
Purdue University
Purdue e-Pubs

Open Access Dissertations Theses and Dissertations

January 2015

ENSURING SPECIFICATION COMPLIANCE,
ROBUSTNESS, AND SECURITY OF
WIRELESS NETWORK PROTOCOLS
Md Endadul Hoque
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/open_access_dissertations

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Recommended Citation
Hoque, Md Endadul, "ENSURING SPECIFICATION COMPLIANCE, ROBUSTNESS, AND SECURITY OF WIRELESS
NETWORK PROTOCOLS" (2015). Open Access Dissertations. 1303.
https://docs.lib.purdue.edu/open_access_dissertations/1303

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/220146029?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F1303&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F1303&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/etd?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F1303&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F1303&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations/1303?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F1303&utm_medium=PDF&utm_campaign=PDFCoverPages

Graduate School Form 30
Updated 1/15/2015

PURDUE UNIVERSITY
GRADUATE SCHOOL

Thesis/Dissertation Acceptance

This is to certify that the thesis/dissertation prepared

By

Entitled

For the degree of

Is approved by the final examining committee:

To the best of my knowledge and as understood by the student in the Thesis/Dissertation
Agreement, Publication Delay, and Certification Disclaimer (Graduate School Form 32),
this thesis/dissertation adheres to the provisions of Purdue University’s “Policy of
Integrity in Research” and the use of copyright material.

Approved by Major Professor(s):

Approved by:

 Head of the Departmental Graduate Program Date

MD ENDADUL HOQUE

ENSURING SPECIFICATION COMPLIANCE, ROBUSTNESS, AND SECURITY OF WIRELESS NETWORK
PROTOCOLS

Doctor of Philosophy

CRISTINA NITA-ROTARU
Co-chair

SONIA FAHMY
 Co-chair

NINGHUI LI

 DONGYAN XU

CRISTINA NITA-ROTARU / SONIA FAHMY

Sunil Prabhakar / William J Gorman 11/30/2015

ENSURING SPECIFICATION COMPLIANCE, ROBUSTNESS, AND SECURITY

OF WIRELESS NETWORK PROTOCOLS

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Md. Endadul Hoque

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

December 2015

Purdue University

West Lafayette, Indiana

ii

In dedication to my mom, my wife, and my daughter

iii

ACKNOWLEDGMENTS

I would like to take this opportunity to express my deepest gratitude to a number

of people without whom this dissertation would not have been possible.

To begin with, I want to express my biggest thanks to my advisor, Prof. Cristina

Nita-Rotaru, for her in-depth guidance, insightful critiques, and never-ending en-

couragement to pushing the envelope during my PhD years at Purdue. She not only

provided necessary support during the whole span of this research work, but also gave

me thoughtful comments and suggestions, which were instrumental in my research. I

am sure the skill-set that I learned from her would help me in my future career.

I also want to express my deepest thanks to Prof. Sonia Fahmy, Prof. Ninghui Li,

and Prof. Dongyan Xu for serving on my advisory committee and for advising me with

their insightful and constructive feedbacks on my thesis proposal which have helped

me a great deal in completing this dissertation. A special thanks to Prof. Fahmy

for helping me in a critical time and for agreeing to be a co-chair of my advisory

committee.

I am thankful to Dr. Rahul Potharaju, an extremely dear friend whose consistent

moral support and positivity kept me going through the grayest days of my life at

Purdue. I thank him for being the power-house of inspirations during my PhD days

and definitely for years to come. I am also thankful to Dr. Omar Haider Chowdhury,

a dear friend who I always admire for his never-ending enthusiasm, continuous mo-

tivation, and critical guidance in my research. I thank him for believing in me and

supporting me, when I needed it the most. I am greatly indebted to both of them for

teaching me humility, grace, and above all, believing in myself.

I would like to thank Dr. Hyojeong Lee, a friendly lab mate and an excellent

collaborator, for being a great source of motivation and for helping me in my research.

iv

Another friend that requires special mention is Sze Yiu Chau for his great support

and for all the intellectual debates we had during my final year at Purdue.

