

Systematic Development of Courseware Systems

Claus Pahl
Dublin City University
School of Computing

Dublin 9, Ireland
cpahl@computing.dcu.ie

Abstract: Various difficulties have been reported in relation to the development of courseware
systems. A central problem is to address the needs of not only the learner, but also instructor,
developer, and other stakeholders, and to integrate these different needs. Another problem area is
courseware architectures, to which much work has been dedicated recently. We present a
systematic approach to courseware development – a methodology for courseware engineering –
that addresses these problems. This methodology is rooted in the educational domain and is based
on methods for software development in this context. We illustrate how this methodology can
improve the quality of courseware systems and the development process.

Introduction

The development of teaching and learning environments has always been a challenge. Learning itself is a
difficult subject, often not entirely understood. The needs of different groups of users, such as learners and
instructors, but also other stakeholders that play a role in administration and management, are often difficult to
determine and to integrate. The development of software systems for teaching and learning adds an additional
complexity. Educational technology on one hand and software technology on the other are very distinct. Our
objective here is to bring the educational domain and software development for courseware together.

Substantial progress in computing technology has boosted computer-supported teaching and learning. A

variety of courseware systems are widely and successfully used. This makes it now an appropriate time to
investigate a systematic way of their development deeply rooted in the educational context that will address the
problems that still remain in the area. Some effort has already been made in this direction. (Boyle, 2003) focuses on
the reusability of learning objects. (Pantano Rokou, Rokou & Rokos, 2004) address the aspect of pedagogical
modelling in this context. Our view is an architectural and behavioural one on courseware systems that complements
the other efforts. We understand these as systems composed of components that interact in order to support learning
processes. We present our methodology from a development perspective by identifying separate stages.

The integration of all groups involved in courseware development and their active participation throughout a

courseware lifecycle is paramount (Virvou & Tsiriga, 2001). In addition to a participative style of development, we
found in particular an openness and flexibility of the courseware architecture important. Participation and the
architectural design are, therefore, the cornerstones of our methodology, tailored towards the needs of educational
technology and courseware systems engineering. This methodology is rooted in the educational domain through an
information model, based on different facets of courseware systems.

Courseware Systems Facets

Courses are complete units of instruction. Courseware is software intended to train or instruct based on a

course. A courseware system is the combination of course content and courseware (IEEE LTSC, 2001). Courseware
systems development is a complex activity. It is more than instructional design; it involves learner and instructor,
but also the organisation offering a course and the developer providing necessary software technology. In order to
capture all aspects, we introduce a facet-based courseware description and classification model (Pahl, 2003). The
objective of this model is to provide a facetted description and classification scheme for courseware systems
reflecting the different perspectives and perceptions of different stakeholders.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DCU Online Research Access Service

https://core.ac.uk/display/11310959?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

• Content – the subject-oriented perspective. The learner works with the course content for a subject, which is,
however, created by the instructor.

• Format – the organisational perspective. The organisation determines aspects such as syllabus, stakeholders, or
aspects of the environment.

• Infrastructure – the technical perspective. Both organisation and developer are responsible for determining the
infrastructure technology.

• Pedagogy – the educational perspective. The instructor is the key factor in determining the pedagogy.

The facet model can serve several purposes: to classify existing courseware systems and to guide the

requirements organisation in a courseware development process. We can use the facet model to classify our case
study system – an undergraduate introduction to databases for a computing degree, called IDLE (Interactive
Database Learning Environment).
• Content. Content is represented using HTML and XML for text-based material and audio, flash animations, and

Java applet and servlet technology for active learning elements. The educational services that are offered are
lectures, tutorials, labs, and self-assessment. The system is mainly a delivery system; only a simple interface for
the XML-based course representation supports authoring.

• Format. Stakeholders in our system are the lecturer, software developers, the university, and students. The
syllabus focuses on an integration of theory and practice, i.e. database languages, mathematical theories, and
design methods. Standards of importance include XML-based educational markup, learning environment
architectures, and Web-related standards. Intellectual property rights – part of the legal environment – affect the
university (infrastructure) and the lecturer (content).

• Pedagogy. A number of educational activities including autonomous learning and active learning are supported.
These activities require the support of learning processes, interactivity among various system components, and
an integration of the courseware system with a database system for practical and project work. Since this is a
support environment for an on-campus course, only learner-content interaction is supported.

• Infrastructure. The system software comprises Web platform tools including multimedia plugins, a Java servlet
architecture, and a database system. We deploy a stand-alone server as the hardware platform.

This classification could be considered as example of an initial requirements specification for a courseware system.
To pursue this direction, the descriptions need to be detailed further.

