
Software Process Modelling as Relationships between Tasks

Xavier Franch
franch@lsi.upc.es

Universitat Politkcnica de Catalunya
Jordi Girona 1-3,08034 Barcelona

Catalonia (Spain)
FAX: 34-3-4017014. Phone: 34-3-4016965

Abstract
Systematic formulation of software process models is
currently a challenging problem in software engineering.
We present here an approach to define models covering the
phases of specification, design, implementation and
testing of software systems in the component
programming framework, taking into account
non-functional aspects of software (efficiency, etc.},
automatic reusability of implementations in systems and
also prototyping techniques involving both specifications
and implementations. Our proposal relies on the
identification of a catalogue of tasks that appear during
these phases which satisfy some relationships concerning
their order of execution. A software process model can be
defined as the addition of more relationships over these
tasks using a simple, modular process language. We have
developed also a formal definition of correctness of a
sojiware development with respect to a software process
model, based on the formulation of models as graphs.

1. Introduction

It is widely recognised that one of the most challenging
problems in the field of software engineering is the
systematic formulation of software process models in a
such a way that it can be said that software processes are
software too [13]. A lot of research has been done in this
field and, as a result, some proposals have been defined,
which can be characterised by the kind of language or
formalism used to represent the model: imperative
programs [18, 21, transformation rules over specifications
and programs [121, composition of inference rules [141,
multiview approaches [17] and so on; [7] gives a
presentation of many projects recently developed
(including exhaustive reference lists). Some methods
address to the whole software process, while others focus
on a subset of phases of the life-cycle (usually,
specification and design); anyway, the existence of those
proposals is a step beyond the uniform treatment of

1089-6503197 $10.00 0 1997 IEEE
199

Josep M. Rib6
j osepma @ eup.udl .es
Universitat de Lleida

P. Victor Siurana 1,25003 Lleida
Catalonia (Spain)

FAX: 34-73-702 162. Phone: 34-73-702000

products (software) and processes (developments) in
software engineering, as we think it should be.

In this paper, we are going to present a framework to
formulate software process models for component
programming [lo , 151, assigning a prominent role to the
management of operational aspects of software (as
efficiency or reliability); we also emphasise prototyping
and reusability of (implementation of) components. More
precisely, we consider a subset of the whole software
process composed by specif icat ion, design,
implementation and testing phases, and we identify a
catalogue of tasks that arise during these activities, stating
some precedence relationships between them. We define
then a process language characterised by the statement of
new relationships between tasks; the language has been
designed with the goal of simplicity and modularity in
mind and, so, it seems to be easy to learn and use. Also,
we provide a formal definition of the concept of
correctness of a software development with respect to a
process model defined with this language.

2. The framework

We are interested in software systems as a hierarchy of
software components. A component is defined by means
of a specification, which includes two parts: the functional
one, stating how does the component behave, and the
non-functional one, that declares additional requirements
referred to some operational attributes (as efficiency); these
attributes are defined in property modules, imported in
non-functional specifications. Once the specification is
complete, many implementations may be built for this
component, all of them satisfying the properties stated in
both parts of the specification; implementations include a
description of their non-functional behaviour, which
determines the values that the operational attributes
declared in the non-functional specification take in the
implementation, possibly stating some additional
constrains on implementations of imported components.

Up to now, our method has been defined over an ad hoc
language called Merli. Merli includes features to build

functional and non-functional specifications and
implementations. The reason of working with Merli is
twofold. On the one hand, it will be not necessary to
develop new tools when considering concrete specification
and implementation languages, except from a translator
from them to Merli. On the other hand, we have defined an
execution tool over Merli [l] able to prototype systems
that combine specifications and programs provided that
some conditions hold. However, it must remain clear that
the methodology we are going to propose does not depend
of the languages used to specify components and to
implement them (provided that they have similar
characteristics to the ones adopted in Merli); so, we are not
requiring to learn Merli to adopt our proposal.

A more detailed description of Merli may be found at
[4, 61; we give here just the highlights to understand the
framework of our proposal.

