fit our problem, due to the high time and space complexity of running the scheduling

algorithm for a large number of cheap tuples. To overcome the problems, we propose two

scheduling techniques.

5.4.1 Batch-level Scheduling

To reduce scheduling complexity, the first method we propose is batch-level scheduling.

It considers a shuffle batch received by a reducer as the scheduling unit. When a batch is

scheduled, the tuples in the batch are processed sequentially. The total utility of a batch

is the number of tuples in the batch nb. Regarding the cost of the batch, a key assumption

we make is that this cost can be approximated by nb · ce, where ce is the average cost per

tuple. This assumption is made to simplify scheduling, but is supported by the following

intuition: While the costs of processing individual tuples may vary, when we average them

over a batch, the tuple-level differences tend to cancel each other and the average cost can

be quite stable, especially if we measure the average cost from recently processed batches.

Therefore, we obtain two properties for each batch: (1) The value density of a batch, which

is the utility divided by the cost, is 1/ce, a constant across batches. (2) When we process a

portion of tuples in the batch, we gain utilities of those tuples, even if we do not complete

the batch. Given these two properties, the earliest deadline first (EDF) scheduling is known

to be optimal [21].

However, batch-level scheduling processes tuples in a batch regardless of their costs,

e.g., spending time to process a tuple with a high cost in a scheduled batch rather than two

tuples with low costs in an unscheduled batch. Hence, it may not yield optimal utility.
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5.4.2 Tuple-level Cost-aware Scheduling

Next we propose tuple-level cost-aware scheduling, as well as techniques to reduce its

scheduling overhead. Tuple-level scheduling does not satisfy the properties of batch-level

scheduling. The value density of a tuple varies due to the varying cost, and one only gains the

utility of a tuple by fully processing it. Hence, EDF is not suitable for tuple-level scheduling.

The Dover algorithm [52] achieves the optimal worst-case competitive ratio in this setting.

However, it does not consider costs of tuples effectively, and thus can suffer from low utility

in practice (verified in Section 5.5), despite the worst-case guarantee in theory.

We propose a new cost-aware scheduling algorithm. To better describe the algorithm,

we first define a concept: A set of tuples Γ is schedulable at time t if there exists an order to

process all tuples in Γ sequentially starting at time t and no tuple misses its deadline. Now

we sketch the algorithm, which includes three functions:

I init() is called when a reducer is created.

I release(Γ′) is called when a shuffle batch is received by the reducer. Here the

algorithm maintains a schedulable set of tuples Γ to process, which is initially empty.

When a set of tuples Γ′ are released to the reducer, the scheduler merges Γ′ into Γ,

finds a largest schedulable subset of Γ at current time, and updates Γ to the schedule

subset.

I nextToProcess() returns the next tuple in Γ to process and is invoked by the re-

ducer whenever the processing of the previous tuple completes. Since it is known [26]

that processing a schedulable set in increasing order of deadline guarantees that no

tuple misses its deadline, our algorithm generates a plan to process tuples in Γ in that

order. A tuple is removed from Γ immediately when its processing starts.

Sometimes, before all the tuples in the current schedulable set Γ are processed, the reducer

can receive a new shuffle batch. Then the algorithm merges the remaining tuples in Γ with

the new tuples Γ′, finds a new largest schedulable subset from these tuples, and hands it to

the reducer for processing through nextToProcess().
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Algorithm 3 Sketch of finding a largest schedulable subset.
largestSchedulableSubset(Γ)

1: t← current time, Initialize di, Γi from Γ
2: for i = 1, 2, · · · , g do
3: while total cost of t + Γ1 ∪ Γ2 ∪ · · · ∪ Γi > di do
4: remove the tuple of the largest cost from Γ1 ∪ Γ2 ∪ · · · ∪ Γi
5: end while
6: end for
7: return Γ1 ∪ Γ2 ∪ · · · ∪ Γg

The key part of the algorithm is finding a largest schedulable subset from Γ, which

considers both cost and deadline of each tuple. The high-level intuition is that if we

enumerate all subsets of Γ, for each subset we can check whether it is a schedulable subset

based on the cost and deadline; among those schedulable subsets, we want to find the subset

that has the largest number of tuples. Of course, enumerating all subsets is expensive to

do. We first outline how we avoid the enumeration in finding a largest schedulable subset,

and then introduce an efficient implementation of the scheduling algorithm based on a tree

structure. At last, we show the per-tuple scheduling time complexity.

Finding a Largest Schedulable Subset. Let g be the number of distinct deadlines of the

tuples in Γ, and d1, d2, · · · , dg are these distinct deadlines in increasing order. Partitioning

Γ based on the deadline gives a tuple set Γi for each deadline di (i = 1, · · · , g). Algorithm 3

shows the sketch: considering each deadline di in increasing order, we remove the tuple with

the highest cost in Γ1 ∪ Γ2 ∪ · · · ∪ Γi repeatedly, until all remaining tuples in Γ1 ∪ · · · ∪ Γi

can be processed before di starting at current time t (Lines 2-6). After all deadlines are

checked, the remaining tuples in Γ1 ∪ · · · ∪ Γg are returned (Line 7). The following

proposition states the correctness of the algorithm.

Proposition 5.4.1. Γ1 ∪ Γ2 ∪ · · · ∪ Γg returned by Algorithm 3 is a largest schedulable

subset of Γ at time t.

Before proving Proposition 5.4.1, we prove two lemmas.

Lemma 5.4.1. Γ1 ∪ · · · ∪ Γg returned by Algorithm 3 is a schedulable subset of Γ at time t.
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Proof. If we process the tuples in Γ1 ∪ Γ2 ∪ · · · ∪ Γg in increasing order of deadline starting

at time t, according to Line 2-4 in Algorithm 3, it is easy to see that ∀i = 1, 2, · · · , g, the

completion time of processing tuples in Γi is (t+ total cost of Γ1 ∪ Γ2 ∪ · · · ∪ Γi) ≤ di.

That is, no tuple misses its deadline. Thus, Γ1 ∪ Γ2 ∪ · · · ∪ Γg is a schedulable subset.

Suppose Algorithm 3 removes x tuples in total from Γ. Let ej denote the jth removed

tuple (j = 1, 2, · · · , x). Let Γ(j) denote the set of remaining tuples after removing ej. We

have Γ(0) = Γ and Γ(x) = Γ1 ∪ Γ2 ∪ · · · ∪ Γg returned by Algorithm 3. Note that there may

be one or multiple largest schedulable subsets that have equal number of tuples. LetM be

the set of all largest schedulable subsets at time t. The following lemma holds.

Lemma 5.4.2. ∀j ∈ {0, · · · x}, ∃Γmax ∈ M s.t. Γ(j) ⊇ Γmax.

Proof. For j = 0, since Γ(0) = Γ and any tuple set inM (apparentlyM 6= ∅) is a subset

of Γ, it holds that ∃Γmax ∈ M such that Γ(0) ⊇ Γmax.