Standardisation bodies in the area have introduced annotation and classification schemes. A detailed

description model is the Learning Object Metadata Standard LOM (IEEE LTSC, 2002). The purpose of LOM is to
support the management, location, evaluation, and development of learning objects – which covers a wider range of
activities and a wider range of objects than our courseware systems context. We use the facet model as a
classification tool and as part of our development methodology. LOM provides a categorisation of aspects similar to
our facets. The LOM categories ‘technical’ and ‘educational’ overlap with our ‘infrastructure’ and ‘pedagogy’
facets, respectively. Not all LOM aspects are needed in our context; on the other hand, some additional aspects are
needed to consider specific development aspects.

Courseware Systems Engineering

A Courseware Systems Engineering Methodology

Educational software is different from other software applications. It can be characterised by as user-centred

and interoperable with other systems and standards – which reflects the key characteristics based on our experience.
• User-centred systems. In traditional forms of software development, the client and potential users are contacted

at an early stage to elicit requirements. Often, however, very little contact remains until the final product is
available, resulting in products that do not match the actual needs of the users. In user-centred software systems,
there is now a recognised need for an ongoing participation of all user groups in the development process to
clarify and validate existing requirements and to capture emerging ones (Bødker, 2000).

• Interoperability. Often, a course consists of different components – such as authoring system, delivery system,
or evaluation system – that need to be integrated and work together. In most cases, a particular course will be
part of a larger unit such as an undergraduate degree programme. In this case, the integration into a common

platform or interoperability with a student administration system are critical. Consequently, a need for
interoperability and an open architecture arises (IEEE LTSC, 2001).

We introduce a development approach based on methods that cover different stages in the development process:
• Participative design is based on sociological principles and is an integral component in the field of human-

computer interaction (Bødker, 2000).
• Architectural design is a classical software engineering technique to support the development and management

of complex maintainable software systems (Bass, Clements & Kazman. 2003).
We propose an incremental process model that reflects the methodology requirements participative and open. The
objective behind the facet model is to provide a general framework that considers the needs of all stakeholders.
Usually, as a courseware development progresses, the focus shifts from mostly usage-oriented requirements to
technical details of the implementation of the software and hardware system. The development methodology is based
on languages and methods specific to the individual stages. Two languages are central – a scenario language and an
architecture language. The methods are participative and architectural design. We will later on discuss how the facet
model relates to the languages and methods.

Participatory Requirements Elicitation and Organisation

Participative design is a user-centred development approach, in particular suitable for software systems with a

high degree of user interaction and complex processes involving the users (Bødker, 2000). The focus is on usability
requirements. Central concepts of the approach are scenarios. Ideally, all stakeholders participate actively in the
development process. Besides scenarios as static requirements representations, executable prototypes of the software
system play an important role in the communication with the users. Software prototypes operationalise the scenario
definitions (Beynon-Davies & Holmes, 2002).

Scenarios are constructions meant to stage activities and to reflect on and illustrate problems with these

activities (Bødker, 2000). Scenarios abstract the user’s current and future goals and tasks; they serve to predict the
user’s actions in the system. Scenarios are rooted in specific situations from the domain under scrutiny. A scenario
serves as a medium of communication between users and developers. Alspaugh, Anton, Barnes and Mott (2001)
define a scenario as a linear sequence of events, with associated attributes describing these events. An event is an
association of an actor and an action. We refine this definition. We do not require a linear sequence. Instead, we
allow a richer set of combinators reflecting the interaction processes of typical user-centred software systems where
a user can choose between options, can repeat elements, or work on several elements at the same time. We also
expand the notion of events, calling it an activity. An activity shall here be comprised of an actor, an action, and the
object on which the action is carried out. This definition is an adaptation that serves to accommodate the complexity
of the educational domain, in particular learning processes. We define the following scenario language:
• A basic activity is described as a triple (actor, action, object) consisting of an actor (a stakeholder), an action

(part of the functionality of the system or an action affecting the system description or implementation itself),
and an object (for example content or software).

• Simple activities can be composed to complex ones using activity combinators. We suggest option and
repetition, which apply to a single activity, and choice, concurrency, and sequence, which can combine two or
more activities.