2.1. Functional specifications

We consider two kinds of functional specifications:
Model-oriented specifications. As in Z [16] or VDM
[1 11, where a model of the component is stated and the
specification is expressed mainly by means of pre and
post conditions over the model.
Algebraic specifications. As in Larch [8] or OBJ3 [9],
the specification consists of a set of equations. We are
particularly interested in the possibility of using
different semantics (initial and behavioural, as Larch
does) to interpret the equations.

2.2. Non-functional specifications

Non-functional specifications declare which operational
attributes (what we call NF-properties) are relevant to the
component being specified. NF-properties are really
introduced in properg modules and they may be of many
different kinds, depending of the domain of their values:
boolean (e.g., full portability), numerical (e.g., degree of
reliability), real (e.g., response time), by enumeration of
values (e.g., kind of user interface -icons, menu, command
language, ...-) and string (e.g., programmer name)l, and
they can be attached to single operations or to whole
modules (so, we can talk about response time of individual
operations or about full portability of a whole module). It
is possible to declare what we call measurement units,
which represent problem domain sizes (e.g., number of
books in a library) and that may be used as constant
values, mainly when stating efficiency.

Once NF-properties have been selected, non-functional
specifications state restrictions (NF-requirements) over the
implementations of the component. So, it is possible to

formulate NF-requirements such as "implementations
must be fully portable and user interface must be by
means of icons" or "operations must have a response time
not exceeding one second".

2.3. Implementations

As it has become usual in the component programming
field, we have chosen the object-oriented programming
paradigm to code the implementations. Concerning
non-functional behaviour, it includes: on the one hand,
assignment to all the NF-properties declared in the
non-functional specification; on the other hand,
requirements stated over the implementations of imported
components to make sure that the assigned values really
hold. So, it is possible to state things as: "the response
time of the operation list-books will not exceed one
minute provided that the sorting algorithm for the set of
books is not quadratic over the size of this set".

2.4. An example

We present in the next page four figures that show the
modules for a NETWORK component, which represents
topological networks (directed graphs) with nat numbers as
nodes, and unlabelled connections (edges) between them.
In fig. 1, we outline both model-oriented and algebraic
specifications (one of them should be chosen); in the
second case, the keyword "behavioural" before top-sort
breaks the default rule of interpreting the last equation
with initial semantics. Fig. 2 gives a non-functional
specification, which attach the NF-properties declared in
some property modules appearing in fig. 4 to modules and
operations, and adds some additional properties; the
measurement units stand for the number of nodes and
connections in the network. Last, fig. 3 gives a behaviour
module for an implementation IMPL-NETWORK of
NETWORK; the NF-requirement over LIST-NAT must
be satisfied by the implementation selected for this
component inside IMPL-NETWORK.

3. Catalogue of process tasks

We describe in this section a set of process tasks aimed
at supporting component programming with prototyping,
and allowing the automatic selection of implementations
from their non-functional characteristics. In the general
case, prototyping could involve both functional
specifications and implementations; we have explored in
previous works [l, 3, 41 the conditions that should be
fulfilled in order to have successful prototyping. As we
said in the introduction, the tasks identified in this
catalogue act as primitives of our process language,
introduced in section 4.

We have also a special kind of domain for measuring efficiency,
the domain of the asymptotic notations, that we do not introduce here
for the sake of brevity.

200

functional specification module NETWORK
imports LIST-NAT
type network = V: set-of(nat) x E: set-of(nat x nat)
invariant g: network; v, w: nat

not (v, v) in g.E
(v, w) in g.E => (v in g.V) and (w in g.V)

-- not reflexive edges

operat ions
...
add, remove (network, nat, nat) returns network
..

behaviour
... pre and post conditions for the operations
{ m <> n and m in g.V and n in g.V)

{ g'.E = union(g.E, singleton((m, n)))}
g' := add(g, m, n)

...
end ' module

functional specification module NETWORK
imports LIST-NAT
type network
operat ions

...
behavioural top-sort (network) returns list-nat

equations
... equations for the component
[belongs(succ(d, m), n)] =>

before(top-sort(d), m, n) = true
end module

Fig. 1: Two alternative functional specifications for a
NETWORK component.

