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Abstract 
Systematic formulation of software process models is 
currently a challenging problem in software engineering. 
We present here an approach to define models covering the 
phases of specification, design, implementation and 
testing of software systems in the component 
programming framework, taking into account 
non-functional aspects of software (efficiency, etc.}, 
automatic reusability of implementations in systems and 
also prototyping techniques involving both specifications 
and implementations. Our proposal relies on the 
identification of a catalogue of tasks that appear during 
these phases which satisfy some relationships concerning 
their order of execution. A software process model can be 
defined as the addition of more relationships over these 
tasks using a simple, modular process language. We have 
developed also a formal definition of correctness of a 
sojiware development with respect to a software process 
model, based on the formulation of models as graphs. 

1. Introduction 

It is widely recognised that one of the most challenging 
problems in the field of software engineering is the 
systematic formulation of software process models in a 
such a way that it can be said that software processes are 
software too [13]. A lot of research has been done in this 
field and, as a result, some proposals have been defined, 
which can be characterised by the kind of language or 
formalism used to represent the model: imperative 
programs [ 18, 21, transformation rules over specifications 
and programs [ 121, composition of inference rules [ 141, 
multiview approaches [17] and so on; [7] gives a 
presentation of many projects recently developed 
(including exhaustive reference lists). Some methods 
address to the whole software process, while others focus 
on a subset of phases of the life-cycle (usually, 
specification and design); anyway, the existence of those 
proposals is a step beyond the uniform treatment of 
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products (software) and processes (developments) in 
software engineering, as we think it should be. 

In this paper, we are going to present a framework to 
formulate software process models for component 
programming [ lo ,  151, assigning a prominent role to the 
management of operational aspects of software (as 
efficiency or reliability); we also emphasise prototyping 
and reusability of (implementation of) components. More 
precisely, we consider a subset of the whole software 
process  composed by specif icat ion,  design,  
implementation and testing phases, and we identify a 
catalogue of tasks that arise during these activities, stating 
some precedence relationships between them. We define 
then a process language characterised by the statement of 
new relationships between tasks; the language has been 
designed with the goal of simplicity and modularity in 
mind and, so, it seems to be easy to learn and use. Also, 
we provide a formal definition of the concept of 
correctness of a software development with respect to a 
process model defined with this language. 

2. The framework 

We are interested in software systems as a hierarchy of 
software components. A component is defined by means 
of a specification, which includes two parts: the functional 
one, stating how does the component behave, and the 
non-functional one, that declares additional requirements 
referred to some operational attributes (as efficiency); these 
attributes are defined in property modules, imported in 
non-functional specifications. Once the specification is 
complete, many implementations may be built for this 
component, all of them satisfying the properties stated in 
both parts of the specification; implementations include a 
description of their non-functional behaviour, which 
determines the values that the operational attributes 
declared in the non-functional specification take in the 
implementation, possibly stating some additional 
constrains on implementations of imported components. 

Up to now, our method has been defined over an ad hoc 
language called Merli. Merli includes features to build 



functional and non-functional specifications and 
implementations. The reason of working with Merli is 
twofold. On the one hand, it will be not necessary to 
develop new tools when considering concrete specification 
and implementation languages, except from a translator 
from them to Merli. On the other hand, we have defined an 
execution tool over Merli [l] able to prototype systems 
that combine specifications and programs provided that 
some conditions hold. However, it must remain clear that 
the methodology we are going to propose does not depend 
of the languages used to specify components and to 
implement them (provided that they have similar 
characteristics to the ones adopted in Merli); so, we are not 
requiring to learn Merli to adopt our proposal. 

A more detailed description of Merli may be found at 
[4, 61; we give here just the highlights to understand the 
framework of our proposal. 

2.1. Functional specifications 

We consider two kinds of functional specifications: 
Model-oriented specifications. As in Z [16] or VDM 
[ 1 11, where a model of the component is stated and the 
specification is expressed mainly by means of pre and 
post conditions over the model. 
Algebraic specifications. As in Larch [8] or OBJ3 [9], 
the specification consists of a set of equations. We are 
particularly interested in the possibility of using 
different semantics (initial and behavioural, as Larch 
does) to interpret the equations. 

