20 research outputs found

    Strategies for including cloud-computing into an engineering modeling workflow

    Get PDF
    With the advent of cloud computing, high-end computing, networking, and storage resources are available on-demand at a relatively low price point. Internet applications in the consumer and increasingly in the enterprise space are making use of these resources to upgrade existing applications and build new ones. This is made possible by building decentralized applications that can be integrated with one another through web-enabled application programming interfaces (APIs). However, in the fields of engineering and computational science, cloud computing resources have been utilized primarily to augment existing high-performance computing hardware, but engineering model integrations still occur by the use of software libraries. In this research, a novel approach is proposed where engineering models are constructed as independent services that publish web-enabled APIs. To enable this, the engineering models are built as stateless microservices that solve a single computational problem. Composite services are then built utilizing these independent component models, much like in the consumer application space. Interactions between component models is orchestrated by a federation management system. This proposed approach is then demonstrated by disaggregating an existing monolithic model for a cookstove into a set of component models. The component models are then reintegrated and compared with the original model for computational accuracy and run-time. Additionally, a novel engineering workflow is proposed that reuses computational data by constructing reduced-order models (ROMs). This framework is evaluated empirically for a number of producers and consumers of engineering models based on computation and data synchronization aspects. The framework is also evaluated by simulating an engineering design workflow with multiple producers and consumers at various stages during the design process. Finally, concepts from the federated system of models and ROMs are combined to propose the concept of a hybrid model (information artefact). The hybrid model is a web-enabled microservice that encapsulates information from multiple engineering models at varying fidelities, and responds to queries based on the best available information. Rules for the construction of hybrid models have been proposed and evaluated in the context of engineering workflows

    Objectively Defining Scenario Complexity: Towards Automated, Adaptive Scenario-Based Training

    Get PDF
    Effective Scenario-Based Training (SBT) is sequenced in an efficient trajectory from novice to mastery and is well-grounded in pedagogically sound instructional strategies and learning theory. Adaptive, automated SBT attempts to sequence scenarios according to the performance of the student and implement the sequence without human agency. The source of these scenarios may take the form of a matrix constructed by Instructional Systems Designers (ISD), software engineers or trainers. The domain being instructed may contain procedures or concepts that are easily differentiated thus allowing quick and accurate determination of difficulty. In this instance, the sequencing of the SBT is relatively simple. However, in complex, domain-integrated instructional environments accurate and efficient sequencing may be extremely difficult as ISD, software engineers and trainers, without an objective means to calculate a scenario*s complexity must rely on subjectivity. In the Military, where time, fiscal and manpower constraints may lead to ineffective, inefficient and, perhaps, negative training SBT is a growing alternative to live training due to the significant cost avoidance demonstrated by such systems as the United States Marine Corps* (USMC) Abrams Main Battle Tank (M1A1) Advanced Gunnery Training System (AGTS). Even as the practice of simulation training grows, leadership such as the Government Accountability Office asserts that little has been done to demonstrate simulator impact on trainee proficiency. The M1A1 AGTS instructional sub system, the Improved Crew Training Program (ICTP), employs an automated matrix intended to increase Tank Commander (TC) and Gunner (GNR) team proficiency. This matrix is intended to guide the team along a trajectory of ever-increasing scenario difficulty. However, as designed, the sequencing of the matrix is based on subjective evaluation of difficulty, not on empirical or objective calculations of complexity. Without effective, automated SBT that adapts to the performance of the trainee, gaps in combat readiness and fiscal responsibility could grow large. In 2010, the author developed an algorithm intended to computationally define scenario complexity (Dunne, Schatz, Fiore, Martin & Nicholson, 2010) and conducted a proof of concept study to determine the algorithm*s effectiveness (Dunne, Schatz, Fiore, Nicholson & Fowlkes, 2010). Based on results of that study, and follow-on analysis, revisions were made to that Scenario Complexity (SC) algorithm. The purpose of this research was to examine the efficacy of the revised SC algorithm to enable Educators and Trainers, ISDs, and software engineers to objectively and computationally define SC. The research process included a period of instruction for Subject Matter Experts (SME) to receive instruction on how to identify the base variables that comprise SC. Using this knowledge SMEs then determined the values of the scenarios base variables. Once calculated, these values were ranked and compared to the ICTP matrix sequence. Results indicate that the SMEs were very consistent in their ratings of the items across scenario base variables. Due to the highly proceduralized process underlying advanced gunnery skills, this high degree of agreement was expected. However, the significant lack of correlation to the matrix sequencing is alarming and while a recent study has shown the AGTS to increase TC and GNR team proficiency (PM TRASYS, 2014a), this research*s findings suggests that redesign of the ICTP matrix is in order