We can distinguish two basic types of scenarios. Direct scenarios describe activities of users (usually learner and
instructor) within the system. Indirect scenarios describe activities of stakeholders (usually administration and
development staff) in relation to the development and management of the system itself. Two examples from our
database courseware system IDLE shall illustrate scenarios. The first is a direct scenario describing a learning
activity – exercising database queries – in an iterative cycle of a sequence of basic activities:

repeatedly
 sequence of

 (student, selects, query exercise)
 (student, reads, query specification)
 (student, submits, query solution)
 (system, replies, query result)

The second is an indirect scenario describing the maintenance of a query exercise database:

repeatedly
 chooses between
 (educator, adds, query exercise)
 (educator, modifies, query exercise)

We have used scenarios as a communication medium in particular between instructor and developer (learners

were more involved using prototypes), but scenarios also constitute specifications of activities of all stakeholders
needed in the design and implementation process. The scenarios reflect the requirements and design issues of the
different stakeholders focussing on their activities. The structure of scenarios is related to the structure of the facet
model. Scenarios consist of activities based on subjects, actions, and objects. These objects are usually data objects
or services, i.e. content in facet terms. Actions and activities are often learning process and interaction descriptions,
i.e. pedagogic aspects represented in direct scenarios. Possible activity subjects are stakeholders (which are part of
the courseware environment); i.e. subjects relate to the format in facet terms. Scenarios are linked to the
implementation (the infrastructure facet) through prototypes (and an architecture mapping, as we will see later on).
It has, however, to be noted that scenarios are not a direct reflection of facets, but rather that scenarios are rooted in
the domain model described by the facets.

Architectural Design

Software architecture is a software engineering discipline that addresses the organisation of software systems

into composable software entities (Bass, Clements & Kazman, 2003). A software architecture consists of
components and connectors. Components are software units that provide a range of coherent services. In terms of the
LTSA standard (IEEE LTSC, 2001) our components comprise processes and stores. Connectors are entities that
represent connections and data flows between components. The main focus of software architecture design is the
separation of computation and communication, which supports the maintenance of software. Software architecture
bridges the gap between an initial concept of a system and low-level component implementation.

Scenarios can form the starting point for an architecture definition, supporting the transition from requirements

engineering into the architectural design stage through a scenario-architecture mapping:
• Scenarios can be categorised according to their interactions with others. This might indicate implementation

through the same component based on similar features addressed in the scenarios.
• Based on the scenario categorisation, the next task is to find an architectural style that structures component

features and interactions. We suggest the LTSA as the basic architectural style – see Fig. 1.
• Required basic infrastructure services constrain the underlying platform and some aspects of the architecture:

coordination of system activities, how data moves through the system, or integration of new components.
Targeting the Web as the implementation platform is such a constraint.

• The next stage following the design is the operationalisation of components and connectors. Calling
conventions, codings, and protocols need to be addressed through explicit bindings to software encodings such
as APIs, data formats, and communications mechanisms, respectively (IEEE LTSC, 2001).

Figure 1. Learning Technology Systems Architecture LTSA.

The main elements of an architectural design are the components, their connections, and the component

interaction processes. We illustrate these elements using our case study system IDLE.

Learning
Resources

Learner
Records

Coach

Learner
Entity

Delivery Evaluation

Multimedia Behaviour

Interaction Context
Learning
Preferences

Learner Info

Learner
Info

Catalog
Info

Query

Learning
Content

Locator
Locator

Asse
ssm

ent

• Components. The IDLE architecture consists of three subsystems: authoring, delivery, and evaluation. Within
the subsystems, we identified component clusters; for instance, the component clusters in the delivery
subsystem are the learner entity (through a user interface), the central delivery server itself, and the learning
resources database – which implements the classical three-tiered architecture pattern for Web-based systems.

• Connections. Components are connected to each other in order to enable interactions. A connection enables the
activation of a service at the other component and the flow of data between them. The component connections
between the clusters in the delivery subsystems are presented in Fig. 2.

• Interaction Processes. Component interactions usually follow given protocols, for example for the SQL tutor,
repeated interactions of the learner at the GUI with content in the resources database will take place. This type
of interaction is an implementation of the learning process supported by the system.

We have choosen LTSA as the architectural reference model, which we have used here as a design tool. If
interoperability of the executable system is required, other standards such as SCORM RTE (Runtime Environment),
see (ADL, 2004), and other SCORM standards such as SN (Sequencing and Navigation) also have to be considered.

A scenario-architecture mapping is presented in Fig. 2. It describes the mapping of the SQL tutor scenario
with the corresponding prototype onto the clusters of the delivery subsystem.

Figure 2. Scenario-architecture mapping.

Architecture descriptions are also rooted in the facet model. Data flow between components and services
relates to the content facet. Component interaction patterns and services relate to pedagogy. External components
and meta-level aspects relate to the format. The architecture platform is related to the infrastructure facet.

Discussion

Educational technology for computer-supported environments has reached a basic level of maturity – core

principles and concepts are agreed upon. A wide range of courseware systems has been developed, based on
educational technology principles and approaches. A methodology for courseware engineering can capture existing
experience and to integrate further developments into this framework.
• The development of complex systems requires planning and a systematic approach. A methodology provides

the languages, techniques, and methods needed to maximise the quality and to minimise the risk of problems
typical for a domain. In our case, the lack of a systematic approach has caused difficulties in past.