2.2. Non-functional specifications 

Non-functional specifications declare which operational 
attributes (what we call NF-properties) are relevant to the 
component being specified. NF-properties are really 
introduced in properg modules and they may be of many 
different kinds, depending of the domain of their values: 
boolean (e.g., full portability), numerical (e.g., degree of 
reliability), real (e.g., response time), by enumeration of 
values (e.g., kind of user interface -icons, menu, command 
language, ...-) and string (e.g., programmer name)l, and 
they can be attached to single operations or to whole 
modules (so, we can talk about response time of individual 
operations or about full portability of a whole module). It 
is possible to declare what we call measurement units, 
which represent problem domain sizes (e.g., number of 
books in a library) and that may be used as constant 
values, mainly when stating efficiency. 

Once NF-properties have been selected, non-functional 
specifications state restrictions (NF-requirements) over the 
implementations of the component. So, it is possible to 

formulate NF-requirements such as "implementations 
must be fully portable and user interface must be by 
means of icons" or "operations must have a response time 
not exceeding one second". 

2.3. Implementations 

As it has become usual in the component programming 
field, we have chosen the object-oriented programming 
paradigm to code the implementations. Concerning 
non-functional behaviour, it includes: on the one hand, 
assignment to all the NF-properties declared in the 
non-functional specification; on the other hand, 
requirements stated over the implementations of imported 
components to make sure that the assigned values really 
hold. So, it is possible to state things as: "the response 
time of the operation list-books will not exceed one 
minute provided that the sorting algorithm for the set of 
books is not quadratic over the size of this set". 

2.4. An example 

We present in the next page four figures that show the 
modules for a NETWORK component, which represents 
topological networks (directed graphs) with nat numbers as 
nodes, and unlabelled connections (edges) between them. 
In fig. 1, we outline both model-oriented and algebraic 
specifications (one of them should be chosen); in the 
second case, the keyword "behavioural" before top-sort 
breaks the default rule of interpreting the last equation 
with initial semantics. Fig. 2 gives a non-functional 
specification, which attach the NF-properties declared in 
some property modules appearing in fig. 4 to modules and 
operations, and adds some additional properties; the 
measurement units stand for the number of nodes and 
connections in the network. Last, fig. 3 gives a behaviour 
module for an implementation IMPL-NETWORK of 
NETWORK; the NF-requirement over LIST-NAT must 
be satisfied by the implementation selected for this 
component inside IMPL-NETWORK. 

3. Catalogue of process tasks 

We describe in this section a set of process tasks aimed 
at supporting component programming with prototyping, 
and allowing the automatic selection of implementations 
from their non-functional characteristics. In the general 
case, prototyping could involve both functional 
specifications and implementations; we have explored in 
previous works [l, 3, 41 the conditions that should be 
fulfilled in order to have successful prototyping. As we 
said in the introduction, the tasks identified in this 
catalogue act as primitives of our process language, 
introduced in section 4. 

We have also a special kind of domain for measuring efficiency, 
the domain of the asymptotic notations, that we do not introduce here 
for the sake of brevity. 
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functional specification module NETWORK 
imports LIST-NAT 
type network = V: set-of(nat) x E: set-of(nat x nat) 
invariant g: network; v, w: nat 

not (v, v) in g.E 
(v, w) in g.E => (v in g.V) and (w in g.V) 

-- not reflexive edges 

operat ions  
... 
add, remove (network, nat, nat) returns network 
.. 

behaviour 
... pre and post conditions for the operations 
{ m <> n and m in g.V and n in g.V) 

{ g'.E = union(g.E, singleton((m, n)))} 
g' := add(g, m, n) 

... 
end ' module 

functional specification module NETWORK 
imports LIST-NAT 
type network 
operat ions  