non-functional specification module NETWORK
imports PORTABILITY, EFFICIENCY,

PROGRAMMER, RELIABILITY
module level fully-portable, programmer-name,

operation level time, space, reliability
measurement units nbnodes, nbconns
requirements

external-programmer,

nbconns <= pow(nbnodes, 2)
not fully-portable =>

extemal-programmer and not fully-portable =>
reliability(ops(NETW0RK)) <> high

reliability(ops(NETW0RK)) = low
end module

Fig. 2: Non-functional specification of NETWORK.

behaviour module for IMPL-NETWORK
fully-portable; not external-programmer
programmer-name = "Smith"
time(succ) = nbnodes; ...
reliability(ops(NETW0RK)) = high,..
requirements on LIST-NAT: fully-portable

end module

Fig. 3: Behaviour module for a NETWORK
implementation

property module PORTABILITY

boolean fully-portable
properties

end module
property module PROGRAMMER

boolean external-programmer
string programmer-name

properties

end module
property module EFFICIENCY

numerical time, space
end module
property module RELIABILITY

properties

properties
enumer reliability = (high, medium, low)

end module

Fig. 4: Some property modules declaring NF-properties.

Tasks are module-oriented; this is to say, all of them
are referred to one or more modules from all kinds:
functional specification, non-functional specification,
implementation, behaviour and property modules. The
tasks presented below may be left temporally incomplete
while executing other ones, or some of them may be
executed simultaneously, provided that relationships
between tasks are not violated (see 3.2). Also, some of the
tasks may be performed just by doing nothing (for
instance, an implementation may be left untested).

3.1. The tasks

Tasks for building modules. We have identified:
def ine(M), to declare the interface of a software
component; declare(P), to introduce the name and type
of one or more NF-properties in a property module,
and optionally some NF-requirements over them;
Fspecify(M), to build the functional specification of a
component M; FNspecify(M, Mnf) , to build a non-
functional specification Mnf of a component M ;
implement(M, I) , to build an implementation I of a
component M ; and state-behaviour(1, I n f , to state the
behaviour Inf of an implementation 1. These tasks
may reuse modules from the library with the tasks
introduced below.
Library management tasks. We consider the existence
of libraries to store specifications, implementations
and property modules. Then, we have defined the
following tasks:
0 Reusing a component specification composed by M

and Mnf (functional and non-functional parts) from
the library L in a component specification M'. This
kind of reuse may be of three different kinds:

201

i import(M’, L, M, M n f : to reuse the module M
without any modification except some optional
renaming.
ii instantiate(M’, L, M , Mnf) : to obtain a
concrete component from a generic one (e.g., sets
of books from generic sets), with optional
renaming.
iii inherit(M‘, L, M , MnJ ...) : to obtain a new
component by (possibly multiple) inheritance
from other ones.

0 Reusing a component implementation composed by
I and I f (code and behaviour module) from the
library L in a component implementation I‘. In this
case, only import and instantiate are allowed.

0 Importing a property module P from the library L in
another property module P’: import(P’, L, P).

0 Importing a property module P from the library L
inside a non-functional specification M n f :
attach(MnJ L, P).

0 Storing a module X into the corresponding library
L: store(L, X). In the case of specifications and
implementations, X include both the functional and
the non-functional parts.

Operational tasks. We include here prototyping tasks,
implementation selection tasks and validation tasks.
0 Prototyping a functional specification M :

test-spec(M). Also, there exists test-impl(l), to
prototype an implementation I . Both tasks may
eventually involve mixed execution (combining
specifications and code) as explained in [1,4].

0 Testing if the behaviour module Infattached to an
implementation satisfies the NF-requirements stated
in the corresponding non-functional specification
Mnf: NFvalidate(Inj Mnf). The success of this task
is necessary to consider the implementation correct.

0 Testing if an implementation I of a component M ,
with NF-behaviour I n f , satisfies the NF-
requirements stated over M inside another behaviour
module Inf’: NFtest(lnf, M, Inf). The success of
this task is necessary to consider I as a valid
implementation of M in the context represented by
Inf .

0 Selecting manually an implementation I of a
component M , with NF-behaviour Inf, inside
another implementation I’: NFmanselect(l’, I , Inf.

0 Selecting automatically an implementation of a
component M which satisfies the NF-requirements
stated over M inside another implementation I’ with
NF-behaviour Inf: NFautoselect(Inf’, M).