For j = 1, 2, · · · , x, we prove by contradiction. Assume the lemma does not hold.

Consider the smallest value of j s.t. ∀Γmax ∈ M, Γ(j) 6⊇ Γmax. We have ∃Γ̂max ∈ M
s.t. Γ(j−1) ⊇ Γ̂max. Since Γ(j) = Γ(j−1) − {ej}, ej ∈ Γ̂max. Suppose ej is removed

during the check of deadline di. According to Algorithm 3, if Γ(j−1) is processed in

increasing order of deadline, at least one tuple with deadline di misses the deadline. Since

Γ(j−1) ⊇ Γ̂max and Γ̂max is schedulable, ∃e′ ∈ Γ(j−1) s.t. the deadline of e′ ≤ di, and

e′ 6∈ Γ̂max. Apparently, e′ 6= ej and the cost of e′ ≤ the cost of ej. We construct a tuple set

Γ̂max ∪ {e′} − {ej}. It is easy to get that Γ̂max ∪ {e′} − {ej} is a subset of Γ(j). We next

prove that Γ̂max ∪ {e′} − {ej} is a largest schedulable subset of Γ, which contradicts with

∀Γmax ∈ M, Γ(j) 6⊇ Γmax.

In order to prove that Γ̂max ∪ {e′} − {ej} is a largest schedulable subset of Γ at time

t, we first prove Γ̂max ∪ {e′} − {ej} is schedulable at t by showing no deadline among

d1, d2, · · · , dg is missed if Γ̂max ∪ {e′} − {ej} is processed in increasing order of deadline,

and then prove that |Γ̂max ∪ {e′} − {ej}| is maximum for a schedulable subset.

130



We already know that Γ(j−1) ⊇ Γ̂max and e′ ∈ Γ(j−1).So, Γ(j−1) ⊇ Γ̂max ∪ {e′} − {ej}.
According to Algorithm 3, if Γ(j−1) is processed in increasing order of deadline at time t,

no deadline among d1, d2, · · · , di−1 is missed. Thus, if Γ̂max ∪ {e′} − {ej} is processed

in increasing order of deadline, no deadline among d1, d2, · · · , di−1 is missed. Since Γ̂max

is schedulable at time t, ∀k = i, · · · , g, (t+ total cost of tuples in Γ̂max with deadline

d1, d2, · · · , dk) ≤ dk. We know the deadline of ej ≤ di. We have shown that the deadline

of e′ ≤ di, and the cost of e′ ≤ the cost of ej. Let ∆ = (the cost of ej− the cost of e′).

Apparently, ∆ ≥ 0. If Γ̂max ∪ {e′} − {ej} is processed in increasing order of deadline,

∀k = i, · · · , g, the completion time of processing tuples with deadline k is (t−∆+ total cost

of tuples in Γ̂max with deadline d1, d2, · · · , dk)≤ dk. So, no deadline among di, · · · , dg is

missed. To summarize, if Γ̂max ∪ {e′} − {ej} is processed in increasing order of deadline at

time t, no deadline among d1, · · · , dg is missed. Hence, Γ̂max ∪ {e′} − {ej} is schedulable

at time t.

We now prove that |Γ̂max ∪ {e′} − {ej}| is maximum for a schedulable subset at time

t. We have shown that ej ∈ Γ̂max and e′ 6∈ Γ̂max. So, we have |Γ̂max ∪ {e′} − {ej}| =
|Γ̂max|. Since Γ̂max is a largest schedulable subset, |Γ̂max ∪ {e′} − {ej}| is maximum for a

schedulable subset.

In summary, Γmax ∪ {e′} − {ej} is a largest schedulable subset of Γ, which contradicts

with ∀Γmax ∈ M, Γ(j) 6⊇ Γmax, and hence the lemma holds for j = 1, 2, · · · , x. We have

already shown that the lemma holds for j = 0. Thus, we have proved the lemma.

Finally, we prove Proposition 5.4.1 based on the above two lemmas.

Proof. According to Lemma 5.4.2, Γ1 ∪ · · · ∪ Γg returned by Algorithm 3, i.e. Γ(x), is

a superset of a largest schedulable subset of Γ at time t. According to Lemma 5.4.1,

Γ1 ∪ · · · ∪ Γg is schedulable at t. So, Γ1 ∪ · · · ∪ Γg is a largest schedulable subset of Γ at

t.
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Operation Description Time
Complexity

insert(T , e) Insert a tuple e to tree T O(log m)
delete(T , e) Delete a tuple e from tree T O(log m)
schedulable(T ) Return whether all tuples in T are schedulable now O(1)
min unsched grp(T ) Return minimum di such that: O(log g)

(now + total cost of Γ1 ∪ · · · ∪ Γi) > di
max cost in grps(T , di) Return the tuple with the maximum cost in: O(log g)

Γ1 ∪ · · · ∪ Γi
next(T ) Return a tuple with the earliest deadline in T O(log g)

Table 5.6. Description and time complexity of basic operations over tree T .

A Tree-based Implementation. We now propose an efficient implementation of the tuple-

level cost-aware scheduling algorithm using a tree structure T for organizing tuples in Γ.

We implement a few basic operations over T with corresponding time complexity shown in

Table 5.6, where m is the maximum number of tuples in Γ.

More specifically, T is a balanced binary search tree of all the distinct deadlines in Γ.

Let Ni denote the tree node associated deadline di. Each node Ni maintains: 1) a max heap

Hi that organizes all tuples in Γi based on tuple cost; 2) metadata that summarizes all tuples

in the subtree Ti rooted at Ni, including:

I cΣ: total cost of tuples in subtree Ti

I cmax: the maximum cost of a tuple in Ti

I φ: the latest time to start processing all the tuples in Ti such that the tuples are

schedulable

An example of T with 3 distinct deadlines 10, 15 and 20 is shown in Figure 5.5, where the

heap of three tuples with deadline 15 is shown as an example while the other two heaps are

omitted.

The tree structure offers two key properties for supporting the operations efficiently. (1)

The question, “are the tuples in the subtree Ti schedulable at time t,” can be answered by

the boolean expression “t ≤ Ni.φ” in O(1) time. (2) The metadata in each node Ni can be
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Figure 5.5. An example of tree T .

computed directly from the metadata of its left child NL, right child NR, and its associated

deadline group Γi in O(1) time as follows:

Ni.cΣ = NL.cΣ + NR.cΣ + Γi.cΣ

Ni.cmax =max(NL.cmax, NR.cmax, Γi.cmax)

Ni.φ = min(NL.φ, (di − NL.cΣ − Γi.cΣ), (NR.φ− NL.cΣ − Γi.cΣ))

(5.5)

where Γi.cΣ is the total tuple cost in Γi, and Γi.cmax is the maximum tuple cost in Γi. The

calculation of Ni.cΣ and Ni.cmax is straightforward. We explain Ni.φ more below. Let t be a

time when all the tuples in Ti are schedulable. Processing the tuples in Ti in increasing order

of deadline starting at time t is known to guarantee that no tuple misses its deadline [26].