... 
behavioural top-sort (network) returns list-nat 

equations 
... equations for the component 
[belongs(succ(d, m), n)] => 

before(top-sort(d), m, n) = true 
end module 

Fig. 1: Two alternative functional specifications for  a 
NETWORK component. 

non-functional specification module NETWORK 
imports PORTABILITY, EFFICIENCY, 

PROGRAMMER, RELIABILITY 
module level fully-portable, programmer-name, 

operation level time, space, reliability 
measurement units nbnodes, nbconns 
requirements 

external-programmer, 

nbconns <= pow(nbnodes, 2) 
not fully-portable => 

extemal-programmer and not fully-portable => 
reliability(ops(NETW0RK)) <> high 

reliability(ops(NETW0RK)) = low 
end module 

Fig. 2: Non-functional specification of NETWORK. 

behaviour module for IMPL-NETWORK 
fully-portable; not external-programmer 
programmer-name = "Smith" 
time(succ) = nbnodes; ... 
reliability(ops(NETW0RK)) = high,.. 
requirements on LIST-NAT: fully-portable 

end module 

Fig. 3: Behaviour module for  a NETWORK 
implementation 

property module PORTABILITY 

boolean fully-portable 
properties 

end module 
property module PROGRAMMER 

boolean external-programmer 
string programmer-name 

properties 

end module 
property module EFFICIENCY 

numerical time, space 
end module 
property module RELIABILITY 

properties 

properties 
enumer reliability = (high, medium, low) 

end module 

Fig. 4: Some property modules declaring NF-properties. 

Tasks are module-oriented; this is to say, all of them 
are referred to one or more modules from all kinds: 
functional specification, non-functional specification, 
implementation, behaviour and property modules. The 
tasks presented below may be left temporally incomplete 
while executing other ones, or some of them may be 
executed simultaneously, provided that relationships 
between tasks are not violated (see 3.2). Also, some of the 
tasks may be performed just by doing nothing (for 
instance, an implementation may be left untested). 

3.1. The tasks 

Tasks for building modules. We have identified: 
def ine(M),  to declare the interface of a software 
component; declare(P), to introduce the name and type 
of one or more NF-properties in a property module, 
and optionally some NF-requirements over them; 
Fspecify(M), to build the functional specification of a 
component M; FNspecify(M, Mnf) ,  to build a non- 
functional specification Mnf of a component M ;  
implement(M, I ) ,  to build an implementation I of a 
component M ;  and state-behaviour(1, I n f ,  to state the 
behaviour Inf of an implementation 1. These tasks 
may reuse modules from the library with the tasks 
introduced below. 
Library management tasks. We consider the existence 
of libraries to store specifications, implementations 
and property modules. Then, we have defined the 
following tasks: 
0 Reusing a component specification composed by M 

and Mnf (functional and non-functional parts) from 
the library L in a component specification M'. This 
kind of reuse may be of three different kinds: 
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i import(M’, L, M,  M n f :  to reuse the module M 
without any modification except some optional 
renaming. 
ii instantiate(M’, L, M ,  Mnf ) :  to obtain a 
concrete component from a generic one (e.g., sets 
of books from generic sets), with optional 
renaming. 
iii inherit(M‘, L, M ,  MnJ ...) : to obtain a new 
component by (possibly multiple) inheritance 
from other ones. 

0 Reusing a component implementation composed by 
I and I f  (code and behaviour module) from the 
library L in a component implementation I‘. In this 
case, only import and instantiate are allowed. 

0 Importing a property module P from the library L in 
another property module P’: import(P’, L, P). 

0 Importing a property module P from the library L 
inside a non-functional specification M n f :  
attach(MnJ L, P). 

0 Storing a module X into the corresponding library 
L:  store(L, X). In the case of specifications and 
implementations, X include both the functional and 
the non-functional parts. 

