11,103 research outputs found

    Using Modularity Metrics to assist Move Method Refactoring of Large System

    Full text link
    For large software systems, refactoring activities can be a challenging task, since for keeping component complexity under control the overall architecture as well as many details of each component have to be considered. Product metrics are therefore often used to quantify several parameters related to the modularity of a software system. This paper devises an approach for automatically suggesting refactoring opportunities on large software systems. We show that by assessing metrics for all components, move methods refactoring an be suggested in such a way to improve modularity of several components at once, without hindering any other. However, computing metrics for large software systems, comprising thousands of classes or more, can be a time consuming task when performed on a single CPU. For this, we propose a solution that computes metrics by resorting to GPU, hence greatly shortening computation time. Thanks to our approach precise knowledge on several properties of the system can be continuously gathered while the system evolves, hence assisting developers to quickly assess several solutions for reducing modularity issues

    An Empirical Study of Cohesion and Coupling: Balancing Optimisation and Disruption

    Get PDF
    Search based software engineering has been extensively applied to the problem of finding improved modular structures that maximise cohesion and minimise coupling. However, there has, hitherto, been no longitudinal study of developers’ implementations, over a series of sequential releases. Moreover, results validating whether developers respect the fitness functions are scarce, and the potentially disruptive effect of search-based remodularisation is usually overlooked. We present an empirical study of 233 sequential releases of 10 different systems; the largest empirical study reported in the literature so far, and the first longitudinal study. Our results provide evidence that developers do, indeed, respect the fitness functions used to optimise cohesion/coupling (they are statistically significantly better than arbitrary choices with p << 0.01), yet they also leave considerable room for further improvement (cohesion/coupling can be improved by 25% on average). However, we also report that optimising the structure is highly disruptive (on average more than 57% of the structure must change), while our results reveal that developers tend to avoid such disruption. Therefore, we introduce and evaluate a multi-objective evolutionary approach that minimises disruption while maximising cohesion/coupling improvement. This allows developers to balance reticence to disrupt existing modular structure, against their competing need to improve cohesion and coupling. The multi-objective approach is able to find modular structures that improve the cohesion of developers’ implementations by 22.52%, while causing an acceptably low level of disruption (within that already tolerated by developers)

    Comprehension of object-oriented software cohesion: The empirical quagmire

    Get PDF
    Chidamber and Kemerer (1991) proposed an object-oriented (OO) metric suite which included the Lack of Cohesion Of Methods (LCOM) metric. Despite considerable effort both theoretically and empirically since then, the software engineering community is still no nearer finding a generally accepted definition or measure of OO cohesion. Yet, achieving highly cohesive software is a cornerstone of software comprehension and hence, maintainability. In this paper, we suggest a number of suppositions as to why a definition has eluded (and we feel will continue to elude) us. We support these suppositions with empirical evidence from three large C++ systems and a cohesion metric based on the parameters of the class methods; we also draw from other related work. Two major conclusions emerge from the study. Firstly, any sensible cohesion metric does at least provide insight into the features of the systems being analysed. Secondly however, and less reassuringly, the deeper the investigative search for a definitive measure of cohesion, the more problematic its understanding becomes; this casts serious doubt on the use of cohesion as a meaningful feature of object-orientation and its viability as a tool for software comprehension

    Legacy Software Restructuring: Analyzing a Concrete Case

    Get PDF
    Software re-modularization is an old preoccupation of reverse engineering research. The advantages of a well structured or modularized system are well known. Yet after so much time and efforts, the field seems unable to come up with solutions that make a clear difference in practice. Recently, some researchers started to question whether some basic assumptions of the field were not overrated. The main one consists in evaluating the high-cohesion/low-coupling dogma with metrics of unknown relevance. In this paper, we study a real structuring case (on the Eclipse platform) to try to better understand if (some) existing metrics would have helped the software engineers in the task. Results show that the cohesion and coupling metrics used in the experiment did not behave as expected and would probably not have helped the maintainers reach there goal. We also measured another possible restructuring which is to decrease the number of cyclic dependencies between modules. Again, the results did not meet expectations

    Extract Class Refactoring by analyzing class variables

    Get PDF
    Software maintenance activities often cause design erosion and lead to increased software complexity and maintenance costs. Extract Class Refactoring attempts to address design erosion by identifying and pulling out extraneous functionalities from a class and distributing them to new classes. This thesis extends previous research in this area by improving a metric known as Structural Similarity between Methods (SSM) used during Extract Class Refactoring. The improved metric, called Variable based Similarity between methods (VSM), establishes similarities between methods based on the variables they share, and on how they use these variables. Strongly connected methods are then allocated into new classes. The thesis also introduces another metric, Cognate Members Metric (CMM), which identifies those members of a class that are only used in combination with each other, and hence, probably belong together in a separate class. Additionally, this work extends and modifies existing refactoring processes for extracting classes. A software prototype that performs Extract Class Refactoring has been developed to substantiate the research. A few Case studies are discussed and comparison and analysis of results of refactoring using the new and older approaches of the Extract Class Refactoring process are presented
    • …
    corecore