In such an execution plan, the processing of tuples in the subtree of NL starts at t, yielding

the constraint t ≤ NL.φ. The time when the processing of Γi ends, which is also when the

processing of the tuples in the subtree of NR starts, is t + NL.cΣ + Γi.cΣ, giving the two

constraints t + NL.cΣ + Γi.cΣ ≤ di and t + NL.cΣ + Γi.cΣ ≤ NR.φ. Combing the three

constraints, we have the above equation for Ni.φ. In Figure 5.5, the metadata of N2 can be

computed as described above.

Now we describe in detail the basic operations over T with corresponding time com-

plexity in Table 5.6.

I insert(T , e) involves searching the node associated with the deadline of e in the

balanced binary search tree, creating a new node if no corresponding node is found,
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Algorithm 4 min unsched grp(T )
1: Ni ← root of T , Φ← current time
2: while Ni 6= null do
3: NL ← left child of Ni, NR ← right child of Ni
4: if NL 6= null and Φ > NL.φ then
5: Ni ← NL
6: else
7: Φ← Φ + NL.cΣ
8: if Φ + Γi.cΣ > di then
9: return di

10: else
11: Φ← Φ + Γi.cΣ, Ni ← NR
12: end if
13: end if
14: end while

and updating the meta data on the path from the node associated with e to the root.

Each of the three steps takes O(log g) time. The operation also involves inserting e to

the corresponding heap, which takes O(log m) time. Since g ≤ m, insert(T , e)

takes O(log m) time.

I delete(T , e) involves searching the node associated with the deadline of e, updating

the meta data on the path from the node to the root, and deleting the node if the

corresponding heap becomes empty. Each of the three steps takes O(log g) time. The

operation also involves deleting e from the corresponding heap, which takes O(log m)

time. Since g ≤ m, delete(T , e) takes O(log m) time.

I schedulable(T ) only compares the current time with φ of the root, and thus takes

O(1) time.

I min unsched grp(T ) returns the smallest di such that Γ1 ∪ Γ2 ∪ · · · ∪ Γi is not

schedulable at current time. If we know Γ1 ∪ · · · ∪ Γj is schedulable at current time,

the problem can be transformed to finding the smallest di such that Γj+1∪Γj+2∪ · · · ∪
Γi is not schedulable at time Φ, where Φ =current time+total cost of Γ1 ∪ · · · ∪ Γj.

Based on this observation, we design an algorithm for min unsched grp(T ) that

searches top-down in the tree as shown in Algorithm 4. We start from the root node
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and initialize Φ to current time (Line 1). We first check whether the left subtree

is unschedulable (Line 4). If yes, we move to the left subtree for search (Line 5).

Otherwise, we update Φ because we know that the left subtree is schedulable (Line

7), and we check whether the deadline group associated with the current tree node

is unschedulable (Line 8). If yes, the deadline associated with the current tree node

is the desired di and we return the value (Line 9). Otherwise, we update Φ since we

know the deadline group associated with the current tree node is schedulable, and we

move to the right subtree for search (Line 11). We repeat the process (Line 2-11) until

we find the desired di. Since searching at a tree node takes O(1), and we search at

most O(log g) nodes, the operation takes O(log g) time.

I max cost in grps(T , di) returns the tuple with the maximum cost in Γ1 ∪ Γ2 ∪
· · · ∪ Γi. First, the algorithm searches top-down to the node Ni associated with

deadline di. Then, temporarily update the cmax of each node bottom-up on the path

from Ni to root in the following way: cmax of Ni is updated to max(Γ.cmax, NL.cmax).

For any other node on the path, if Ni is a left descendent of the node, cmax is updated

to the same value as its left child; otherwise, compute cmax as usual using Equation 5.5.

The next step is searching top-down from the root along a path where all the nodes

on the path have the same cmax value as the root, until no child node has the same

cmax or the leaf node is reached. The tuple at the top of the heap associated with the

last searched node should be returned. The last step is restoring all the temporarily

changed cmax values. This operation visits the nodes on a path in the tree four times,

and each visit takes O(1) time. Thus, the operation takes O(log g) time.

I next(T ) involves searching the node associated with the smallest deadline in

O(log g) time, and retrieving the first tuple from the corresponding heap in O(1)

time. So, the operation takes O(log g) time.

Since insert(T , e) and delete(T , e) may cause insertion or deletion of a node in

the tree, they may result in self-balancing of the tree structure. Any rotation-based self-
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Algorithm 5 Implement the cost-aware tuple-level scheduling algorithm using the tree
structure.
init()

1: T ← empty tree
release(Γ′)

1: for each e ∈ Γ′ do
2: insert(T , e)
3: end for
4: while schedulable(T ) 6= true do
5: d←min unsched grp(T ), e←max cost in grps(T , d)
6: delete(T , e), Abandon e
7: end while
nextToProcess()

1: e← next(T )
2: if e 6= null then
3: delete(T , e)
4: return e
5: end if

balancing binary search tree with worst-case complexity of O(log g) for each insertion and

deletion can be used here, such as red-black tree. For such a tree, each insertion or deletion

may trigger up to O(log g) rotations. For each rotation, the meta data of the affected nodes

can be updated with O(1) time. Thus, the worst-case complexity for insert(T , e) and

delete(T , e) is not affected.

Finally, based on the tree operations shown in Table 5.6, we implement our tuple-

level scheduling algorithm as shown in Algorithm 5, where Lines 4-7 of release()

reimplement Algorithm 3.

Time Complexity. As shown in Algorithm 5, each of the basic tree operations is called at

most once per tuple. Since each operation can be performed in O(log m) time as we have

shown, the amortized time per tuple of the scheduling algorithm is O(log m), where m is

the maximum number of tuples in Γ as described above.

5.4.3 Optimization in Cost-aware Scheduling

In practice, our tuple-level, cost-aware scheduling may still degrade performance due to

the O(log m) complexity per tuple. We next propose several optimizations of our tuple-level
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scheduling to further reduce the scheduling cost. First, we cluster tuples into a fixed number

of groups based on similar costs, and estimate the cost of a tuple using the average cost of

the group. For example, we described a solution to create a memory group and a disk group

earlier in this section. Second, we use a configurable coarse-grained time unit for deadlines

to lower the scheduling cost by reducing the size of the tree structure. The size of the

time unit controls the trade-off between accuracy of deadlines and efficiency of scheduling.