3.2. Precedence graphs

It is clear that the tasks identified above satisfy some
precedence relationships that must be followed in order to

develop a correct design for a software system. To
modelise these relationships, we have defined three
different kind of graphs, that we call precedence graphs,
referred to specifications, implementations and property
modules. Each graph is bound to concrete modules of the
appropriate type; so, relationships are module-oriented, as
well as tasks.

Fig. 5 presents the precedence graph for a specification
with functional part M and non-functional part M n f ,
SpecGraph(M, Mnf). Interface definition should precede
both functional and non-functional specifications of the
module. To carry out prototyping, functional specification
should be complete. Once the specification is complete, it
may be stored in the library in order to be retrieved for its
future use in other components.

Fig. 7 shows the precedence graph for an
implementation I with NF-behaviour Inf, ImplGraph(I,
Inf). It is stated that an implementation (its code) should
be built once its specification is complete, and afterwards
its NF-behaviour should be stated, and also prototyping of
the code may be carried out. From the non-functional
specification and the NF-behaviour, implementation
validation is possible and it must precede storage in the
library.

Last, fig. 6 shows the graph for a property module P ,
PropGraph(P). As the ones before, it is stated that a
module should be completed before storing it in the
library, and then it may be imported by other property
modules or it may be attached to a particular
non-functional specification.

Fspecify(M) NFspecify(M, Mnf)

test-spec(M) store(SpecLib, M, Mnf)

import/instantiate/inherit(M’, SpecLib, M, Mnf)

Fig. 5: Precedence graph at the specijication level.

declare(P)

store(PropLib, P)

import(P, PropLib, P)

Fig. 6: Precedence graph at the property level.

attach(Mnf, PropLib, P)

202

NFspecify(M, Mnf) Fspecify(M)

implement(M, I) state-behaviour(I', Inf)

NFtest(Inf, M, Inf)

testjmpl(1) state-behaviour(1, Inf)

NFautoselect (Inf, M)

store(ImplLib, I, Inf)

NFvalidate(Inf, J Mnf)

NFmanselect(I', I, Inn

reuse/instantiate(I', ImplLib, I, Inf)

Fig. 7: Precedence graph at the implementation level.

4. Software process models

Once we have defined the catalogue of existing tasks
and the relationships they should follow in system
development, we focus in the problem of how to define
concrcte software process modcls. As said in the
introduction, we focus in four particular phases of software
process: specification, design, implementation and testing;
however, we will continue using the term "software
process" as a shorthand for these phases.

Given the modelisation of precedence relationships
using graphs, we can consider a development strategy as a
set of new edges binding nodes of these graphs.
Sometimes, edges will relate tasks (nodes) in the same
graph, to say things like "the functional specification of a
component must be developed before the non-functional
one"; however, in the general case, edges will involve
tasks appearing in graphs bound to different modules, as in
"it is necessary to specify all the components imported by
a component M before any implementation of M is built".
Also, we define a kind of grouping mechanism to allow
the statement of facts as "functional and non-functional
specification of a component must take place as a whole".
As a result, we identify two different elements to
formulate development strategies: rules and groupings,
which are introduced in 4.1 and 4.2.

4.1. Rules of precedence

A software process model is mainly characterised by
some particular precedence relationships between tasks.
We define these relationships as a pair (called rule
hereafter) left -> right, where left and right are sets of
tasks. The meaning of the rule is: if the tasks appearing in
left have been completed, then all the tasks appearing in
right can start to be executed; in other words, the rule is

adding an edge from every task (node) appearing in left to
every task appearing in right. Once again, let's remark that
tasks are defined at module level; as a result, rules will be
parameterised by the modules appearing in tasks.

We define the following elements to write rules:
Identifiers to represent module names.

A quantifier of the form:

meaning that the rule holds just for the specified
set of modules.
Some built-in functions to obtain sets of modules
related somehow with a given one.

