

Legacy Software
Restructuring:

Analyzing a Concrete Case

Nicolas Anquetil, Jannik Laval
RMoD team

INRIA / Univ. Lille-1

Agenda

 Software Restructuring
 Cohesion/Coupling dogma
 Experiment idea
 A case study: Eclipse RCP
 Experiment set-up
 Results
 Conclusion

Software Restructuring

 Software systems evolve, their structure
(architecture) deteriorates

 How can we help?
 Metrics to evaluate the quality of the architecture
 Tools to restructure (optimization of the quality

metrics)

Software Restructuring

 Software systems evolve, their structure
(architecture) deteriorates

 How can we help?
 Metrics to evaluate the quality of the architecture
 Tools to restructure (optimization of the quality

metrics)

Cohesion/Coupling dogma

 Quality of modularization boils down to

High cohesion & Low coupling

(a module should be highly cohesive, and poorly
coupled)

 Initially: semantic cohesion/coupling
 But for facility reasons, we measure syntactic

cohesion/coupling

Cohesion/Coupling dogma

 Are we so sure that

High cohesion & Low coupling

is a good idea?
 [Abreu, Goulão, CSMR'01]
 [Bhatia, Singh, SERP'06]
 [Sindhgatta, Pooloth, COMPSAC'07]

 What proof do we have?

Experiment idea

 Test the validity of

High cohesion & Low coupling

on a modularization of know value

Experiment idea

 Test the validity of

High cohesion & Low coupling

on a modularization of know value

 Problem: Only one theoretical known value for
cohesion/coupling: 0

 Solution: Compare two values with known
difference

Experiment idea

 We need real cases of explicit, successful, pure
re-structuring efforts
 Measure cohesion/coupling before
 Measure cohesion/coupling after
 Compare: Did it improve?

 Hypothesis: After an explicit, successful, pure
re-structuring effort, cohesion/coupling of the
system should improve

Experiment idea

 We need real cases of explicit, successful,
pure re-structuring efforts
 Need access to source code to evaluate

(syntactical) cohesion/coupling
 Need access to code before and after re-structuring

effort
 Seems easy: Open-source systems typically use

some Version Control Systems

Experiment idea

 We need real cases of explicit, successful,
pure re-structuring efforts
 Used Google CodeSearch, not so easy
 Very little efforts are documented as “re-structuring”

in the wild
 (May be you can help?)

Experiment idea

 We need real cases of explicit, successful,
pure re-structuring efforts
 Hypothesis: Proof of time

Experiment idea

 We need real cases of explicit, successful,
pure re-structuring
 No other activity on the system at the same time
 Impossible to find in real life: Systems need to

evolve
 Threat to validity

A case study: Eclipse RCP

 Eclipse v2.1 → v3.0 (in 2004)
 v2.1: Extensible IDE
 V3.0: Rich Client Platform

 Also v2.0.1 → v2.1
 Preliminary restructuring

“Prior to 2.1, the org.eclipse.ui plug-in was the monolithic
implementation of the Eclipse Platform UI. The above picture
reflects the restructuring that done for 2.1 [...]”

 Also v3.0 → v3.1
 Check, just after big restructuring

Experiment set-up

 Four successive versions of “core” Eclipse
 Metrics

 Descriptive:
#packages, #plugins, #classes, #methods, #method
invocations, LOC

 Cohesion/coupling:
Bunch, Efferent/Afferent coupling (Ce/Ca)

 Cyclic dependencies (not shown here)

Results

#pckgs #plugins #class #meth #invoc LOC

v2.0.1 101 10 3.209 23.172 53.302 417.109

v2.1 144 18 4.034 29.098 66.806 540.948

v3.0 251 26 6.449 44.377 100.667 804.071

v3.1 307 26 7.612 52.369 115.541 969.078

 Descriptive statistics

Results

 Bunch cohesion/coupling on packages

Cohesion Coupling

incr. same decr. incr. same decr.

2.0.1
→ 2.1 16 34 44 23 12 59

2.1
→ 3.0 32 49 58 48 21 70

3.0
→ 3.1 64 78 98 115 28 97

Results

 Bunch cohesion/coupling on packages

Cohesion Coupling

incr. same decr. incr. same decr.

2.0.1
→ 2.1 16 34 44 23 12 59

2.1
→ 3.0 32 49 58 48 21 70

3.0
→ 3.1 64 78 98 115 28 97

Results

 Bunch cohesion/coupling on packages

Cohesion Coupling

incr. same decr. incr. same decr.

2.0.1
→ 2.1 16 34 44 23 12 59

2.1
→ 3.0 32 49 58 48 21 70

3.0
→ 3.1 64 78 98 115 28 97

Results

 Efferent/Afferent coupling on packages

Ce Ca

incr. same decr. incr. same decr.

2.0.1
→ 2.1 52 33 13 58 26 14

2.1
→ 3.0 75 43 25 88 38 17

3.0
→ 3.1 119 72 53 124 79 41

New Data
(not in the paper)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.000

0.002

0.004

0.006

0.008

0.010

Cohesion
Coupling

 Eclipse, 5 versions

New Data
(not in the paper)

2.0 2.0.1 2.1 3.0 3.1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.000

0.002

0.004

0.006

0.008

0.010

Cohesion
Coupling

 Eclipse, 5 versions

New Data
(not in the paper)

2.8 3.0
0

0.05

0.1

0.15

0.2

0.25

0.3

0

50

100

150

200

250

300

350

Cohesion
Coupling
Ce

 Seaside 2.8 → 3.0

Conclusion

 Cohesion/Coupling did not improve during 2 re-
structuring efforts on Eclipse
 Also Cohesion/Coupling seem to evolve

jointly not oppositely
 Existing (tested) cohesion/coupling metrics do

not measure what we want

 Need more experiments with more case studies

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