As we will show in evaluation, the most utility is gained when the time unit is about one

order of magnitude smaller than the latency constraint. Third, instead of operating on each

individual tuple, a set of tuples from a shuffle batch that share the same cost and deadline

can be inserted, deleted and scheduled for processing together by the scheduler. Due to a

small number of cost levels and coarse-grained deadlines, a significant number of tuples can

be operated together, and thus the amortized per-tuple scheduling cost is reduced.

5.4.4 Extension for Time Windows

Finally, we outline how we adapt the above scheduling techniques to support time

windows. The difference with time windows is that in theory, only the output tuples of each

window generate utility. However, scheduling needs to be done when tuples arrive at the

reducer; at that point, which tuples produce which output is not known. To leverage our

previous techniques that requires a utility and a deadline of each tuple, we make several

modifications: Assuming that each partitioned window has utility 1, we consider a tuple

having partial utility of the window it belongs to, which is 1 over the number of tuples, nw, in

the window. Again, we use the statistics from recently processed windows to estimate nw. A

tuple’s deadline is set to the deadline of its window, minus the cost of finalize() which

performs the final processing when the window closes. Then our scheduling algorithms run

as before.
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5.5 Performance Evaluation

We have implemented all of our proposed techniques in Incremental Hadoop as described

in Chapter 4. In this section, we evaluate the efficiency of our system, with the new modeling

and scheduling techniques for reducing latency. We also include a comparison to Spark

Streaming [99] and Twitter Storm [92], two state-of-the-art open-source distributed stream

systems, which have been widely used in industry.

In all of our experiments, we use the same cluster of 10 nodes and same workloads as in

our benchmark study in Section 5.1. We show most results from the following workloads:

(1) Word Counting over the 13GB Twitter dataset (Type 1), (2) Windowed Word Counting

over the same Twitter dataset using 30-second tumbling time windows (Type 2), and (3)

Sessionization over the 236GB WorldCup click stream (Type 3). We simulate a streaming

data source at a configurable input rate. By default, we configure the system using our

model-based resource configuration and allocate sufficient buffer space to mappers and

reducers, unless stated otherwise.

5.5.1 Latency-Aware Configuration

We begin by evaluating the effectiveness of our model-based resource configuration for

reducing latency.

Model Accuracy. To evaluate accuracy, we compare our modeled latency with the latency

measured in our cluster when tuning five key system parameters. The default setting is: for

the numbers of mappers and reducers, M = R = 2; for buffer sizes, Bin = 0.01 sec and

Bsh = Bch = 0.2 sec. The input rate is 0.5 million tweets/sec for the Twitter dataset and 2.5

million clicks/sec for the WorldCup click stream. We consider latency metrics ranging from

the average latency to the 0.9- and 0.99-quantiles of latency.

Regarding average latency, Figure 5.6(a) shows the results when we tune the number of

mappers, M, in the three workloads, while Figure 5.6(b), 5.6(c) and 5.6(d) show those when

we tune the number of reducers R, the shuffle check period Bch and the shuffle period Bsh
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(a) Modeled vs real average latency with the
num. of mappers per node, M, tuned.
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(b) Modeled vs real average latency with the
num. of reducers per node, R, tuned.
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(c) Modeled vs real average latency with the
shuffle check period, Bch, tuned.
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(d) Modeled vs real average latency with the
shuffle period, Bsh, tuned.

Figure 5.6. Accuracy of the model for average latency.

respectively. The modeled average latency is close to real values in all the workloads. In 60

out of the 65 experiments, the relative error is below 15%.

For the 0.9-quantile of latency, Figure 5.7(a) and 5.7(b) show the results with varied

M and Bch, for word counting and windowed word counting. For readability, we omit the

similar results for sessionization in these plots. To model the 0.9-quantile, we consider the

cases that (1) the latency distribution L can be observed at runtime, for which we empirically

observed it to be well approximated by normal distributions; (2) L is not observable,

for which we model an upper bound of 0.9-quantile using Cantelli’s inequality. In both

workloads, the modeled latency has similar trends as the real values. When L is not observed,

the modeled latency is an overestimate in all experiments, up to 70% of true latency, due to
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(a) Modeled vs real 0.9-quantile of latency
with M tuned.
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(b) Modeled vs real 0.9-quantile of latency
with Bch tuned.
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(c) Modeled vs real 0.99-quantile of latency
with M tuned.
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(d) Modeled vs real 0.99-quantile of latency
with Bch tuned.

Figure 5.7. Accuracy of the model for quantiles of latency.

the use of a data-oblivious upper bound. When L is observable, which is expected to be the

common case, the model accuracy is much improved: the relative error is below 20% in 21

out of the 22 experiments.

For the 0.99-quantile of latency, Figure 5.7(c) and 5.7(d) show the results with varied M

and Bch, for word counting and windowed word counting. In both workloads, the modeled

latency has similar trends as the real values. When L is not observed, the modeled latency

is an overestimate in all experiments, up to 2.2 times of true latency, due to the use of a

data-oblivious upper bound. When L is observable, which is expected to be the common

case, the model accuracy is much improved: the relative error is below 20% in 19 out of the

22 experiments.
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(a) Valid configurations in M (# mappers)
and R (# reducers) under 1-sec constraint on
avg. latency.
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(b) Valid configurations in Bsh (shuffle pe-
riod) and Bch (shuffle check period) under
1-sec constraint on avg. latency.

Figure 5.8. Validity of the model-driven configuration optimization under average latency.

Model Validity. We next validate the system configuration returned by our model under

the word counting workload. We consider 1-second latency constraints on average latency,

0.9- and 0.99-quantiles of latency. We feed data at the maximum input rates according to

our model, which are 1.2 million tweets/sec for the average latency, 1 million tweets/sec for

the 0.9-quantile, and 0.81 million tweets/sec for the 0.99-quantile. We evaluate our system

under the model-suggested configuration, as well as other configurations in the system

parameter space. We run three times under each configuration, and consider a configuration

valid if (1) the latency metric is below 1 sec, and (2) no input tuples are dropped, in all three

runs. Figure 5.8(a) and 5.8(b) show the validity of configurations in the 2-dimensional space

of M and R, and the space of Bsh and Bch, respectively for average latency. We can see that

there are only a few configurations valid at the input rate suggested by the model, marked

by solid dots. The model-suggested configuration, marked by a square, is among those few

valid configurations. Figure 5.9(a) and 5.9(b) show similar results for the 0.9-quantile of

latency. Figure 5.9(c) and 5.9(d) show those for the 0.99-quantile of latency.

Choosing the Cluster Size. As stated earlier, our model-based approach can be used

to decide the cluster size. Given different numbers of slave nodes, the maximum input

rates suggested by our model for 1-second constraint on average latency, and 0.7-, 0.9- and

141



��

��

��

��

��

��

��

��

��

�� �� �� �� �� ���

�
�
�
�
��
��
��
��
�
�
��
��
��
��
��
�
�
�

��������������������������

�������
�����

�������

(a) Valid configurations in M and R under
1-sec constraint on 0.9-quantile of latency.
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(b) Valid configurations in Bsh and Bch under
1-sec constraint on 0.9-quantile of latency.
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(c) Valid configurations in M and R under
1-sec constraint on 0.99-quantile of latency.
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(d) Valid configurations in Bsh and Bch under
1-sec constraint on 0.99-quantile of latency.