Fig. 8 shows an example. Software process models are
encapsulated in strategy modules. It is possible to
combine existing strategy modules to form new ones,
adding optionally new rules and groupings. This property
supports incremental development of strategies as
combination of simpler ones, and improves
understandability and reusability of the modules. The first
strategy module forces functional specification of
components to be carried out before non-functional one.
This is a rule that add edges in single graphs, the ones for
component specifications, as we show in the first graph of
fig. 8. The second strategy determines a kind of bottom-up
specification strategy: before specifying a module M , it is
necessary to specify all the modules used by M ; so, many
graphs are involved, and we show in fig. 8 the
specification graphs for a system with three specifications
(including functional and non-functional parts) (A, Anj),
(B , Bnj) and (C, Cnj) such that (A, Anj) uses the other
ones. Last, the third strategy module combines the
previous ones, yielding to a kind of bottom-up
specification development strategy that gives precedence to
the functional part. We omit variable declarations.

Tasks, parameterised by modules.

for all x in set of modules: rule(x)

203

strategy FUNCTIONAL-BEFORE-NON-FUNCTIONAL

end module
Fspecify(M) -> NFspecify(M)

strategy BOTTOM-UP-SPECIFICATION
for all Z in used-in()():

Fspecify(Z) -> Fspecify(X), NFspecify(X, Xnf)
NFspecify(Z, Znf) -> NFspecify(X, Xnf)

end module

strategy BOTTOM-UP-WITH-FUNCTIONAL-BEFORE
combines

FUNCTION AL-BEFORE-NON-FUNCTIONAL,
BOTTOM-U€-SPECIFICATION

end module

define(M)

Fspecify(M) + NFspecify(M, Mnf)

test-spec(M) store(SpecLib, M, Mnf)

J.
import/instantiate/inherit(M', SpecLib, M, Mnf)

SpecGraph(B, Bnf) SpecGraph(C, Cnf)

define(C)

Fspecify (C) NFspecify(C, Cnf)

Fspecify(A) NFspecify(A, Anf) I
I

SpecGraph(A, Anf)

Fig. 8: Three strategy modules and the specification graph resulting from thefirst two of them.

4.2. Grouping of tasks

We introduce here some notation to cover the need of
grouping some related tasks, all of them usually referred to
the same module. This grouping is expressed by enclosing
the set of tasks between parenthesis, (taskl, ..., taskn).
The meaning of this grouping is: once a task from taskl,
..., taskn is started, development must complete all of
them before starting any other task. Tasks in a grouping
may refer to a subset of modules, using the same
quantifier as rules.

Note that grouping does not state nothing about order
of execution of these tasks (this is done using rules); also,
note that grouping does not oblige neither to complete a
task before starting others of the group nor the other way

round (for instance, the n tasks may be simultaneously in
execution if rules allow this situation). Last, we remark
that groupings can be formulated in terms of tasks: a
grouping (taskl, ..., taskn) adds an edge from every
predecessor of every task in t a sk l , ..., taskn to every
successor of every task in taskl, ..., taskn; so, the n tasks
must infallibly be carried out as a whole.

Fig. 9 shows two examples of grouping and its
combination with rules. The first strategy module forces
functional and non-functional specification of a component
to be performed as a whole. As the specification graph of
the component does not include any precedence
relationship between these two tasks, any order of
execution and state of completion is possible. But if we
consider a development strategy combining this grouping

204

and the FUNCTIONALBEFORE-NON-FUNCTIONAL
strategy (see fig. S), the result is a new strategy that
requires, when specifying every component in the system,
to complete the functional part and immediately the non-
functional one; note the difference with the strategy
FUNCTIONAL-BEFORE-NON-FUNCTIONAL alone,
that allows to carry out other tasks between functional and
non-functional specifications. Last, the strategy
SPECIFICATION-OF-USED-MOD ULES shows the use
of quantifiers in grouping; the module states that all
functional specifications of imported components must
take place indivisibly; this module could combine with
BOTTOM-UP-SPECIFICATION to form a new strategy.

strategy WHOLE-SPECIFICATION

end module
(Fspecify(M), NFspecify(M, Mnf))

strategy WHOLE-SPECIFICATION-FUNCTIONAL- 1 ST
combines

FUNCTIONAI-BEFORE-NONJU"ONAL,
WHOLE-SPECIFICATION

end module

strategy SPECIFICATION-OF-USED_MODULES

end module
(for all Z in used-in(M): Fspecify(Z))

Fig. 9: Two new strategy modules with grouping.

5. Correctness of software developments

In this section, we are going to define formally the
notion of correctness of a system software development
with respect to a software process model2. First, we
propose a model for system software developments as a
sequence of tasks.