Operational tasks. We include here prototyping tasks, 
implementation selection tasks and validation tasks. 
0 Prototyping a functional specification M :  

test-spec(M). Also, there exists test-impl(l), to 
prototype an implementation I .  Both tasks may 
eventually involve mixed execution (combining 
specifications and code) as explained in [ 1,4]. 

0 Testing if the behaviour module Infattached to an 
implementation satisfies the NF-requirements stated 
in the corresponding non-functional specification 
Mnf: NFvalidate(Inj Mnf). The success of this task 
is necessary to consider the implementation correct. 

0 Testing if an implementation I of a component M ,  
with NF-behaviour I n f ,  satisfies the NF- 
requirements stated over M inside another behaviour 
module Inf’: NFtest(lnf, M, Inf). The success of 
this task is necessary to consider I as a valid 
implementation of M in the context represented by 
Inf .  

0 Selecting manually an implementation I of a 
component M ,  with NF-behaviour Inf, inside 
another implementation I’: NFmanselect(l’, I ,  Inf. 

0 Selecting automatically an implementation of a 
component M which satisfies the NF-requirements 
stated over M inside another implementation I’ with 
NF-behaviour Inf: NFautoselect(Inf’, M).  

3.2. Precedence graphs 

It is clear that the tasks identified above satisfy some 
precedence relationships that must be followed in order to 

develop a correct design for a software system. To 
modelise these relationships, we have defined three 
different kind of graphs, that we call precedence graphs, 
referred to specifications, implementations and property 
modules. Each graph is bound to concrete modules of the 
appropriate type; so, relationships are module-oriented, as 
well as tasks. 

Fig. 5 presents the precedence graph for a specification 
with functional part M and non-functional part M n f ,  
SpecGraph(M, Mnf). Interface definition should precede 
both functional and non-functional specifications of the 
module. To carry out prototyping, functional specification 
should be complete. Once the specification is complete, it 
may be stored in the library in order to be retrieved for its 
future use in other components. 

Fig. 7 shows the precedence graph for  an 
implementation I with NF-behaviour Inf, ImplGraph(I, 
Inf). It is stated that an implementation (its code) should 
be built once its specification is complete, and afterwards 
its NF-behaviour should be stated, and also prototyping of 
the code may be carried out. From the non-functional 
specification and the NF-behaviour, implementation 
validation is possible and it must precede storage in the 
library. 

Last, fig. 6 shows the graph for a property module P ,  
PropGraph(P). As the ones before, it is stated that a 
module should be completed before storing it in the 
library, and then it may be imported by other property 
modules or it may be attached to a particular 
non-functional specification. 

Fspecify(M) NFspecify(M, Mnf) 

test-spec(M) store(SpecLib, M, Mnf) 

import/instantiate/inherit(M’, SpecLib, M, Mnf) 

Fig. 5: Precedence graph at the specijication level. 

declare(P) 

store(PropLib, P) 

import(P, PropLib, P) 

Fig. 6: Precedence graph at the property level. 

attach(Mnf, PropLib, P) 
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NFspecify(M, Mnf) Fspecify(M) 

implement(M, I) state-behaviour(I', Inf) 

NFtest(Inf, M, Inf) 

testjmpl(1) state-behaviour(1, Inf) 

NFautoselect (Inf, M) 

store(ImplLib, I, Inf) 

NFvalidate(Inf, J Mnf) 

NFmanselect(I', I, Inn  

reuse/instantiate(I', ImplLib, I, Inf) 

Fig. 7: Precedence graph at the implementation level. 

4. Software process models 

Once we have defined the catalogue of existing tasks 
and the relationships they should follow in  system 
development, we focus in the problem of how to define 
concrcte software process modcls. As said in the 
introduction, we focus in four particular phases of software 
process: specification, design, implementation and testing; 
however, we will continue using the term "software 
process" as a shorthand for these phases. 