Figure 5.9. Validity of the model-driven configuration optimization under quantiles of
latency.

0.99-quantiles of latency are shown in Figure 5.10(a). As such, a system can decide the

cluster size based on the estimated input rate.

Comparison to Incremental Hadoop. Finally, we break down the average latency in our

new system with the suggested configuration, and compare it with Incremental Hadoop,

as shown in Figure 5.10(b). The breakdown is described in Section 5.1. We can see that

the latency in each phase in our system is sub-second or even lower, due to the use of

mini-batches for scheduling, with the appropriate batch sizes and number of processes per

node chosen by our model.
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(a) Max sustainable input rate of a cluster,
with different latency metrics kept below 1
second.
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(b) Latency breakdown of Incremental
Hadoop and our system configured for 1-sec
avg. latency.

Figure 5.10. Results of our model-driven configuration optimization.

5.5.2 Latency-Aware Scheduling

We next evaluate the effectiveness of our runtime scheduling algorithms. The mea-

surement is the percentage of gained utility (as defined in Section 5.4) over the maximum

possible utility, i.e. the percentage of tuples that satisfy the latency constraint. An initial

issue to resolve is how the size of time unit affects the effectiveness of our cost-aware

scheduling algorithm. For all three workloads tested, we observe that the highest utility

is gained when the time unit is about one order of magnitude smaller than the latency

requirement (Figure 5.11(a)) – smaller time units incur significantly higher CPU cost in

scheduling, and larger time units make the deadline for each tuple so inaccurate that the

algorithm fails to prioritize the tuples effectively. Hence, in the following experiments we

set the time unit of the cost-aware scheduling to 10% of the latency requirement.

We now compare our scheduling algorithms in Section 5.4, by varying the memory size

Y in each reducer. Figure 5.11(b) shows gained utility under the 1-second latency constraint

in the word counting workload with an input of 1.1 million tweets per second. Here, the

minimum memory needed to hold all key-state pairs in a reducer is 200MB. As Y reduces

below 200MB, without scheduling the number of tuples that satisfy the latency constraint

drops very fast. It is because now some key-state pairs have to be staged to the key-value
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(a) Effect of time unit in our cost-aware
scheduling.
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(b) Effect of scheduling under constrained
memory, in the word counting workload.
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(c) Effect of scheduling under constrained
memory, in windowed word counting.
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(d) Effect of scheduling under constrained
memory, in the sessionization workload.

Figure 5.11. Results of runtime scheduling.

store on disk. Hence, the per-tuple processing cost increases, which in turn reduces the

sustainable input rate to under 1.1 million per second. As tuples queue up in the system,

when many of them arrive at the reducer, they have already missed the deadline. Processing

them offers no utility and deprives other viable tuples of necessary resources, causing them to

miss the deadline as well. Batch-level scheduling helps by dropping some batches when they

arrive at the reducer. However, among those retained batches, those tuples whose key-states

are on disk are still processed, postponing other viable cheap-to-process tuples until after the

deadline. The cost-aware scheduling offers the best performance, without significant drop in

utility. This is because the tuple-level, cost-aware scheduling gives higher priority to tuples

whose key-states pairs are in memory. For skewed key distribution, it further keeps most
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(a) Effect of scheduling under busty inputs.
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(b) Comparing our tuple-level, cost-aware
scheduling to the Dover algorithm.

Figure 5.12. Results of runtime scheduling.

hot keys in memory and thus most tuples are processed in memory. Figure 5.11(c) shows

similar trends for the windowed word counting workload. Figure 5.11(d) shows the results

for the sessionization workload. Different from the previous two workloads, the utility of

cost-aware scheduling drops slightly, but is still much higher than the other two methods.

The slight drop in utility is mainly due to less skewed frequencies of keys in this workload,

and thus fewer tuples to process in memory.

We next consider bursty input. For word counting with sufficient memory under 1-

second latency constraint, Figure 5.12(a) shows the results for the normal load of 1.1 million

tweets/sec, the moderate overload of 1.5 million tweets/sec, and high overload of 2.0 million

tweets/sec. In the moderate overload case, only a small fraction of tuples can meet the

latency requirement without scheduling. With scheduling, by dropping non-viable tuples,

enough system resources are saved to process the majority of tuples within latency constraint.

In the high overload case, very few tuples can meet the latency constraint without scheduling

(which is too low to be displayed in the figure). Scheduling helps increase the system utility,

but many tuples are dropped since they have missed deadlines upon arrival at the reducer.

Here scheduling works as a load-shedding mechanism, saving significant CPU cycles for

non-viable tuples.
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Last, we compare our cost-aware scheduling to Dover [52], a proven optimal algorithm

in the worse case. For a thorough study with controlled per-tuple cost, we evaluate the

algorithms with simulation based on the input trace to reducers collected in real workloads

with constrained memory (50MB) per reducer. In the simulation, we vary the cost of an

on-disk tuple while fix the cost of an in-memory tuple to a value measured in the real system.

Figure 5.12(b) shows the results from the trace of the sessionization workload where the

cost per in-memory tuple is 2µs. We can see that when the cost per on-disk tuple is 10µs

to 100µs, our cost-aware scheduling outperforms Dover significantly due to the ability to

prioritize in-memory tuples. In practice, SSDs are widely used for key-value stores, and

a random I/O on a modern SSD takes tens of microseconds.7 Thus, the cost per on-disk

tuple may easily fall in the range between 10µs and 100µs, in which case, our cost-aware

scheduling shows superior performance over Dover. Similar observations are made in the

word counting and windowed word counting workloads as well.

5.5.3 Comparison to Other Systems

Storm. Storm [92] is an open-source distributed fault-tolerant stream system. A Storm

cluster uses a master-slave architecture, and runs topologies that are similar to MapReduce

jobs but can run continuously over streams. A topology is a directed acyclic graph of logical

operators, which are called Spouts and Bolts. Spouts emit data as source streams of the

system and Bolts consume input streams, do data processing, and possibly emit new streams

to downstream operators. Storm supports shuffling between operators via various types of

grouping, where field grouping is the same as the partitioning of map output in MapReduce.

We extended Storm 0.9.0 with two new pieces of code: (1) the mechanism for handling

out-of-order data as our system, including the use of low watermarks to produce complete

results (Section 5.2.2); (2) a distributor to control the input rate.We implemented the same

7For example, Samsung 850 PRO SSD can achieve 90K to 100K IOPS, which translates to 10 to
11µs per random I/O.
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(a) Avg. latency as input rate varies, in the
word counting workload.
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(b) Profiling of CPU utilization in the word
counting workload.