A software system development is a sequence of tasks
such that there are not repeated tasks:

ti # tj
where "ti f tj" means that ti and tj cannot be the same task
applied to the same module(s). 0

Next, we formalise the notion of software process
model as a pair of sets, a set for rules and a set for
groupings. Then, we define the graph bound to a software
system development as a graph including as many
subgraphs as modules appear in s (see 3.2) and
incorporating directed edges between nodes given both the
set of rules and the set of groupings of the process model,
as explained in section 4. Last, we formulate the notion of

Definition 1. Software system development.

SSdev = (task)* / V's~SSdev: s = ti ... tk: i # j

We do not focus here on functional and non-functional
correctness of the system itself, which may be studied through classical
proof obligations. Also, we do not address here to completeness of
software systems developments, defined as the existence of
implementations enough to obtain a completely implemented system
satisfying all the requirements stated in behaviour modules.

correctness of a software system development with respect
to a process model in terms of a topological sort over the
resulting graph.

A software process model g is a pair, g = (Sr, Sg), such
that Sr is a set of rules and Sg a set of groupings:

Definition 2. Software process model.

Sr E e (t a sk)* x (task)") A Sg E e e t a s k)) 0

Definition 3. Graph induced by sets of modules,
rules and groupings.
Let S, S r and Sg be sets of modules (in the case of
specifications and implementations, pairs of modules
including functional and non-functional parts), rules and
groupings, respectively. We define the graph induced by S,
S r and Sg, Graph(S, S r , Sg), as the minimum graph
satisfying:

VM, Mnf (M, Mnf)ES A

M and Mnf form a specification:
SpecGraph(M, Mnf) E Graph(& Sr, Sg)

ImplGraph(1, Inf) c Graph(& Sr, Sg)

PropGraph(P) c Graph(S, Sr, Sg)

VI, Inf (I, 1nf)E S A I and Inf form an implementation:

VP: PE S A P is a property module:

* V r : r E S r A r = (l - > r) :
Vx, y: x ~ l A yEr:

Vassignment a of the modules of x and y
with values from S, x[al and y[al:

the edge (x[S] -> y[S]) is in Graph(& Sr, Sg)
Vg: g€ s g A g = (tl, ..., tk):

Vi , j : 1 I i , j I k A i # j :
Vassignment a of the modules of ti and tj

(V X , ~ : the edges (X -> ti[a]) and (tj[a] -> Y)

the edge (x -> y) is in Graph(S, Sr, Sg)
where SpecGruph(M, M n f) , ImplGraph(I , Inf) and
PropGruph(P) are defined as in 3.2. We assume that
quantifications implicitly expand to sets of rules and
groupings. 0

Definition 4 . Correctness of a software system
development with respect to a software process model.
Let s = ti . .&E SSdev be a software system development
and let g = (Sr, Sg) be a software process model. We say
that s is correct with respect to g i f s follows a valid
topological sort traversal of the graph induced by g and the
modules of s:

SE TopSort(Graph(Modules(s), Sr, Sg)),
where Modules(s) gives the set of modules introduced in s
and Topsort@ gives the set of valid topological sort
traversals over the graph f 0

with values from S, ti[a] and tj[a]:

are in Graph@, Sr, Sg)):

205

6. Conclusions presented here: model-oriented or algebraic
specifications and object-oriented programming.

We have presented a proposal to formulate software
process models in the component programming
framework. This proposal relies on the existence of a
catalogue of tasks to build the components, to prototype
them, to select the appropriate implementations for them
and to store them and to retrieve them tolfrom libraries;
this tasks present precedence relationships between them.
Software process models are encapsulated into strategy
modules, which consists of a set of rules (new precedences
between tasks) and a set of groupings (tasks that must be
considered as a whole). Finally, it has been formally
introduced the notion of correctness of a software
development with respect to a software process model,
based in a graph representation of process models.

There are many aspects of our work that have not been
included in the paper. First, the notion of component
redevelopment, which requires redefining slightly the
definition of software system development. Also, we do
not include the complete definition of correctness, taking
into account functional and non-functional correctness.
Last, we have not shown the decomposition of tasks into
subtasks. Another interesting point is the use of the
development sequence as a script to analyse the software
process and, eventually, to replay it in the future [5, 141.

