8,940 research outputs found

    Surface profile prediction and analysis applied to turning process

    Get PDF
    An approach for the prediction of surface profile in turning process using Radial Basis Function (RBF) neural networks is presented. The input parameters of the RBF networks are cutting speed, depth of cut and feed rate. The output parameters are Fast Fourier Transform (FFT) vector of surface profile for the prediction of surface profile. The RBF networks are trained with adaptive optimal training parameters related to cutting parameters and predict surface profile using the corresponding optimal network topology for each new cutting condition. A very good performance of surface profile prediction, in terms of agreement with experimental data, was achieved with high accuracy, low cost and high speed. It is found that the RBF networks have the advantage over Back Propagation (BP) neural networks. Furthermore, a new group of training and testing data were also used to analyse the influence of tool wear and chip formation on prediction accuracy using RBF neural networks

    Automatic programming methodologies for electronic hardware fault monitoring

    Get PDF
    This paper presents three variants of Genetic Programming (GP) approaches for intelligent online performance monitoring of electronic circuits and systems. Reliability modeling of electronic circuits can be best performed by the Stressor - susceptibility interaction model. A circuit or a system is considered to be failed once the stressor has exceeded the susceptibility limits. For on-line prediction, validated stressor vectors may be obtained by direct measurements or sensors, which after pre-processing and standardization are fed into the GP models. Empirical results are compared with artificial neural networks trained using backpropagation algorithm and classification and regression trees. The performance of the proposed method is evaluated by comparing the experiment results with the actual failure model values. The developed model reveals that GP could play an important role for future fault monitoring systems.This research was supported by the International Joint Research Grant of the IITA (Institute of Information Technology Assessment) foreign professor invitation program of the MIC (Ministry of Information and Communication), Korea

    Medical imaging analysis with artificial neural networks

    Get PDF
    Given that neural networks have been widely reported in the research community of medical imaging, we provide a focused literature survey on recent neural network developments in computer-aided diagnosis, medical image segmentation and edge detection towards visual content analysis, and medical image registration for its pre-processing and post-processing, with the aims of increasing awareness of how neural networks can be applied to these areas and to provide a foundation for further research and practical development. Representative techniques and algorithms are explained in detail to provide inspiring examples illustrating: (i) how a known neural network with fixed structure and training procedure could be applied to resolve a medical imaging problem; (ii) how medical images could be analysed, processed, and characterised by neural networks; and (iii) how neural networks could be expanded further to resolve problems relevant to medical imaging. In the concluding section, a highlight of comparisons among many neural network applications is included to provide a global view on computational intelligence with neural networks in medical imaging

    Review of Neural Network Algorithms

    Get PDF
    The artificial neural network is the core tool of machine learning to realize intelligence. It has shown its advantages in the fields of sound, image, sound, picture, and so on. Since entering the 21st century, the progress of science and technology and people\u27s pursuit of artificial intelligence have introduced the research of artificial neural networks into an upsurge. Firstly, this paper introduces the application background and development process of the artificial neural network in order to clarify the research context of neural networks. Five branches and related applications of single-layer perceptron, linear neural network, BP neural network, Hopfield neural network, and depth neural network are analyzed in detail. The analysis shows that the development trend of the artificial neural network is developing towards a more general, flexible, and intelligent direction. Finally, the future development of the artificial neural network in training mode, learning mode, function expansion, and technology combination has prospected

    Parameter identification of a mechanical ductile damage using Artificial Neural Networks in sheet metal forming.

    Get PDF
    In this paper, we report on the developed and used of finite element methods, have been developed and used for sheet forming simulations since the 1970s, and have immensely contributed to ensure the success of concurrent design in the manufacturing process of sheets metal. During the forming operation, the Gurson–Tvergaard–Needleman (GTN) model was often employed to evaluate the ductile damage and fracture phenomena. GTN represents one of the most widely used ductile damage model. In this investigation, many experimental tests and finite element model computation are performed to predict the damage evolution in notched tensile specimen of sheet metal using the GTN model. The parameters in the GTN model are calibrated using an Artificial Neural Networks system and the results of the tensile test. In the experimental part, we used an optical measurement instruments in two phases: firstly during the tensile test, a digital image correlation method is applied to determinate the full-field displacements in the specimen surface. Secondly a profile projector is employed to evaluate the localization of deformation (formation of shear band) just before the specimen’s fracture. In the validation parts of this investigation, the experimental results of hydroforming part and Erichsen test are compared with their numerical finite element model taking into account the GTN model. A good correlation was observed between the two approaches

    Crack detection in a rotating shaft using artificial neural networks and PSD characterisation

    Get PDF
    Peer reviewedPostprin

    An Extended Review on Fabric Defects and Its Detection Techniques

    Get PDF
    In Textile Industry, Quality of the Fabric is the main important factor. At the initial stage, it is very essential to identify and avoid the fabrics faults/defects and hence human perception consumes lot of time and cost to reveal the fabrics faults. Now-a-days Automated Inspection Systems are very useful to decrease the fault prediction time and gives best visualizing clarity- based on computer vision and image processing techniques. This paper made an extended review about the quality parameters in the fiber-to-fabric process, fabrics defects detection terminologies applied on major three clusters of fabric defects knitting, woven and sewing fabric defects. And this paper also explains about the statistical performance measures which are used to analyze the defect detection process. Also, comparison among the methods proposed in the field of fabric defect detection

    Review on Machine Learning-based Defect Detection of Shield Tunnel Lining

    Get PDF
    At present, machine learning methods are widely used in various industries for their high adaptability, optimization function, and self-learning reserve function. Besides, the world-famous cities have almost built and formed subway networks that promote economic development. This paper presents the art states of Defect detection of Shield Tunnel lining based on Machine learning (DSTM). In addition, the processing method of image data from the shield tunnel is being explored to adapt to its complex environment. Comparison and analysis are used to show the performance of the algorithms in terms of the effects of data set establishment, algorithm selection, and detection devices. Based on the analysis results, Convolutional Neural Network methods show high recognition accuracy and better adaptability to the complexity of the environment in the shield tunnel compared to traditional machine learning methods. The Support Vector Machine algorithms show high recognition performance only for small data sets. To improve detection models and increase detection accuracy, measures such as optimizing features, fusing algorithms, creating a high-quality data set, increasing the sample size, and using devices with high detection accuracy can be recommended. Finally, we analyze the challenges in the field of coupling DSTM, meanwhile, the possible development direction of DSTM is prospected

    Enhancing Automation with Label Defect Detection and Content Parsing Algorithms

    Get PDF
    The stable operation of power transmission and distribution is closely related to the overall performance and construction quality of circuit breakers. Focusing on circuit breakers as the research subject, we propose a machine vision method for automated defect detection, which can be applied in intelligent robots to improve detection efficiency, reduce costs, and address the issues related to performance and assembly quality. Based on the LeNet-5 convolutional neural network, a method for the detection of character defects on labels is proposed. This method is then combined with squeezing and excitation networks to achieve more precise classification with a feature graph mechanism. The experimental results show the accuracy of the LeNet-CB model can reach up to 99.75%, while the average time for single character detection is 17.9 milliseconds. Although the LeNet-SE model demonstrates certain limitations in handling some easily confused characters, it maintains an average accuracy of 98.95%. Through further optimization, a label content detection method based on the LSTM framework is constructed, with an average accuracy of 99.57%, and an average detection time of 84 milliseconds. Overall, the system meets the detection accuracy requirements and delivers a rapid response. making the results of this research a meaningful contribution to the practical foundation for ongoing improvements in robot intelligence and machine vision
    corecore