Figure 5.13. Evaluation of Storm on latency and throughput.

workloads as used in previous experiments. For word counting and windowed word counting,

the topology is such that Spouts read tweets from the distributor and split them into words,

and then send the words to Bolts to count the frequency of these words. For sessionization,

the Spouts read clicks from the distributor, and extract and send user ids to Bolts to compute

sessions. There are 20 Spouts and 20 Bolts running in parallel. For fair comparison, we

make sure that configurations of Storm and our system are the same, including the same

number of tasks per node and the same amount of memory for each task and each queue.

Figure 5.13(a) shows how the latency of Storm stabilizes over time, using the word

counting workload. Here each line represents an input rate, R, to the 10-node cluster. When

R = 100,000 tweets/sec or lower, the latency stabilizes, e.g., 8 second for the 100,000 input

rate. However, for R > 100,000 tweets/sec, the latency increases continuously. In this

case, the processing in Storm cannot keep pace with the input rate, so the tuples accumulate

between the spouts and bolts, making the latency increase continuously. For windowed

word counting and sessionization, similar trends are observed and the maximum input rates

with stable latency are 95,000 tweet/sec and 1 million clicks/sec, respectively.

We examined the system profiling results and found the CPU utilization to be near

100% in the case when the latency does not stabilize. In Figure 5.13(b), we record the CPU

utilization in four scenarios. We run (1) the word counting workload from 0 to 300 seconds;
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(2) from 550-850 seconds, the revised task where Bolts do nothing but simply drop the

received data, with the CPU utilization still close to 100%; (3) from 1050 to 1350 seconds,

the revised task with no Bolts in the topology, leading to much lower CPU utilization; (4)

from 1500 to 1800 seconds, the task where Spouts do not process data, again with low CPU

utilization. These results show that the shuffling overhead between Spouts and Bolts is the

bottleneck of the system. Since Storm handles shuffling and transmission for every tuple,

CPU becomes the bottleneck.8

Spark Streaming. Spark [98] is an open-source, fault-tolerant parallel processing system

tailored for in-memory computation. In Spark, data is stored in a distributed in-memory

data abstraction, called Resilient Distributed Datasets (RDDs). Spark transforms an RDD to

another RDD by user-defined coarse-grained transformations, including map and reduce,

and other transformations such as sample, distinct, union and intersection.

An analytical job consists of one or multiple transformations. Spark provides fault-tolerance

by tracking the lineage of each RDD, and re-computing any lost partition of an RDD. Spark

Streaming [99] is a functionality integrated in Spark that enables parallel stream processing.

Spark Streaming periodically creates a mini-batch containing the streaming input data, and

transforms stream processing into a sequence Spark batch jobs over input mini-batches.

We extended Spark 1.09 with a custom Receiver to connect to our data distributor

that controls the input rate in experiments. We implemented the same workloads as in

previous experiments. The word counting workload uses a f latMap transformation that

splits tweets into words, and updateStateByKey that computes the frequency of each

word. The windowed word counting workload uses the same f latMap to split words

and reduceByKeyAndWindow to compute word frequencies in each time window. The

8We also downloaded a new version of Storm, called Trident, which uses a new abstraction to
process streams in batches. However, we observe the performance to be worse than Storm due to
various added overheads.

9A patch that fixed a bug for windowed streaming jobs is applied: https://github.com/
apache/spark/pull/961
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(a) Avg. latency as input rate varies, in the
word counting workload.
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(b) Max input rate with stable latency as
batch size varies.
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(c) CPU utilization in the word counting
workload with overload.
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(d) Straggler tasks in the word counting
workload.

Figure 5.14. Evaluation of Spark Streaming on latency and throughput.

sessionization workload uses map to extract user IDs and updateStateByKey to compute

sessions of each user. For fair comparison, we set the number of concurrent tasks per node

to 4, which equals the total number of mappers and reducers per node in our system.10 We

also make sure the same amount of memory is used per node.

Figure 5.14(a) shows how the latency in Spark Streaming stabilizes over time with 5sec

batch size in the word counting workload. We made similar observations in windowed

word counting and sessionization. The maximum input rates with stable latency in the three

workloads are 20,000 tweets/sec, 115,000 tweets/sec and 250,000 clicks/sec, respectively.

10We set NUM CORES to 6, where 2 “cores” are taken to receive input data and 4 “cores” are
available for computation on each machine.
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Figure 5.14(b) shows the maximum sustained input rate under different batch sizes. In all

the three workloads, Spark Streaming can sustain a higher input rate when the batch size is

larger due to smaller overhead to start Spark batch jobs.

To understand the bottleneck of Spark Streaming, we examined the system profiling

results and found CPU, network and disk are all under-utilized. For example, Figure 5.14(c)

shows the CPU utilization in the word counting workload with 5sec batch when input rate

is 22,000 tweets/sec, which is higher than the max input rate with stable latency. The

average CPU utilization is 21.6%.11 The combination of the following two reasons prevents

Spark Streaming from fully utilizing system resource and supporting higher input rate.

(1) Straggler tasks for a batch: The computation of a batch consists of a large number of

distributed tasks, and the completion of processing a batch is determined by the last finished

task. Figure 5.14(d) shows the number of in-progress tasks in the system during a 30-second

period in the word counting workload, with the corresponding time interval of processing

each batch marked at the top. For batch 82, only a few straggler tasks remain running

in the second half of the time interval, and delay the completion of the processing of the

batch. Similar observations can be made for batch 85 and batch 86. The major cause of

the stragglers in this example is the unstable time taken by data shuffling. Other reasons

may also result in stragglers, such as data or computation skew, JVM garbage collection

and failure. (2) Blocking between batches: Spark Streaming only starts the processing of a

batch after all the tasks of the previous batch complete. As shown in Figure 5.14(d), where

the batch size is 5sec, the processing of batch 82, 83, 84, 85 and 86 should start at 410s,

415s, 420s, 425s and 430s, respectively. However, it can be seen that batch 82 delays the

start of batch 83, and batch 85 delays batch 86. Due the blocking between batches, the

system resource cannot be effectively utilized during the occurrence of any straggler. Thus,

11Despite various approaches to improving the resource utilization, including the exploration of
various combinations of relevant system parameters and the optimization of user code, no obvious
improvement is observed. Similar observations are made in the user community of Spark Streaming.
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(a) Comparison to Hadoop, Storm and Spark
(the word counting workload).
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(b) Comparison to Hadoop, Storm and Spark
(the windowed counting workload).
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(c) The sessionization workload.

Figure 5.15. Comparing Hadoop, INC-hash, Spark Streaming, Storm and our system on
latency and throughput.

the combination of stragglers and the blocking fashion of processing batches becomes the

bottleneck of system throughput.