We think that the most interesting points of our
approach are the following ones:

The process language consists of very few
elements to make it ease to learn and use: a small
catalogue of tasks with well-defined relationships,
two mechanisms to relate tasks (rules and
groupings) and a few additional constructions
(quantification and predefined functions).
Software process models may be defined
incrementally, from the combination of small
strategy modules, each one of them addressing to
particular points of the model. We may say that
our process model language falls into component
programming at the process level and, so, the
benefits in this field also apply to our proposal.
A formal notion of correctness has been defined.
We believe that correctness in the process level is
as important as correctness in the product level.
Our work aims at treating both levels uniformly.
Non-functional requirements of software are taken
into account during software development. This
aspect has not been studied in detail here, but is a
basic one in our project [4, 61: we believe that
non-functionality is as important as functionality
and this requires explicit treatment in the process
model.
Although the proposal has been presented for an
ad hoc notation, it does not really depend on it;
so, the proposal may be adapted for every
(functional) specification and programming
languages with similar characteristics to the ones

References

[l] X Burguts, X. Franch. "Evaluation of Expressions in a
Multiparadigm Framework". In Proceedings of 7th PLILP,
Utrecht (The Netherlands), LNCS 982, Springer Verlag, 1995.

[2] E. Dubois, A. van Lamsweerde. "Making Specification
Processes Explicit". In 4th International Workshop on
Software Specification and Design, Monterey (U.S.A.), 1987.

[3] X. Franch, X. BurguCs. "A Case Study on Prototyping
with Specifications". Procs. Workshop on Development and
Transformation of Programs, Nancy (France), 1993.

[4] X. Franch, X. BurguCs. "Incremental Component
Programming with Functional and Non-Functional
Information". In Proceedings of XVI Intl. Conference of
Chilean Computing Science Society, Valdivia (Chile), 1996.

[5] X. Franch, P. Botella. "Prototipado de Programas
usando Especificaciones Funcionales y No Funcionales"
(written in Spanish). In Actas de las Primeras Jornadas de
Trubajo en Ingenieria del Software, Sevilla (Espaiia), 1996.

[6] X. Franch, P. Botella. "Supporting Software
Maintenance with Non-Functional Information". In
Proceedings 1st EUROMICRO Conference on Software
Maintenance and Reengineering, Berlin (Germany), 1997.

[7] A. Finkelstein, J. Kramer, B. Nuseibeh. Software
Process Modelling and Technology. J. Wiley & sons, 1994.

[8] J.V. Guttag, J.J. Horning. Larch: Languages and Tools
for Formal Specification. Texts and Monographs in Computer
Science, Springer-Verlag.

[9] J.A. Goguen et al. "Introducing OBJ3". Draft Report,
SRI International, 1993.

[IO] M. Jazayeri. "Component Programming - a Fresh
Look at Software Components". In Proceedings of 5th ESEC,
Barcelona (Catalonia, Spain), 1995.

[111 C.B. Jones. Systematic Software Development using
VDM. Prentice-Hall, 1990.

[121 B. Krieg-Bruckner (ed.). Program development by
Specification and Transformation. LNCS 680, Springer
Verlag, 1993.

[13] L. Osterweil. "Software Process are Software Too". In
Proceedings of 9th ICSE, Monterey (U.S.A.), 1987.

[141 M. Sintzoff. "Expressing Program Developments in a
Design Calculus". In Procs. of the lntl. Summer School on
Logic of Programming, NATO AS1 Series, Vol F36, Springer
Verlag, 1987.

[151 M. Sitaraman (coordinator). "Special Feature:
Component-Based Software Using RESOLVE". ACM Software
Engineering Notes, 19(4), Oct. 1994.

[16] J.M. Spivey. The Z Notation. Prentice-Hall, 1993.
[17] M. Saeki, K. Wenyin. "Specifying Software

Specification and Design Methods". In Proceedings of 6th
CAiSE, Utrecht (The Netherlands), LNCS 81 1, 1994.

[181 D. Wile. "Program Developments: Formal
Explanation of Implementations". In New Paradigms f o r
Sof%vare Developments, IEEE Computer Society Press, 1986.

206