Given the modelisation of precedence relationships 
using graphs, we can consider a development strategy as a 
set of new edges binding nodes of these graphs. 
Sometimes, edges will relate tasks (nodes) in the same 
graph, to say things like "the functional specification of a 
component must be developed before the non-functional 
one"; however, in the general case, edges will involve 
tasks appearing in graphs bound to different modules, as in 
"it is necessary to specify all the components imported by 
a component M before any implementation of M is built". 
Also, we define a kind of grouping mechanism to allow 
the statement of facts as "functional and non-functional 
specification of a component must take place as a whole". 
As a result, we identify two different elements to 
formulate development strategies: rules and groupings, 
which are introduced in 4.1 and 4.2. 

4.1. Rules of precedence 

A software process model is mainly characterised by 
some particular precedence relationships between tasks. 
We define these relationships as a pair (called rule 
hereafter) left -> right, where left and right are sets of 
tasks. The meaning of the rule is: if the tasks appearing in 
left have been completed, then all the tasks appearing in 
right can start to be executed; in other words, the rule is 

adding an edge from every task (node) appearing in left to 
every task appearing in right. Once again, let's remark that 
tasks are defined at module level; as a result, rules will be 
parameterised by the modules appearing in tasks. 

We define the following elements to write rules: 
Identifiers to represent module names. 

A quantifier of the form: 

meaning that the rule holds just for the specified 
set of modules. 
Some built-in functions to obtain sets of modules 
related somehow with a given one. 

Fig. 8 shows an example. Software process models are 
encapsulated in strategy modules. It is possible to 
combine existing strategy modules to form new ones, 
adding optionally new rules and groupings. This property 
supports incremental development of strategies as 
combination of simpler ones, and improves 
understandability and reusability of the modules. The first 
strategy module forces functional specification of 
components to be carried out before non-functional one. 
This is a rule that add edges in single graphs, the ones for 
component specifications, as we show in the first graph of 
fig. 8. The second strategy determines a kind of bottom-up 
specification strategy: before specifying a module M ,  it is 
necessary to specify all the modules used by M ;  so, many 
graphs are involved, and we show in fig. 8 the 
specification graphs for a system with three specifications 
(including functional and non-functional parts) (A, Anj), 
( B ,  Bnj) and (C, Cnj) such that (A,  Anj)  uses the other 
ones. Last, the third strategy module combines the 
previous ones, yielding to a kind of bottom-up 
specification development strategy that gives precedence to 
the functional part. We omit variable declarations. 

Tasks, parameterised by modules. 

for all x in set of modules: rule(x) 
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strategy FUNCTIONAL-BEFORE-NON-FUNCTIONAL 

end module 
Fspecify(M) -> NFspecify(M) 

strategy BOTTOM-UP-SPECIFICATION 
for all Z in used-in()(): 

Fspecify(Z) -> Fspecify(X), NFspecify(X, Xnf) 
NFspecify(Z, Znf) -> NFspecify(X, Xnf) 

end module 

strategy BOTTOM-UP-WITH-FUNCTIONAL-BEFORE 
combines 

FUNCTION AL-BEFORE-NON-FUNCTIONAL, 
BOTTOM-U€-SPECIFICATION 

end module 

define(M) 

Fspecify(M) + NFspecify(M, Mnf) 

test-spec(M) store(SpecLib, M, Mnf) 

J. 
import/instantiate/inherit(M', SpecLib, M, Mnf) 

SpecGraph(B, Bnf) SpecGraph(C, Cnf) 

define(C) 

Fspecify (C) NFspecify(C, Cnf) 

Fspecify( A) NFspecify(A, Anf) I 
I ... ... 

SpecGraph(A, Anf) 

Fig. 8: Three strategy modules and the specification graph resulting from thefirst two of them. 

4.2. Grouping of tasks 

We introduce here some notation to cover the need of 
grouping some related tasks, all of them usually referred to 
the same module. This grouping is expressed by enclosing 
the set of tasks between parenthesis, (taskl, ..., taskn). 
The meaning of this grouping is: once a task from taskl, 
..., taskn is started, development must complete all of 
them before starting any other task. Tasks in a grouping 
may refer to a subset of modules, using the same 
quantifier as rules. 