• Specific aspects of the educational domain – e.g. usability and interoperability – require targeted solutions. We
have integrated different aspect-specific methods such as participative development and software architecture.

• Using this methodology has been beneficial for the systems we have developed and has led to improved,
effective system development processes.

The methodology – here illustrated for the IDLE system – has also been beneficial in the development of other
systems that we have been involved in, including an adult literacy course, a synchronous learning platform for

SQL-TUTOR

 Scenario

SQL-TUTOR

 Scenario

 SQL-TUTOR

 Prototype

LEARNER ENTITY
(Web Interface)

 Process Component

DELIVERY
(Java Servlet)

Process Component

LEARNING RESOURCES
(Database)

 Store Component

Content
FACETContent

FACET

Pedagogy
FACETPedagogy

FACET

Format
FACETFormat

FACET

Infrastructure
FACETInfrastructure

FACET

distance education, and a courseware generation tool. Usability has been a key requirement for all systems; the
second and third system are instructor-focussed. Interoperability and integration with other systems has been an
important aspect for the second and third system, whose integration into IDLE is important. A methodology aims to
improve the quality of a product and to reduce the risks involved in the development and management process. A
methodology for courseware development and management needs to address the central features of the educational
context. Let us note two observations reflecting the experience we, and others, have made. Firstly, usability is a
unanimously agreed requirement of courseware systems and, secondly, the architecture is an aspect that has
attracted some attention (IEEE LTSC, 2001; Sampson, Karagiannidis & Cardinali, 2002).

A lesson that we have learned is that courseware systems development is not an isolated activitiy – there is

usually a strategic dimension. Embedded into an educational, technical, and organisational context, courseware
systems nowadays need to be engineered to meet the requirements of their environment. Engineering means to
address the needs of all stakeholders, it means to consider a system’s environment and the interactions and
dependencies between the system and its environment. The educational, organisational, and technical environments
and the variety of evolving roles, including learner, instructors, instructional designer, software developer, and
administrators, form this specific context. Our conclusion is that only a methodology for courseware development
can help us to address in particular context-specific problems that we and others have encountered in the past and
that prepares us for the problems that we anticipate for the future.

References

ADLNet. (2004). SCORM Standards. http://www.adlnet.org.

Alspaugh, T.A., Anton, A.I., Barnes, T., & Mott, B.W. (2001). An Integrated Scenario Management Strategy. In Proc. IEEE
International Symposium on Requirements Engineering, 142-149. IEEE Press.

Bass, L., Clements, P., & Kazman, R. (2003). Software Architecture in Practice. Addison-Wesley.

Beynon-Davies, P., & Holmes, S. (2002). Design breakdown, scenarios, and rapid application development. Information and
Software Technology, 44:579–592.

Bødker, S. (2000). Scenarios in user-centred design – setting the stage for reflection and action. Interacting with Computers
13(1): 61-75.

Boyle, T. (2003) Designing principles for authoring dynamic, reusable learning objects. Austral. Jrnl of Educ Tech 19(1): 46-58.

IEEE Learning Technology Standards Committee LTSC (2001). IEEE P1484.1/D8. Draft Standard for Learning Technology –
Learning Technology Systems Architecture (LTSA), 04/06/2001. IEEE Computer Society.

IEEE Learning Technology Standards Committee LTSC (2002). IEEE P1484.12/D4.0 Draft Standard for Learning Object
Metadata (LOM). IEEE Computer Society.

Pahl, C. (2002). An Evaluation of Scaffolding for Virtual Interactive Tutorials. Proc. 7th E-Learn 2002 Conference, AACE.

Pahl, C. (2003). Managing evolution and change in web-based teaching and learning environments. Computers & Education
40(1):99-114.

Pantano Rokou, F., Rokou, E., & Rokos, Y. (2004). Modeling Web-based Educational Systems: Process Design Teaching Model.
Educational Technology & Society 7(10):42-50.

Sampson, D., Karagiannidis, C., & Cardinali, F. (2002). An Architecture for Web-based e-Learning Promoting Re-usable
Adaptive Educational e-Content. Educational Technology & Society 5(2).

Xu, L., Pahl, C., & Donnellan, D. (2003). An evaluation Technique for Content Interaction in Web-based Teaching and Learning
Environments. In Proceedings International Conference on Advanced Learning Technologies ICALT 2003. IEEE Press.

Virvou, M., & Tsiriga, V. (2001). An object-oriented software life cycle of an intelligent tutoring system. Journal of Computer
Assisted Learning, 17, 200-205.

