33,569 research outputs found

    Preemptive Software Transactional Memory

    Get PDF
    In state-of-the-art Software Transactional Memory (STM) systems, threads carry out the execution of transactions as non-interruptible tasks. Hence, a thread can react to the injection of a higher priority transactional task and take care of its processing only at the end of the currently executed transaction. In this article we pursue a paradigm shift where the execution of an in-memory transaction is carried out as a preemptable task, so that a thread can start processing a higher priority transactional task before finalizing its current transaction. We achieve this goal in an application-transparent manner, by only relying on Operating System facilities we include in our preemptive STM architecture. With our approach we are able to re-evaluate CPU assignment across transactions along a same thread every few tens of microseconds. This is mandatory for an effective priority-aware architecture given the typically finer-grain nature of in-memory transactions compared to their counterpart in database systems. We integrated our preemptive STM architecture with the TinySTM package, and released it as open source. We also provide the results of an experimental assessment of our proposal based on running a port of the TPC-C benchmark to the STM environment

    Avoiding Publication and Privatization Problems on Software Transactional Memory

    Get PDF
    This paper presents a new approach to exclude problems arising from dynamically switching between protected concurrent and unprotected single-threaded use of shared data when using software transactional memory in OO languages such as Java. The approach is based on a simple but effective programming model separating transactions from non-transactional operation. It prevents the application programmer from errors but does not force the software transactional memory library to observe non-transactional access and thereby preserves modularity of the software. A prototypical toolchain for validation and source code instrumentation was implemented as a proof of concept

    Consistent state software transactional memory

    Get PDF
    Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do Grau de Mestre em Engenharia InformáticaAs the multicore CPUs start getting into everyone’s computers, concurrent programming must start covering, not only the scientific and enterprise applications, but also every computer application we all use in our daily lives. Since the introduction of software transactional memory [ST95,HLMWNS03], this topic has had a strong interest by the scientific community as it has the potential of greatly facilitating concurrent programming by hiding the concurrency issues under the transactional layer. This thesis builds on the TL2 STM engine [DON06], which is one of the top performing to date. We have explored different design alternatives focusing on performance and safety. With our research we have achieved performance improvements and better safety properties of the engine. We have also achieved a much better understanding of the design alternatives and their impacts. During the course of this thesis we have come across several tough concurrency bugs and we have created a list of testing patterns, which proved to be useful in finding and reproducing several problems. This thesis describes the cutting edge of STM engine technology, elaborates on the design of a new STM engine and reports on the experimental results obtained

    FASTM: a log-based hardware transactional memory with fast abort recovery

    Get PDF
    Version management, one of the key design dimensions of Hardware Transactional Memory (HTM) systems, defines where and how transactional modifications are stored. Current HTM systems use either eager or lazy version management. Eager systems that keep new values in-place while they hold old values in a software log, suffer long delays when aborts are frequent because the pre-transactional state is recovered by software. Lazy systems that buffer new values in specialized hardware offer complex and inefficient solutions to handle hardware overflows, which are common in applications with coarse-grain transactions. In this paper, we present FASTM, an eager log-based HTM that takes advantage of the processor’s cache hierarchy to provide fast abort recovery. FASTM uses a novel coherence protocol to buffer the transactional modifications in the first level cache and to keep the non-speculative values in the higher levels of the memory hierarchy. This mechanism allows fast abort recovery of transactions that do not overflow the first level cache resources. Contrary to lazy HTM systems, committing transactions do not have to perform any actions in order to make their results visible to the rest of the system. FASTM keeps the pre-transactional state in a software-managed log as well, which permits the eviction of speculative values and enables transparent execution even in the case of cache overflow. This approach simplifies eviction policies without degrading performance, because it only falls back to a software abort recovery for transactions whose modified state has overflowed the cache. Simulation results show that FASTM achieves a speed-up of 43% compared to LogTM-SE, improving the scalability of applications with coarse-grain transactions and obtaining similar performance to an ideal eager HTM with zero-cost abort recovery.Peer ReviewedPostprint (published version

    Prompt Application-Transparent Transaction Revalidation in Software Transactional Memory

    Get PDF
    Software Transactional Memory (STM) allows encapsulating shared-data accesses within transactions, executed with atomicity and isolation guarantees. The assessment of the consistency of a running transaction is performed by the STM layer at specific points of its execution, such as when a read or write access to a shared object occurs, or upon a commit attempt. However, performance and energy efficiency issues may arise when no shared-data read/write operation occurs for a while along a thread running a transaction. In this scenario, the STM layer may not regain control for a considerable amount of time, thus not being able to early detect if such transaction has become inconsistent in the meantime. To tackle this problem we present an STM architecture that, thanks to a lightweight operating system support, is able to perform a fine-grain periodic (hence prompt) revalidation of running transactions. Our proposal targets Linux and x86 systems and has been integrated with the open source TinySTM package. Experimental results with a port of the TPC-C benchmark to STM environments show the effectiveness of our solution

    Inherent Limitations of Hybrid Transactional Memory

    Full text link
    Several Hybrid Transactional Memory (HyTM) schemes have recently been proposed to complement the fast, but best-effort, nature of Hardware Transactional Memory (HTM) with a slow, reliable software backup. However, the fundamental limitations of building a HyTM with nontrivial concurrency between hardware and software transactions are still not well understood. In this paper, we propose a general model for HyTM implementations, which captures the ability of hardware transactions to buffer memory accesses, and allows us to formally quantify and analyze the amount of overhead (instrumentation) of a HyTM scheme. We prove the following: (1) it is impossible to build a strictly serializable HyTM implementation that has both uninstrumented reads and writes, even for weak progress guarantees, and (2) under reasonable assumptions, in any opaque progressive HyTM, a hardware transaction must incur instrumentation costs linear in the size of its data set. We further provide two upper bound implementations whose instrumentation costs are optimal with respect to their progress guarantees. In sum, this paper captures for the first time an inherent trade-off between the degree of concurrency a HyTM provides between hardware and software transactions, and the amount of instrumentation overhead the implementation must incur
    • …
    corecore