Note that grouping does not state nothing about order 
of execution of these tasks (this is done using rules); also, 
note that grouping does not oblige neither to complete a 
task before starting others of the group nor the other way 

round (for instance, the n tasks may be simultaneously in 
execution if rules allow this situation). Last, we remark 
that groupings can be formulated in terms of tasks: a 
grouping (taskl, ..., taskn) adds an edge from every 
predecessor of every task in t a sk l ,  ..., taskn to every 
successor of every task in taskl, ..., taskn; so, the n tasks 
must infallibly be carried out as a whole. 

Fig. 9 shows two examples of grouping and its 
combination with rules. The first strategy module forces 
functional and non-functional specification of a component 
to be performed as a whole. As the specification graph of 
the component does not include any precedence 
relationship between these two tasks, any order of 
execution and state of completion is possible. But if we 
consider a development strategy combining this grouping 
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and the FUNCTIONALBEFORE-NON-FUNCTIONAL 
strategy (see fig. S), the result is a new strategy that 
requires, when specifying every component in the system, 
to complete the functional part and immediately the non- 
functional one; note the difference with the strategy 
FUNCTIONAL-BEFORE-NON-FUNCTIONAL alone, 
that allows to carry out other tasks between functional and 
non-functional specifications. Last, the strategy 
SPECIFICATION-OF-USED-MOD ULES shows the use 
of quantifiers in grouping; the module states that all 
functional specifications of imported components must 
take place indivisibly; this module could combine with 
BOTTOM-UP-SPECIFICATION to form a new strategy. 

strategy WHOLE-SPECIFICATION 

end module 
(Fspecify(M), NFspecify(M, Mnf)) 

strategy WHOLE-SPECIFICATION-FUNCTIONAL- 1 ST 
combines 

FUNCTIONAI-BEFORE-NONJU"ONAL, 
WHOLE-SPECIFICATION 

end module 

strategy SPECIFICATION-OF-USED_MODULES 

end module 
(for all Z in used-in(M): Fspecify(Z)) 

Fig. 9: Two new strategy modules with grouping. 

5. Correctness of software developments 

In this section, we are going to define formally the 
notion of correctness of a system software development 
with respect to a software process model2. First, we 
propose a model for system software developments as a 
sequence of tasks. 

A software system development is a sequence of tasks 
such that there are not repeated tasks: 

ti # tj 
where "ti f tj" means that ti and tj cannot be the same task 
applied to the same module(s). 0 

Next, we formalise the notion of software process 
model as a pair of sets, a set for rules and a set for 
groupings. Then, we define the graph bound to a software 
system development as a graph including as many 
subgraphs as modules appear in s (see 3.2)  and 
incorporating directed edges between nodes given both the 
set of rules and the set of groupings of the process model, 
as explained in section 4. Last, we formulate the notion of 

Definition 1. Software system development. 

SSdev = (task)* / V's~SSdev: s = ti  ... tk: i # j  

We do not focus here on functional and non-functional 
correctness of the system itself, which may be studied through classical 
proof obligations. Also, we do not address here to completeness of 
software systems developments, defined as the existence of 
implementations enough to obtain a completely implemented system 
satisfying all the requirements stated in behaviour modules. 

correctness of a software system development with respect 
to a process model in terms of a topological sort over the 
resulting graph. 

A software process model g is a pair, g = (Sr, Sg), such 
that Sr  is a set of rules and Sg a set of groupings: 

Definition 2. Software process model. 

