210,311 research outputs found

    Development of a concurrent engineering tutorial as part of the “ESA_Lab@” initiative

    Get PDF
    As part of the “ESA_Lab@" initiative, a Concurrent Engineering facility has been constructed at the Mechanical Engineering department of Technical University Darmstadt. Concurrent Engineering is a well-proven concept for designing complex space systems and missions in the pre-phase 0/A mission phase. The Concurrent Engineering methodology and processes are enabled by a multidisciplinary team and specific infrastructure in terms of both hardware and software, which generate an effective and time efficient design management system. The university’s “Concurrent Engineering Lab” provides an environment for both researchers and students to explore and apply the Concurrent Engineering approach in areas such as (model-based) systems engineering, Industry 4.0/ Space 4.0, and space traffic management. Furthermore, collaboration with the European Space Operations Centre – also located in Darmstadt – regarding the application of Concurrent Engineering for Ground Segment & Operations has been started. The first addition to the university’s curriculum centered around the Concurrent Engineering Lab will be a “Concurrent Engineering Tutorial”, an opportunity to introduce the Concurrent Engineering methods and tools via hands-on experience to students of the newly established master’s degree program “Aerospace Engineering”. “Tutorials” are elective block courses of the degree program which offer practical learning experiences in many different fields, awarding 4 credit points upon successful completion. Building on the lectures "Fundamentals of Space Systems" and "Space Systems and Space Operations", the week-long “Concurrent Engineering Tutorial” will challenge students to use their acquired knowledge to develop a preliminary design for a predefined CubeSat mission. This Tutorial will not only provide a closer understanding of the individual subsystems of the space segment of a mission, the Concurrent Engineering process and the relevant software “COMET” by RHEA Group but will also create a synergy with a student association of the university, as one of their projects is the development of a CubeSat. This paper describes the background and approach to the development of the Tutorial, in particular the structure of the re-usable model architecture in “COMET”, which was specifically derived and implemented for this purpose and validated via a pilot stud

    Developing Engineering Learning Objects Online Portal with LabVIEW and an Open Source Web Content Management System

    Get PDF
    Learning objects (LOs) are independent chunks of knowledge normally used for instructional or learning purposes. LOs are normally reusable in the sense that they can be adopted and adapted for various learning and instructional scenarios. They are also tagged with metadata which includes descriptive information allowing them to be used and searched easily. LOs are sometimes metaphored as being a LEGO. Examples of LOs could contain multimedia content, instructional content, learning objectives, instructional software and software tools, and computer simulations. Many LOs are designed to be mediated online. In engineering education, computer simulations based learning objects could be the most beneficial for conveying hard engineering concepts for the engineering science learner. Computer simulations have been reported to facilitate conceptual understanding and leaving positive impact on students learning in numerous number of engineering education research articles. In the last two decades, many software packages have been developed for enhancing the engineering design and analysis process, examples are Matlab/Simulink, PSpice, LabVIEW, etc. These has been used consequently by academics for enhancing their students learning. LabVIEW is one of the most versatile computer software packages. It is used comprehensively in the industry as well as in academia. LabVIEW started as computer software interface of PC based data question equipments, however, it has grown much beyond that offering comprehensive toolkits and already implemented functions. Also it has great connectivity facilities with Matlab/Simulink, C++, and Visual Basic allowing communicating already developed codes in the latter with its core engine. The other important specification of LabVIEW is its embedded internet tools enabling publishing its programmed GUIs on the world wide web in easy and handy way. Web content management systems is the third generation of web publishing applications after HTML and web authoring software packages such as FrontPage and Dreamweaver. It is used to manage and control a large, dynamic collection of Web material (HTML documents and their associated images). A WCMS facilitates content creation, content control, editing, and many essential Web maintenance functions. In contrast with the web development tools such as HTML, FrontPage, Dreamweaver, etc., a CMS enables faster development, cost effectiveness, and online flexibility. The basic idea of any web content management system is that a non-technical person often needs to be able to keep their own website up-to-date without having to call on a web developer to make changes every time. Of course there are some things that can only be done by a web developer, but for simpler tasks such as changing the wording of a paragraph, it is an unnecessary burden and expense for both parties if you have to get a developer to make the changes. This paper provides an A to Z prescription of implementing a standardized Learning Objects online portal. This describing in detail a LabVIEW based Learning Object architecture, using a proper IEEE LOM metadata generation tool, and finally how on the top of that a Joomla web content management system can be used for developing the online portal

    A web-oriented framework for the development and deployment of academic facing administrative tools and services

    Get PDF
    The demand for higher education has increased dramatically in the last decade. At the same time, institutions have faced continual pressure to reduce costs and increase quality of education, while delivering that education to greater numbers of students. The introduction of software systems such as virtual learning environments, online learning resources and centralised student record systems has become routine in attempts to address these demands. However, these approaches suffer from a variety of limitations: They do not take all stakeholders’ needs into account. They do not seek to reduce administrative overheads in academic processes. They do not reflect institution-specific academic policies. They do not integrate readily with other information systems. They are not capable of adequately modelling the complex authorisation roles and organisational structure of a real institution. They are not well suited to rapidly changing policies and requirements. Their implementation is not informed by sound software engineering practises or data architecture design. Crucially, as a consequence of these drawbacks such systems can increase administrative workload for academic staff. This thesis describes the research, development and deployment of a system which seeks to address these limitations, the Module Management System (MMS). MMS is a collaborative web application targeted at streamlining and minimising administrative tasks. MMS encapsulates a number of user-facing tools for tasks including coursework submission and marking, tutorial attendance tracking, exam mark recording and final grade calculation. These tools are supported by a framework which acts as a form of “university operating system”. This framework provides a number of different services including an institution abstraction layer, role-based views and privileges, security policy support integration with external systems

