708 research outputs found

    A secure over-the-air programming scheme in wireless sensor networks

    Get PDF
    Over-The-Air dissemination of code updates in Wireless Sensor Networks (WSNs) have been researchers’ point of interest in past a few years and more importantly security challenges toward remote propagation of code update have taken the majority of efforts in this context. Many security models have been proposed to establish a balance between the energy consumption and security strengthen with having their concentration on constraint nature of WSN nodes. For authentication purposes most of them have used Merkle-Hash-Tree to avoid using multiple public cryptography operations. These models mostly have assumed an environment in which security has to be in a standard level and therefore they have not investigated the tree structure for mission-critical situations in which security has to be in maximum possible extent (e.g. military zones). Two major problems have been identified in Merkle Tree structure which is used in Seluge scheme, including: 1) an exponential growth in number of overhead packets when block size of hash algorithm used in design is increased. 2) Limitation of using hash algorithms with larger block size of 11 bytes when payload size is set to 72 bytes. Then several existing security models are investigated for possible vulnerabilities and a set of countermeasures correspondingly named Security Model Requirements (SMR) is provided. After concentrating on Seluge’s design, a new secure Over-The-Air Programming (OTAP) scheme named Seluge++ is proposed that complies with SMR and replaces the use of inefficient Merkle Tree with a novel method

    ENSURING SPECIFICATION COMPLIANCE, ROBUSTNESS, AND SECURITY OF WIRELESS NETWORK PROTOCOLS

    Get PDF
    Several newly emerged wireless technologies (e.g., Internet-of-Things, Bluetooth, NFC)—extensively backed by the tech industry—are being widely adopted and have resulted in a proliferation of diverse smart appliances and gadgets (e.g., smart thermostat, wearables, smartphones), which has ensuingly shaped our modern digital life. These technologies include several communication protocols that usually have stringent requirements stated in their specifications. Failing to comply with such requirements can result in incorrect behaviors, interoperability issues, or even security vulnerabilities. Moreover, lack of robustness of the protocol implementation to malicious attacks—exploiting subtle vulnerabilities in the implementation—mounted by the compromised nodes in an adversarial environment can limit the practical utility of the implementation by impairing the performance of the protocol and can even have detrimental effects on the availability of the network. Even having a compliant and robust implementation alone may not suffice in many cases because these technologies often expose new attack surfaces as well as new propagation vectors, which can be exploited by unprecedented malware and can quickly lead to an epidemic

    Solutions and Tools for Secure Communication in Wireless Sensor Networks

    Get PDF
    Secure communication is considered a vital requirement in Wireless Sensor Network (WSN) applications. Such a requirement embraces different aspects, including confidentiality, integrity and authenticity of exchanged information, proper management of security material, and effective prevention and reaction against security threats and attacks. However, WSNs are mainly composed of resource-constrained devices. That is, network nodes feature reduced capabilities, especially in terms of memory storage, computing power, transmission rate, and energy availability. As a consequence, assuring secure communication in WSNs results to be more difficult than in other kinds of network. In fact, trading effectiveness of adopted solutions with their efficiency becomes far more important. In addition, specific device classes or technologies may require to design ad hoc security solutions. Also, it is necessary to efficiently manage security material, and dynamically cope with changes of security requirements. Finally, security threats and countermeasures have to be carefully considered since from the network design phase. This Ph.D. dissertion considers secure communication in WSNs, and provides the following contributions. First, we provide a performance evaluation of IEEE 802.15.4 security services. Then, we focus on the ZigBee technology and its security services, and propose possible solutions to some deficiencies and inefficiencies. Second, we present HISS, a highly scalable and efficient key management scheme, able to contrast collusion attacks while displaying a graceful degradation of performance. Third, we present STaR, a software component for WSNs that secures multiple traffic flows at the same time. It is transparent to the application, and provides runtime reconfigurability, thus coping with dynamic changes of security requirements. Finally, we describe ASF, our attack simulation framework for WSNs. Such a tool helps network designers to quantitatively evaluate effects of security attacks, produce an attack ranking based on their severity, and thus select the most appropriate countermeasures

    Frequency Rendezvous and Physical Layer Network Coding for Distributed Wireless Networks

    Get PDF
    In this thesis, a transmission frequency rendezvous approach for secondary users deployed in decentralized dynamic spectrum access networks is proposed. Frequency rendezvous is a critical step in bootstrapping a wireless network that does not possess centralized control. Current techniques for enabling frequency rendezvous in decentralized dynamic spectrum access networks either require pre-existing infrastructure or use one of several simplifying assumptions regarding the architecture, such as the use of regularly spaced frequency channels for communications. Our proposed approach is designed to be operated in a strictly decentralized wireless networking environment, where no centralized control is present and the spectrum does not possess pre-defined channels. In our proposed rendezvous algorithm, the most important step is pilot tone detection and receiver query. In order to realize a shortest search time for the target receiver, an efficient scanning rule should be employed. In this thesis, three scanning rules are proposed and evaluated, namely: frequency sequence scanning, pilot tone strength scanning, and cluster scanning. To validate our result, we test our scanning rules with actual paging band spectrum measurements. Previous research on security of network coding focuses on the protection of data dissemination procedures and the detection of malicious activities such as pollusion attacks. The capabilities of network coding to detect other attacks has not been fully explored. In this thesis, a new mechanism based on physical layer network coding to detect wormhole attacks is proposed. When two signal sequences collide at the receiver, the difference between the two received sequences is determined by its distances to the senders. Therefore, by comparing the differences between the received sequences at two nodes, we can estimate the distance between them and detect those fake neighbor connections through wormholes. While the basic idea is clear, we design many schemes at both physical and network layers to turn the idea into a practical approach. Simulations using BPSK modulation at the physical layer show that the wireless nodes can effectively detect fake neighbor connections without the adoption of any special hardware on them
    • …
    corecore