Sr E e ( t a sk )*  x (task)") A Sg E e e t a s k ) )  0 

Definition 3. Graph induced by sets of modules, 
rules and groupings. 
Let S, S r  and Sg be sets of modules (in the case of 
specifications and implementations, pairs of modules 
including functional and non-functional parts), rules and 
groupings, respectively. We define the graph induced by S, 
S r  and Sg, Graph(S, S r ,  Sg), as the minimum graph 
satisfying: 

VM, Mnf (M, Mnf)ES A 

M and Mnf form a specification: 
SpecGraph(M, Mnf) E Graph(& Sr, Sg) 

ImplGraph(1, Inf) c Graph(& Sr, Sg) 

PropGraph(P) c Graph(S, Sr, Sg) 

VI, Inf (I, 1nf)E S A I and Inf form an implementation: 

VP: PE S A P is a property module: 

* V r : r E S r A r = ( l - > r ) :  
Vx, y: x ~ l  A yEr: 

Vassignment a of the modules of x and y 
with values from S, x[al and y[al: 

the edge (x[S] -> y[S]) is in Graph(& Sr, Sg) 
Vg: g€ s g  A g = (tl,  ..., tk): 

Vi , j :  1 I i , j  I k A i # j :  
Vassignment a of the modules of ti and tj 

( V X , ~ :  the edges (X -> ti[a]) and (tj[a] -> Y) 

the edge (x -> y) is in Graph(S, Sr, Sg) 
where SpecGruph(M,  M n f ) ,  ImplGraph(I ,  Inf) and 
PropGruph(P)  are defined as in 3.2. We assume that 
quantifications implicitly expand to sets of rules and 
groupings. 0 

Definition 4 .  Correctness of a software system 
development with respect to a software process model. 
Let s = ti  . .&E SSdev be a software system development 
and let g = (Sr, Sg) be a software process model. We say 
that s is correct with respect to g i f s  follows a valid 
topological sort traversal of the graph induced by g and the 
modules of s: 

SE TopSort(Graph(Modules(s), Sr, Sg)), 
where Modules(s) gives the set of modules introduced in s 
and Topsort@ gives the set of valid topological sort 
traversals over the graph f 0 

with values from S, ti[a] and tj[a]: 

are in Graph@, Sr, Sg)): 
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6. Conclusions presented here: model-oriented or algebraic 
specifications and object-oriented programming. 

We have presented a proposal to formulate software 
process models in the component programming 
framework. This proposal relies on the existence of a 
catalogue of tasks to build the components, to prototype 
them, to select the appropriate implementations for them 
and to store them and to retrieve them tolfrom libraries; 
this tasks present precedence relationships between them. 
Software process models are encapsulated into strategy 
modules, which consists of a set of rules (new precedences 
between tasks) and a set of groupings (tasks that must be 
considered as a whole). Finally, it has been formally 
introduced the notion of correctness of a software 
development with respect to a software process model, 
based in a graph representation of process models. 

There are many aspects of our work that have not been 
included in the paper. First, the notion of component 
redevelopment, which requires redefining slightly the 
definition of software system development. Also, we do 
not include the complete definition of correctness, taking 
into account functional and non-functional correctness. 
Last, we have not shown the decomposition of tasks into 
subtasks. Another interesting point is the use of the 
development sequence as a script to analyse the software 
process and, eventually, to replay it in the future [5, 141. 

We think that the most interesting points of our 
approach are the following ones: 

The process language consists of very few 
elements to make it ease to learn and use: a small 
catalogue of tasks with well-defined relationships, 
two mechanisms to relate tasks (rules and 
groupings) and a few additional constructions 
(quantification and predefined functions). 
Software process models may be defined 
incrementally, from the combination of small 
strategy modules, each one of them addressing to 
particular points of the model. We may say that 
our process model language falls into component 
programming at the process level and, so, the 
benefits in this field also apply to our proposal. 
A formal notion of correctness has been defined. 
We believe that correctness in the process level is 
as important as correctness in the product level. 
Our work aims at treating both levels uniformly. 
Non-functional requirements of software are taken 
into account during software development. This 
aspect has not been studied in detail here, but is a 
basic one in our project [4, 61: we believe that 
non-functionality is as important as functionality 
and this requires explicit treatment in the process 
model. 
Although the proposal has been presented for an 
ad hoc notation, it does not really depend on it; 
so, the proposal may be adapted for every 
(functional) specification and programming 
languages with similar characteristics to the ones 
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