    Aesthetic choices: Defining the range of aesthetic views in interactive digital media including games and 3D virtual environments (3D VEs)

    Get PDF
    Defining aesthetic choices for interactive digital media such as games is a challenging task. Objective and subjective factors such as colour, symmetry, order and complexity, and statistical features among others play an important role for defining the aesthetic properties of interactive digital artifacts. Computational approaches developed in this regard also consider objective factors such as statistical image features for the assessment of aesthetic qualities. However, aesthetics for interactive digital media, such as games, requires more nuanced consideration than simple objective and subjective factors, for choosing a range of aesthetic features. From the study it was found that the there is no one single optimum position or viewpoint with a corresponding relationship to the aesthetic considerations that influence interactive digital media. Instead, the incorporation of aesthetic features demonstrates the need to consider each component within interactive digital media as part of a range of possible features, and therefore within a range of possible camera positions. A framework, named as PCAWF, emphasized that combination of features and factors demonstrated the need to define a range of aesthetic viewpoints. This is important for improved user experience. From the framework it has been found that factors including the storyline, user state, gameplay, and application type are critical to defining the reasons associated with making aesthetic choices. The selection of a range of aesthetic features and characteristics is influenced by four main factors and sub-factors associated with the main factors. This study informs the future of interactive digital media interaction by providing clarity and reasoning behind the aesthetic decision-making inclusions that are integrated into automatically generated vision by providing a framework for choosing a range of aesthetic viewpoints in a 3D virtual environment of a game. The study identifies critical juxtapositions between photographic and cinema-based media aesthetics by incorporating qualitative rationales from experts within the interactive digital media field. This research will change the way Artificial Intelligence (AI) generated interactive digital media in the way that it chooses visual outputs in terms of camera positions, field-view, orientation, contextual considerations, and user experiences. It will impact across all automated systems to ensure that human-values, rich variations, and extensive complexity are integrated in the AI-dominated development and design of future interactive digital media production

    Hitching a ride towards sustainability: how sustainability is working its way into mainstream local government. A study in film/digital media

    Get PDF
    This is an action research study utilising digitality to question its capacity to narrate history and sustainability. Research output is in the form of an online Creative Production depicting Fremantle, led by its Mayor, on an unfolding journey towards sustainability over four years. This is accompanied by a commentary/exegesis. Since the mode of my theorising is through media representation, I necessarily have to foreground myself, which I have done through the role of ‘hitchhiker’

    Development and application of a framework for model structure evaluation in environmental modelling

    Get PDF
    In a fast developing world with an ever rising population, the pressures on our natural environment are continuously increasing, causing problems such as floods, water- and air pollution, droughts,... Insight in the driving mechanisms causing these threats is essential in order to properly mitigate these problems. During the last decades, mathematical models became an essential part of scientific research to better understand and predict natural phenomena. Notwithstanding the diversity of currently existing models and modelling frameworks, the identification of the most appropriate model structure for a given problem remains a research challenge. The latter is the main focus of this dissertation, which aims to improve current practices of model structure comparison and evaluation. This is done by making individual model decisions more transparent and explicitly testable. A diagnostic framework, focusing on a flexible and open model structure definition and specifying the requirements for future model developments, is described. Methods for model structure evaluation are documented, implemented, extended and applied on both respirometric and hydrological models. For the specific case of lumped hydrological models, the unity between apparently different models is illustrated. A schematic representation of these model structures provides a more transparent communication tool, while meeting the requirements of the diagnostic approach

    Risk management strategies and decision support tools for dryland farmers in southwest Queensland, Australia

    Get PDF
    corecore