Put All Systems Together. Here, we summarize the performance of stock Hadoop, Incre-

mental Hadoop, Storm [92], Spark Streaming [99] and our new platform. Figure 5.15(a)

shows the results of word counting in the two-dimensional space of latency and throughput

achieved. We roughly partition the space into three regions: (1) Stock Hadoop and Incre-

mental Hadoop read data from the distributed file system, and hence have a fixed input rate

of around 300,000 and 600,000 tweets/sec, respectively. However, both have high tuple

latency, in the range of tens to hundreds of seconds, hence not suitable for low-latency tasks.

(2) Storm achieves stable latency of less than 10 seconds when the input rate is at most
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100,000 tweets/sec, belonging to the low input rate, low latency region. (3) Spark Streaming

achieves stable latency of less than 10 seconds when the input rate is at most 9,000 tweets/sec

for 1sec batch size, or at most 20,000 tweets/sec for 5sec batch size, which puts it also in the

the low input rate, low latency region. (4) Our new platform, when configured for 1-second

average latency and with scheduling turned off, is able to fully process every input tuple

with a mean latency under 1sec for input rates up to 1.2 million tweets/sec, putting it in

the high input rate, low latency region. With the scheduler turned on, our system allows

more tuples to satisfy the latency constraint, providing better utility. Similar results for the

sessionization workload are shown in Figure 5.15(c).

For the windowed word counting workload, Spark Streaming stays in the low input

rate region but gets close to the high latency region, as shown in Figure 5.15(b). This is

because Spark Streaming does not perform incremental processing for a window. Instead, it

performs all computation of a window after the window ends, and thus delivers output of

the window with high latency.

5.5.4 Summary

Our new platform can reduce the average latency from 10’s of seconds in Incremental

Hadoop to sub-second, with 2x-5x increase in throughput. It is able to outperform Storm by

7x-28x in latency and 8-13x in throughput, and outperform Spark Streaming by 4x-27x in

latency and 10x-56x in throughput.

5.6 Related Work

In this section, we discuss the literature relevant to our latency models and runtime

scheduling techniques.

Queueing Theory. Queueing Theory [58, 87, 50, 46, 51, 74, 6] studies the statistical

properties of customers in a service system, such as mean waiting time and distribution of

the number of customers in queues. For single-server models, M/M/1 has been thoroughly
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studied, where the times between successive customer arrivals are iid exponential random

variables, and the service times of customers are also iid exponential random variables.

Analytical solutions of mean waiting time and distribution of the number of customers in

the queue are known [6]. Jansson [46] showed the analytical solutions for D/M/1, where

the service times are still exponentially distributed, but arrivals occur at a constant rate.

Lindley [58] and Smith [87] studied a more general single-server model G/G/1, where

interarrival times and service times have general distributions. However, the solution of

waiting time is difficult to evaluate. Kingman [50] showed an upper bound of mean waiting

time for G/G/1. The upper bound relies only on the means and variances of the interarrival

time and service time distributions, and is asymptotically sharp in heavy traffic [51]. Ott [74]

improved the bound of Kingman for light traffic under D/G/1, a sub-class of G/G/1 where

arrivals occur at a constant rate. Higher moments of waiting time in G/G/1 have also been

studied [6].

Online Scheduling. The problem of maximizing total utility in this context is close to the

problems of online scheduling with deadline in real-time operating systems [26, 67, 60, 81,

83, 9, 84, 52, 21], where computation tasks are scheduled to maximize utility. Scheduling in

underloaded systems has been well studied. Optimal online algorithms have been proposed

for uniprocessor systems [26, 67]. However, these algorithms do not provide performance

guarantees for overloaded systems and have shown poor performance in experiments [60].

Scheduling algorithms tailored for overloaded situations usually employ an additional test

module [81, 83, 9, 84, 52]. Given a newly released tasks, the test module checks whether

the new task will cause overload of the existing tasks in the current schedule. The module

decides to accept the new task if no overload is caused. Otherwise, it rejects the new task or

abandons some existing tasks. Heuristic-based methods have been proposed for uniprocessor

[9, 84]. However, they do not provide guarantee on the worst case competitive ratio. Baruah

et al. [10] provided an upper bound of competitive ratio for uniprocessor 1/(1 +
√

k)2,

where k is the importance ratio. Koren et al. [52] designed an online scheduling algorithm,
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Dover, for uniprocessor. Dover is optimal in underloaded environment and achieves the

competitive ratio of 1/(1 +
√

k)2 in the worst case with presence of overload. However,

Dover does not take the value density of tasks into consideration, and thus may suffer from

low competitive ratio in practice. The two major differences in our problem are: (1) a tuple

represents a task so the number of tasks to schedule is much larger, and (2) processing a

tuple is relatively cheap compared to processing a complex task. Therefore, the existing

scheduling techniques are not a good match of our problem due to the high time and space

complexity of running the scheduling algorithm for a large number of cheap tuples.

Sparrow [75] is a scalable scheduling system that assigns high-volume short tasks to a

set of machines. Sparrow achieves high scalability and fault-tolerance by using distributed

and stateless schedulers without centralized state. Sparrow also supports task placement

constraints, such as data locality. In our work, Sparrow can be used to distribute mini-batches

to mappers. However, the objective of Sparrow is to minimize response time of tasks in a

parallel environment by load balancing, different from our focus on constraints of per-tuple

latency experienced in a sequence of operators.

5.7 Summary

Towards building a unified processing framework for big and fast data, we identified

the causes of high latency in today’s systems that support data parallelism and incremental

processing. To support streaming processing with latency constraints, we proposed an

extended architecture with mini-batches as granularity for computation and shuffling, and

augmented it with new modeling and scheduling techniques to meet user-specified latency

requirements while maximizing throughput. Results using real-world workloads show

that our techniques, all implemented in Incremental Hadoop, can reduce average latency

from 10’s of seconds to sub-second, with a 2x-5x increase in throughput. Our scheduling

techniques further increase the number of tuples that actually meet the latency constraint.

Our new platform is able to outperform two state-of-the-art distributed stream systems,
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Storm and Sparking Streaming, by 1-2 orders of magnitude when considering both latency

and throughput.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

This chapter summarizes the contributions made in this thesis work and states some

research directions for future work.

6.1 Thesis Summary

Recently, there have been increasing needs of processing not only “big data” but also

“fast data”, which refers to high-speed real-time data streams, such as Twitter feeds, search

query streams, click streams, impressions, and system logs. The needs call for a general,

unified system to support analytics with different latency requirements. In order to build

such a system, I propose to build on existing solutions on data parallelism and extend them

with two new features: (1) incremental processing and (2) stream processing with latency

constraints. I start with Hadoop, the most popular open-source MapReduce implementation,

which provides proven scalability based on data parallelism. This thesis answers the

following questions: (1) Is Hadoop able to support incremental processing? (2) What are

the necessary architecture changes in order to support incremental processing? (3) What

are the additional design features required to support streaming analytical queries with

stringent latency requirements? To address these questions, the thesis includes the following

three parts: Hadoop benchmarking and optimization, incremental processing, and stream

processing with latency constraints. Each part is summarized as follows.

