69,185 research outputs found

    Development and validation of computational models of cellular interaction

    Get PDF
    In this paper we take the view that computational models of biological systems should satisfy two conditions – they should be able to predict function at a systems biology level, and robust techniques of validation against biological models must be available. A modelling paradigm for developing a predictive computational model of cellular interaction is described, and methods of providing robust validation against biological models are explored, followed by a consideration of software issues

    Modeling Life as Cognitive Info-Computation

    Full text link
    This article presents a naturalist approach to cognition understood as a network of info-computational, autopoietic processes in living systems. It provides a conceptual framework for the unified view of cognition as evolved from the simplest to the most complex organisms, based on new empirical and theoretical results. It addresses three fundamental questions: what cognition is, how cognition works and what cognition does at different levels of complexity of living organisms. By explicating the info-computational character of cognition, its evolution, agent-dependency and generative mechanisms we can better understand its life-sustaining and life-propagating role. The info-computational approach contributes to rethinking cognition as a process of natural computation in living beings that can be applied for cognitive computation in artificial systems.Comment: Manuscript submitted to Computability in Europe CiE 201

    Dynamic Influence Networks for Rule-based Models

    Get PDF
    We introduce the Dynamic Influence Network (DIN), a novel visual analytics technique for representing and analyzing rule-based models of protein-protein interaction networks. Rule-based modeling has proved instrumental in developing biological models that are concise, comprehensible, easily extensible, and that mitigate the combinatorial complexity of multi-state and multi-component biological molecules. Our technique visualizes the dynamics of these rules as they evolve over time. Using the data produced by KaSim, an open source stochastic simulator of rule-based models written in the Kappa language, DINs provide a node-link diagram that represents the influence that each rule has on the other rules. That is, rather than representing individual biological components or types, we instead represent the rules about them (as nodes) and the current influence of these rules (as links). Using our interactive DIN-Viz software tool, researchers are able to query this dynamic network to find meaningful patterns about biological processes, and to identify salient aspects of complex rule-based models. To evaluate the effectiveness of our approach, we investigate a simulation of a circadian clock model that illustrates the oscillatory behavior of the KaiC protein phosphorylation cycle.Comment: Accepted to TVCG, in pres

    Digital Ecosystems: Ecosystem-Oriented Architectures

    Full text link
    We view Digital Ecosystems to be the digital counterparts of biological ecosystems. Here, we are concerned with the creation of these Digital Ecosystems, exploiting the self-organising properties of biological ecosystems to evolve high-level software applications. Therefore, we created the Digital Ecosystem, a novel optimisation technique inspired by biological ecosystems, where the optimisation works at two levels: a first optimisation, migration of agents which are distributed in a decentralised peer-to-peer network, operating continuously in time; this process feeds a second optimisation based on evolutionary computing that operates locally on single peers and is aimed at finding solutions to satisfy locally relevant constraints. The Digital Ecosystem was then measured experimentally through simulations, with measures originating from theoretical ecology, evaluating its likeness to biological ecosystems. This included its responsiveness to requests for applications from the user base, as a measure of the ecological succession (ecosystem maturity). Overall, we have advanced the understanding of Digital Ecosystems, creating Ecosystem-Oriented Architectures where the word ecosystem is more than just a metaphor.Comment: 39 pages, 26 figures, journa

    Data-driven modelling of biological multi-scale processes

    Full text link
    Biological processes involve a variety of spatial and temporal scales. A holistic understanding of many biological processes therefore requires multi-scale models which capture the relevant properties on all these scales. In this manuscript we review mathematical modelling approaches used to describe the individual spatial scales and how they are integrated into holistic models. We discuss the relation between spatial and temporal scales and the implication of that on multi-scale modelling. Based upon this overview over state-of-the-art modelling approaches, we formulate key challenges in mathematical and computational modelling of biological multi-scale and multi-physics processes. In particular, we considered the availability of analysis tools for multi-scale models and model-based multi-scale data integration. We provide a compact review of methods for model-based data integration and model-based hypothesis testing. Furthermore, novel approaches and recent trends are discussed, including computation time reduction using reduced order and surrogate models, which contribute to the solution of inference problems. We conclude the manuscript by providing a few ideas for the development of tailored multi-scale inference methods.Comment: This manuscript will appear in the Journal of Coupled Systems and Multiscale Dynamics (American Scientific Publishers
    corecore