    Adaptive development and maintenance of user-centric software systems

    Get PDF
    A software system cannot be developed without considering the various facets of its environment. Stakeholders – including the users that play a central role – have their needs, expectations, and perceptions of a system. Organisational and technical aspects of the environment are constantly changing. The ability to adapt a software system and its requirements to its environment throughout its full lifecycle is of paramount importance in a constantly changing environment. The continuous involvement of users is as important as the constant evaluation of the system and the observation of evolving environments. We present a methodology for adaptive software systems development and maintenance. We draw upon a diverse range of accepted methods including participatory design, software architecture, and evolutionary design. Our focus is on user-centred software systems

    Systematic development of courseware systems

    Get PDF
    Various difficulties have been reported in relation to the development of courseware systems. A central problem is to address the needs of not only the learner, but also instructor, developer, and other stakeholders, and to integrate these different needs. Another problem area is courseware architectures, to which much work has been dedicated recently. We present a systematic approach to courseware development – a methodology for courseware engineering – that addresses these problems. This methodology is rooted in the educational domain and is based on methods for software development in this context. We illustrate how this methodology can improve the quality of courseware systems and the development process

    Content-driven design and architecture of E-learning applications

    Get PDF
    E-learning applications combine content with learning technology systems to support the creation of content and its delivery to the learner. In the future, we can expect the distinction between learning content and its supporting infrastructure to become blurred. Content objects will interact with infrastructure services as independent objects. Our solution to the development of e-learning applications – content-driven design and architecture – is based on content-centric ontological modelling and development of architectures. Knowledge and modelling will play an important role in the development of content and architectures. Our approach integrates content with interaction (in technical and educational terms) and services (the principle organization for a system architecture), based on techniques from different fields, including software engineering, learning design, and knowledge engineering

    Deferred Action: Theoretical model of process architecture design for emergent business processes

    Get PDF
    E-Business modelling and ebusiness systems development assumes fixed company resources, structures, and business processes. Empirical and theoretical evidence suggests that company resources and structures are emergent rather than fixed. Planning business activity in emergent contexts requires flexible ebusiness models based on better management theories and models . This paper builds and proposes a theoretical model of ebusiness systems capable of catering for emergent factors that affect business processes. Drawing on development of theories of the ‘action and design’class the Theory of Deferred Action is invoked as the base theory for the theoretical model. A theoretical model of flexible process architecture is presented by identifying its core components and their relationships, and then illustrated with exemplar flexible process architectures capable of responding to emergent factors. Managerial implications of the model are considered and the model’s generic applicability is discussed

    Managing evolution and change in web-based teaching and learning environments

    Get PDF
    The state of the art in information technology and educational technologies is evolving constantly. Courses taught are subject to constant change from organisational and subject-specific reasons. Evolution and change affect educators and developers of computer-based teaching and learning environments alike – both often being unprepared to respond effectively. A large number of educational systems are designed and developed without change and evolution in mind. We will present our approach to the design and maintenance of these systems in rapidly evolving environments and illustrate the consequences of evolution and change for these systems and for the educators and developers responsible for their implementation and deployment. We discuss various factors of change, illustrated by a Web-based virtual course, with the objective of raising an awareness of this issue of evolution and change in computer-supported teaching and learning environments. This discussion leads towards the establishment of a development and management framework for teaching and learning systems

    Emerging cad and bim trends in the aec education: An analysis from students\u27 perspective

    Get PDF
    As the construction industry is moving towards collaborative design and construction practices globally, training the architecture, engineering, and construction (AEC) students professionally related to CAD and BIM became a necessity rather than an option. The advancement in the industry has led to collaborative modelling environments, such as building information modelling (BIM), as an alternative to computer-aided design (CAD) drafting. Educators have shown interest in integrating BIM into the AEC curriculum, where teaching CAD and BIM simultaneously became a challenge due to the differences of two systems. One of the major challenges was to find the appropriate teaching techniques, as educators were unaware of the AEC students’ learning path in CAD and BIM. In order to make sure students learn and benefit from both CAD and BIM, the learning path should be revealed from students’ perspective. This paper summarizes the background and differences of CAD and BIM education, and how the transition from CAD to BIM can be achieved for collaborative working practices. The analysis was performed on freshman and junior level courses to learn the perception of students about CAD and BIM education. A dual-track survey was used to collect responses from AEC students in four consecutive years. The results showed that students prefer BIM to CAD in terms of the friendliness of the user-interface, help functions, and self-detection of mistakes. The survey also revealed that most of the students believed in the need for a BIM specialty course with Construction Management (CM), Structure, and Mechanical-Electrical-Plumbing (MEP) areas. The benefits and challenges of both CAD and BIM-based software from students’ perspectives helps to improve the learning outcomes of CAD/BIM courses to better help students in their learning process, and works as a guideline for educators on how to design and teach CAD/BIM courses simultaneously by considering the learning process and perspectives of students. © 2018 The autho
    • …
    corecore