6.1.1 Hadoop Benchmarking and Optimization

Incremental processing means that computation is performed as soon as the relevant

data becomes available. Incremental processing enables tuples to move quickly through
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a pipeline of operators, and thus is essential to returning query answers with low latency.

The first part of the thesis answers the following question: “Is the existing MapReduce

implementation, after tuning its parameters for optimization, able to support incremental

processing?”

I first conduct a thorough benchmarking study, evaluating existing MapReduce platforms

including Hadoop and MapReduce Online. The results reveal that the main mechanism

for parallel processing used in these systems, based on a sort-merge technique, is subject

to significant I/O bottlenecks as well as blocking: Next, building on these benchmarking

results, I perform an in-depth analysis of Hadoop, using a theoretically sound analytical

model to explain the empirical results. The key results are two-fold: (1) It is shown that the

analytical model can be used to choose appropriate values of Hadoop parameters, thereby

reducing I/O and startup costs. (2) Despite a range of optimizations, I/O bottlenecks as

well as blocking persist, and the reduce progress falls significantly behind the map progress,

hence violating the requirements of efficient incremental processing. Both theoretical and

empirical analyses show that the sort-merge implementation, used to support data parallel

processing, poses a fundamental barrier to incremental processing.

6.1.2 Incremental Processing

Based on the insight that the sort-merge implementation in the original MapReduce

model poses a fundamental barrier to incremental processing, the next question to answer is:

“What are the necessary architecture changes in MapReduce in order to support incremental

processing?” In the second part of the thesis, I propose a new data analysis platform based

on MapReduce that is geared for incremental processing.

I made two key architecture changes to Hadoop. The first mechanism replaces the

sort-merge implementation in Hadoop with purely hash-based techniques. These hash

techniques can provide fast in-memory processing of the reduce function when the memory

is sufficient. The second mechanism further brings the benefits of fast in-memory processing
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to workloads that require a large key-state space that far exceeds available memory. I

propose techniques to dynamically recognize popular keys and then update their states using

a full in-memory processing path, both saving I/Os and enabling early answers for these

keys. Less popular keys trigger I/Os to stage data to disk but have limited impact on the

overall efficiency.

Experiments on a range of workloads in click stream analysis and web document analysis

show the following main results: (1) Given sufficient memory, my hash techniques enable

fast in-memory processing of the reduce function. (2) For challenging workloads that require

a large key-state space, my dynamic hashing mechanism allows the reduce progress to keep

up with the map progress with up to 3 orders of magnitude reduction of internal disk spills.

(3) Further trade-offs exist between my hash-based techniques under different workload

types, data localities, and memory sizes, with dynamic hashing working the best under

constrained memory and most workloads.

6.1.3 Stream Processing with Latency Constraints

The revised MapReduce platform offers data parallelism and incremental processing.

The third part of the thesis answers the following questions: “Which additional design

features are needed to support streaming analytical queries with stringent latency require-

ments?”

First, I conduct a benchmark study in order to understand the sources of latency in a

system supporting data parallelism and incremental processing. The results call for job-

specific resource planning to select the appropriate parameter settings and latency-aware

scheduling to determine which tuples to process and in what order to process them in order

to keep latency bounded. For resource planning, I propose a model-driven approach to

automatically determining the resource allocation plan for each job. I formulate the per-job

resource planning problem as a constrained optimization problem, where the constraint

depends on the modeling of latency. Hence, I further develop various latency models for a
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collection of widely-used latency metrics, including per-tuple latency, per-window latency,

and any quantiles associated with these latency distributions. For latency-aware scheduling,

I propose runtime scheduling algorithms to maximize the number of results that meet the

latency requirement, i.e., the total utility. I propose two runtime scheduling algorithms, at

batch-level and tuple-level, respectively, which consider both costs and deadlines of data

processing. In particular, my tuple-level scheduling algorithm has provable results on the

quality of runtime schedules and efficiency of the scheduling algorithm.

Evaluation using real-world workloads shows: (1) My model-driven approach to resource

planning can reduce the average latency from 10’s of seconds in Incremental Hadoop to

sub-second, with 2x-5x increase in throughput. (2) My latency-aware scheduling can

dramatically improve the number of tuples meeting the latency constraint, especially under

constrained memory. (3) My system offers 1-2 orders of magnitude improvements over

Twitter Storm and Spark Streaming, two state-of-the-art distributed stream systems, when

considering both latency and throughput.

6.1.4 Resulting System

I have implemented all of the proposed techniques in Hadoop. The implementation

consists of a library of (1) core algorithms for hash-based incremental processing, latency

modeling and runtime scheduling, (2) efficient binary in-memory data structures such as

hash tables, queues and buffers, and (3) implementations that manage local files, key-value

stores, network transmission and paging. Based on this library, I mainly modified the

MapTask and ReduceTask modules in Hadoop to revise the processing of map and

reduce functions. The implementation includes about 28,000 lines of Java code. The

resulting system can run (1) in the original batch mode, fully supporting existing analytic

tasks in enterprise businesses, or (2) in the new streaming mode where user-specified

latency constraints are handled automatically by the system and used to guide resource

allocation and scheduling, with tremendous performance benefits over existing parallel
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stream systems. The first version of the system built on Hadoop 0.20.1 has been released as

SCALLA 0.1 [62].

6.2 Future Work

This section discusses some future research directions that have emerged from this

thesis.

I Automatic Mode Selection. This thesis has taken a step towards building a general,

unified system for data analytics under different latency requirements. The resulting

system from this thesis supports both the batch mode and the streaming mode. Only

one system needs to be maintained for processing “big data” and “fast data”. However,

the choice of the mode still needs to be made manually. It is desirable to decide the

mode automatically based on the latency constraint, workload characteristics, and

available resource.

I Resource Planning for Multiple Jobs. The resource planning proposed in this thesis

can support concurrent jobs by solving a constraint optimization problem for each job,

and allocating each job on a separate set of machines. However, solving the resource

planning problem for multiple jobs in a holistic manner opens the opportunity to

allocate jobs with different characteristics, such as a CPU intensive job and a network

intensive job, on the same set of nodes, and may further reduce the number of

required machines by more fully utilizing resources, while satisfy the same latency

and throughput requirements.

I Runtime Scheduling under Other Utility Models. This thesis proposes runtime

scheduling in order to maximize the gained utility. The adopted utility model is a step

function, which is suitable for workloads with hard latency constraints. However, the

latency constraints in some workloads are soft, which requires more complex utility

models. So, runtime scheduling with more general utility models could be a potential

direction of future work.
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