1,485 research outputs found

    Identification-method research for open-source software ecosystems

    Get PDF
    In recent years, open-source software (OSS) development has grown, with many developers around the world working on different OSS projects. A variety of open-source software ecosystems have emerged, for instance, GitHub, StackOverflow, and SourceForge. One of the most typical social-programming and code-hosting sites, GitHub, has amassed numerous open-source-software projects and developers in the same virtual collaboration platform. Since GitHub itself is a large open-source community, it hosts a collection of software projects that are developed together and coevolve. The great challenge here is how to identify the relationship between these projects, i.e., project relevance. Software-ecosystem identification is the basis of other studies in the ecosystem. Therefore, how to extract useful information in GitHub and identify software ecosystems is particularly important, and it is also a research area in symmetry. In this paper, a Topic-based Project Knowledge Metrics Framework (TPKMF) is proposed. By collecting the multisource dataset of an open-source ecosystem, project-relevance analysis of the open-source software is carried out on the basis of software-ecosystem identification. Then, we used our Spectral Clustering algorithm based on Core Project (CP-SC) to identify software-ecosystem projects and further identify software ecosystems. We verified that most software ecosystems usually contain a core software project, and most other projects are associated with it. Furthermore, we analyzed the characteristics of the ecosystem, and we also found that interactive information has greater impact on project relevance. Finally, we summarize the Topic-based Project Knowledge Metrics Framework

    Coopetition of software firms in Open source software ecosystems

    Get PDF
    Software firms participate in an ecosystem as a part of their innovation strategy to extend value creation beyond the firms boundary. Participation in an open and independent environment also implies the competition among firms with similar business models and targeted markets. Hence, firms need to consider potential opportunities and challenges upfront. This study explores how software firms interact with others in OSS ecosystems from a coopetition perspective. We performed a quantitative and qualitative analysis of three OSS projects. Finding shows that software firms emphasize the co-creation of common value and partly react to the potential competitiveness on OSS ecosystems. Six themes about coopetition were identified, including spanning gatekeepers, securing communication, open-core sourcing and filtering shared code. Our work contributes to software engineering research with a rich description of coopetition in OSS ecosystems. Moreover, we also come up with several implications for software firms in pursing a harmony participation in OSS ecosystems.Comment: This is the author's version of the work. Copyright owner's version can be accessed at https://link.springer.com/chapter/10.1007/978-3-319-69191-6_10, Coopetition of software firms in Open source software ecosystems, 8th ICSOB 2017, Essen, Germany (2017

    Exercising power in software ecosystems

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Companies in a software ecosystem must understand which power capabilities drive cooperation or generate conflicts. In this article, we analyze how power influences the relationships among companies in ecosystems formed by small-to-medium enterprises as well as in platform ecosystems governed by large keystones.Postprint (author's final draft

    An Introduction to Software Ecosystems

    Full text link
    This chapter defines and presents different kinds of software ecosystems. The focus is on the development, tooling and analytics aspects of software ecosystems, i.e., communities of software developers and the interconnected software components (e.g., projects, libraries, packages, repositories, plug-ins, apps) they are developing and maintaining. The technical and social dependencies between these developers and software components form a socio-technical dependency network, and the dynamics of this network change over time. We classify and provide several examples of such ecosystems. The chapter also introduces and clarifies the relevant terms needed to understand and analyse these ecosystems, as well as the techniques and research methods that can be used to analyse different aspects of these ecosystems.Comment: Preprint of chapter "An Introduction to Software Ecosystems" by Tom Mens and Coen De Roover, published in the book "Software Ecosystems: Tooling and Analytics" (eds. T. Mens, C. De Roover, A. Cleve), 2023, ISBN 978-3-031-36059-6, reproduced with permission of Springer. The final authenticated version of the book and this chapter is available online at: https://doi.org/10.1007/978-3-031-36060-

    Sustainable Software Ecosystems: Software Engineers, Domain Scientists, and Engineers Collaborating for Science

    Full text link
    The development of scientific software is often a partnership between domain scientists and scientific software engineers. It is especially important to embrace these collaborations when developing advanced scientific software, where sustainability, reproducibility, and extensibility are important. In the ideal case, as discussed in this manuscript, this brings together teams composed of the world's foremost scientific experts in a given field with seasoned software developers experienced in forming highly collaborative teams working on software to further scientific research.Comment: 4 pages, submission for WSSSPE

    Open source software ecosystems : a systematic mapping

    Get PDF
    Context: Open source software (OSS) and software ecosystems (SECOs) are two consolidated research areas in software engineering. OSS influences the way organizations develop, acquire, use and commercialize software. SECOs have emerged as a paradigm to understand dynamics and heterogeneity in collaborative software development. For this reason, SECOs appear as a valid instrument to analyze OSS systems. However, there are few studies that blend both topics together. Objective: The purpose of this study is to evaluate the current state of the art in OSS ecosystems (OSSECOs) research, specifically: (a) what the most relevant definitions related to OSSECOs are; (b) what the particularities of this type of SECO are; and (c) how the knowledge about OSSECO is represented. Method: We conducted a systematic mapping following recommended practices. We applied automatic and manual searches on different sources and used a rigorous method to elicit the keywords from the research questions and selection criteria to retrieve the final papers. As a result, 82 papers were selected and evaluated. Threats to validity were identified and mitigated whenever possible. Results: The analysis allowed us to answer the research questions. Most notably, we did the following: (a) identified 64 terms related to the OSSECO and arranged them into a taxonomy; (b) built a genealogical tree to understand the genesis of the OSSECO term from related definitions; (c) analyzed the available definitions of SECO in the context of OSS; and (d) classified the existing modelling and analysis techniques of OSSECOs. Conclusion: As a summary of the systematic mapping, we conclude that existing research on several topics related to OSSECOs is still scarce (e.g., modelling and analysis techniques, quality models, standard definitions, etc.). This situation calls for further investigation efforts on how organizations and OSS communities actually understand OSSECOs.Peer ReviewedPostprint (author's final draft
    • …
    corecore