

Legacy Software
Restructuring:

Analyzing a Concrete Case

Nicolas Anquetil, Jannik Laval
RMoD team

INRIA / Univ. Lille-1

Agenda

 Software Restructuring
 Cohesion/Coupling dogma
 Experiment idea
 A case study: Eclipse RCP
 Experiment set-up
 Results
 Conclusion

Software Restructuring

 Software systems evolve, their structure
(architecture) deteriorates

 How can we help?
 Metrics to evaluate the quality of the architecture
 Tools to restructure (optimization of the quality

metrics)

Software Restructuring

 Software systems evolve, their structure
(architecture) deteriorates

 How can we help?
 Metrics to evaluate the quality of the architecture
 Tools to restructure (optimization of the quality

metrics)

Cohesion/Coupling dogma

 Quality of modularization boils down to

High cohesion & Low coupling

(a module should be highly cohesive, and poorly
coupled)

 Initially: semantic cohesion/coupling
 But for facility reasons, we measure syntactic

cohesion/coupling

Cohesion/Coupling dogma

 Are we so sure that

High cohesion & Low coupling

is a good idea?
 [Abreu, Goulão, CSMR'01]
 [Bhatia, Singh, SERP'06]
 [Sindhgatta, Pooloth, COMPSAC'07]

 What proof do we have?

Experiment idea

 Test the validity of

High cohesion & Low coupling

on a modularization of know value

Experiment idea

 Test the validity of

High cohesion & Low coupling

on a modularization of know value

 Problem: Only one theoretical known value for
cohesion/coupling: 0

 Solution: Compare two values with known
difference

Experiment idea

 We need real cases of explicit, successful, pure
re-structuring efforts
 Measure cohesion/coupling before
 Measure cohesion/coupling after
 Compare: Did it improve?

 Hypothesis: After an explicit, successful, pure
re-structuring effort, cohesion/coupling of the
system should improve

Experiment idea

 We need real cases of explicit, successful,
pure re-structuring efforts
 Need access to source code to evaluate

(syntactical) cohesion/coupling
 Need access to code before and after re-structuring

effort
 Seems easy: Open-source systems typically use

some Version Control Systems

Experiment idea

 We need real cases of explicit, successful,
pure re-structuring efforts
 Used Google CodeSearch, not so easy
 Very little efforts are documented as “re-structuring”

in the wild
 (May be you can help?)

Experiment idea

 We need real cases of explicit, successful,
pure re-structuring efforts
 Hypothesis: Proof of time

Experiment idea

 We need real cases of explicit, successful,
pure re-structuring
 No other activity on the system at the same time
 Impossible to find in real life: Systems need to

evolve
 Threat to validity

A case study: Eclipse RCP

 Eclipse v2.1 → v3.0 (in 2004)
 v2.1: Extensible IDE
 V3.0: Rich Client Platform

 Also v2.0.1 → v2.1
 Preliminary restructuring

“Prior to 2.1, the org.eclipse.ui plug-in was the monolithic
implementation of the Eclipse Platform UI. The above picture
reflects the restructuring that done for 2.1 [...]”

 Also v3.0 → v3.1
 Check, just after big restructuring

Experiment set-up

 Four successive versions of “core” Eclipse
 Metrics

 Descriptive:
#packages, #plugins, #classes, #methods, #method
invocations, LOC

 Cohesion/coupling:
Bunch, Efferent/Afferent coupling (Ce/Ca)

 Cyclic dependencies (not shown here)

Results

#pckgs #plugins #class #meth #invoc LOC

v2.0.1 101 10 3.209 23.172 53.302 417.109

v2.1 144 18 4.034 29.098 66.806 540.948

v3.0 251 26 6.449 44.377 100.667 804.071

v3.1 307 26 7.612 52.369 115.541 969.078

 Descriptive statistics

Results

 Bunch cohesion/coupling on packages

Cohesion Coupling

incr. same decr. incr. same decr.

2.0.1
→ 2.1 16 34 44 23 12 59

2.1
→ 3.0 32 49 58 48 21 70

3.0
→ 3.1 64 78 98 115 28 97

Results

 Bunch cohesion/coupling on packages

Cohesion Coupling

incr. same decr. incr. same decr.

2.0.1
→ 2.1 16 34 44 23 12 59

2.1
→ 3.0 32 49 58 48 21 70

3.0
→ 3.1 64 78 98 115 28 97

Results

 Bunch cohesion/coupling on packages

Cohesion Coupling

incr. same decr. incr. same decr.

2.0.1
→ 2.1 16 34 44 23 12 59

2.1
→ 3.0 32 49 58 48 21 70

3.0
→ 3.1 64 78 98 115 28 97

Results

 Efferent/Afferent coupling on packages

Ce Ca

incr. same decr. incr. same decr.

2.0.1
→ 2.1 52 33 13 58 26 14

2.1
→ 3.0 75 43 25 88 38 17

3.0
→ 3.1 119 72 53 124 79 41

New Data
(not in the paper)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.000

0.002

0.004

0.006

0.008

0.010

Cohesion
Coupling

 Eclipse, 5 versions

New Data
(not in the paper)

2.0 2.0.1 2.1 3.0 3.1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.000

0.002

0.004

0.006

0.008

0.010

Cohesion
Coupling

 Eclipse, 5 versions

New Data
(not in the paper)

2.8 3.0
0

0.05

0.1

0.15

0.2

0.25

0.3

0

50

100

150

200

250

300

350

Cohesion
Coupling
Ce

 Seaside 2.8 → 3.0

Conclusion

 Cohesion/Coupling did not improve during 2 re-
structuring efforts on Eclipse
 Also Cohesion/Coupling seem to evolve

jointly not oppositely
 Existing (tested) cohesion/coupling metrics do

not measure what we want

 Need more experiments with more case studies

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

