159 research outputs found

    A Bootstrap Theory: the SEMAT Kernel Itself as Runnable Software

    Full text link
    The SEMAT kernel is a thoroughly thought generic framework for Software Engineering system development in practice. But one should be able to test its characteristics by means of a no less generic theory matching the SEMAT kernel. This paper claims that such a matching theory is attainable and describes its main principles. The conceptual starting point is the robustness of the Kernel alphas to variations in the nature of the software system, viz. to software automation, distribution and self-evolution. From these and from observed Kernel properties follows the proposed bootstrap principle: a software system theory should itself be a runnable software. Thus, the kernel alphas can be viewed as a top-level ontology, indeed the Essence of Software Engineering. Among the interesting consequences of this bootstrap theory, the observable system characteristics can now be formally tested. For instance, one can check the system completeness, viz. that software system modules fulfill each one of the system requirements.Comment: 8 pages; 2 figures; Preprint of paper accepted for GTSE'2014 Workshop, within ICSE'2014 Conferenc

    Iterative criteria-based approach to engineering the requirements of software development methodologies

    Get PDF
    Software engineering endeavours are typically based on and governed by the requirements of the target software; requirements identification is therefore an integral part of software development methodologies. Similarly, engineering a software development methodology (SDM) involves the identification of the requirements of the target methodology. Methodology engineering approaches pay special attention to this issue; however, they make little use of existing methodologies as sources of insight into methodology requirements. The authors propose an iterative method for eliciting and specifying the requirements of a SDM using existing methodologies as supplementary resources. The method is performed as the analysis phase of a methodology engineering process aimed at the ultimate design and implementation of a target methodology. An initial set of requirements is first identified through analysing the characteristics of the development situation at hand and/or via delineating the general features desirable in the target methodology. These initial requirements are used as evaluation criteria; refined through iterative application to a select set of relevant methodologies. The finalised criteria highlight the qualities that the target methodology is expected to possess, and are therefore used as a basis for de. ning the final set of requirements. In an example, the authors demonstrate how the proposed elicitation process can be used for identifying the requirements of a general object-oriented SDM. Owing to its basis in knowledge gained from existing methodologies and practices, the proposed method can help methodology engineers produce a set of requirements that is not only more complete in span, but also more concrete and rigorous

    Software process modelling as relationships between tasks

    Get PDF
    Systematic formulation of software process models is currently a challenging problem in software engineering. We present an approach to define models covering the phases of specification, design, implementation and testing of software systems in the component programming framework, taking into account non-functional aspects of software (efficiency, etc.), automatic reusability of implementations in systems and also prototyping techniques involving both specifications and implementations. Our proposal relies on the identification of a catalogue of tasks that appear during these phases which satisfy some relationships concerning their order of execution. A software process model can be defined as the addition of more relationships over these tasks using a simple, modular process language. We have developed also a formal definition of correctness of a software development with respect to a software process model, based on the formulation of models as graphs.Peer ReviewedPostprint (published version

    Some issues in the 'archaeology' of software evolution

    Get PDF
    During a software project's lifetime, the software goes through many changes, as components are added, removed and modified to fix bugs and add new features. This paper is intended as a lightweight introduction to some of the issues arising from an `archaeological' investigation of software evolution. We use our own work to look at some of the challenges faced, techniques used, findings obtained, and lessons learnt when measuring and visualising the historical changes that happen during the evolution of software

    A Software Process Engineering Course

    Get PDF
    Maturing software development organizations are beginning to identify a distinct role in the software team: Software Process Engineer. A software process engineer designs the software processes used by the organization. The software process includes the process content (identification of the roles, activities, and work products of the processes, along with specific techniques, tools, guidance, examples and other supporting information) and the lifecycle model (the ordering of and dependencies between software engineering activities and work products). A process engineer assembles a process from existing process components, choosing and tailoring components to provide the balance of agility and discipline necessary for their organization and projects. We have developed a graduate software engineering course to educate our students on the basic concepts of software process engineering. We use the OMG Software Process Engineering Metamodel and the IEEE Standard for Developing a Software Project Life Cycle Process as ways to model and compare process design alternatives and to provide mechanisms to assemble reusable process components into enactable processes. We use the Open Unified Process as an example process and we survey a wide range of techniques and methods that can be incorporated into a process. We use the Eclipse Process Framework Composer and associated process component libraries to assemble processes for specific projects. This paper describes the process engineering course and provides an informal assessment of the course effectiveness

    Grid service orchestration using the Business Process Execution Language (BPEL)

    Get PDF
    Modern scientific applications often need to be distributed across grids. Increasingly applications rely on services, such as job submission, data transfer or data portal services. We refer to such services as grid services. While the invocation of grid services could be hard coded in theory, scientific users want to orchestrate service invocations more flexibly. In enterprise applications, the orchestration of web services is achieved using emerging orchestration standards, most notably the Business Process Execution Language (BPEL). We describe our experience in orchestrating scientific workflows using BPEL. We have gained this experience during an extensive case study that orchestrates grid services for the automation of a polymorph prediction application

    Some issues in the 'archaeology' of software evolution

    Get PDF
    During a software project's lifetime, the software goes through many changes, as components are added, removed and modified to fix bugs and add new features. This paper is intended as a lightweight introduction to some of the issues arising from an `archaeological' investigation of software evolution. We use our own work to look at some of the challenges faced, techniques used, findings obtained, and lessons learnt when measuring and visualising the historical changes that happen during the evolution of software
    • 

    corecore