On a personal note, my immense gratitude goes to my parents for being supportive

of my education all along the way. I am thankful to my in-laws for their support and

encouragement throughout. A special thanks from the bottom of my heart goes to

my wife, Dr. Farzana Rahman. This dissertation is largely due to her never-ending

stream of support, encouragement, patience, and companionship through the difficult

times of my PhD years. I am grateful to her for being by my side through my ups

and downs, for spending countless hours to listen to my research problems, and for

having undoubted belief in me even when I have doubts on my abilities. My daughter,

Rinisha Rahman Hoque, requires a special mention because she has not only made

us complete but also given me extra motivation—through her cute smiles—to go the

extra miles to finish my PhD.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . viii

LIST OF FIGURES . ix

ABBREVIATIONS . xi

ABSTRACT . xii

1 INTRODUCTION . 1
1.1 Focus and Motivation . 2
1.2 Thesis Contributions . 6
1.3 Thesis Organization . 7

2 COMPLIANCE CHECKING OF NETWORK PROTOCOL IMPLEMEN-
TATIONS . 8
2.1 Background . 12
2.2 Chiron Design . 16

2.2.1 Problem Definition and High Level Approach 17
2.2.2 Assumptions and Scope . 18
2.2.3 Design Overview . 19
2.2.4 FSM Extraction Algorithm 21
2.2.5 FSM Translation, Property Extraction and Verification . . . 24
2.2.6 Spurious CEX Checking . 24
2.2.7 Replaying CEX . 25

2.3 Implementation . 26
2.3.1 Preparation for Analysis . 26
2.3.2 Symbolic Execution for Deriving FSM 28
2.3.3 FSM Translation and Model Checker 30
2.3.4 Property Extraction and Verification 31
2.3.5 Spurious CEX Checker . 32
2.3.6 Replay CEX . 33
2.3.7 Optimizations . 33

2.4 Evaluation . 35
2.4.1 Setup . 36
2.4.2 Property Verification . 37
2.4.3 Impact of Network Event Models on FSM Extraction 43
2.4.4 Execution Time of CHIRON 43

2.5 Discussion . 45

vi

Page

2.6 Summary . 47

3 ADVERSARIAL TESTING OF NETWORK PROTOCOL IMPLEMEN-
TATIONS . 48
3.1 Platform Overview . 51

3.1.1 Overview of Turret . 52
3.1.2 Limitations of Turret for Wireless Routing 53
3.1.3 Turret-W Description . 55

3.2 Methodology . 59
3.2.1 Attacker Model . 60
3.2.2 Experimental Setup . 61

3.3 Case Study 1: AODV . 64
3.3.1 Protocol Description . 64
3.3.2 Discovered Bugs . 65
3.3.3 Discovered Attacks . 66

3.4 Case Study 2: ARAN . 69
3.4.1 Protocol Description . 70
3.4.2 Discovered Bug . 70
3.4.3 Discovered Attacks . 71

3.5 Case Study 3: OLSR . 73
3.5.1 Protocol Description . 73
3.5.2 Discovered Attacks . 74

3.6 Case Study 4: DSDV . 76
3.6.1 Protocol Description . 76
3.6.2 Discovered Attacks . 77

3.7 Case Study 5: BATMAN . 81
3.7.1 Protocol Description . 81
3.7.2 Discovered Attacks . 82

3.8 Summary . 88

4 INFECTION MITIGATION IN EMERGING NETWORKS 89
4.1 System Model . 92

4.1.1 Mobility Models . 92
4.1.2 Infection and Recovery Models 95

4.2 Infection Dynamics . 96
4.2.1 Methodology . 97
4.2.2 Results . 97

4.3 Defense Protocols Based on Static Healers 101
4.3.1 Problem Definition . 102
4.3.2 Design of an Oracle Optimal Healer 103
4.3.3 Effective Healer Placement 106
4.3.4 Family of Randomized Healers 108
4.3.5 Family of Profile Healers . 109

vii

Page
4.3.6 Family of Prediction Healers 114

4.4 Healer-Based Protocols Evaluation 119
4.4.1 Evaluation Methodology . 119
4.4.2 Results for Family of Randomized Healers 123
4.4.3 Results for Family of Profile Healers 124
4.4.4 Results for Family of Prediction Healers 126

4.5 Summary . 129

5 RELATED WORK . 130
5.1 Compliance Checking . 130
5.2 Adversarial Testing . 135
5.3 Infection Mitigation . 137

6 CONCLUSION . 141

REFERENCES . 145

VITA . 161

viii

LIST OF TABLES

Table Page

2.1 List of implementations evaluated using CHIRON 36

2.2 Telnet server properties and verification results 38

2.3 DHCP client properties and verification results 39

2.4 Impact of various event models on FSM extraction 43

2.5 Run Time of CHIRON components . 44

3.1 Message delivery actions supported by Turret 52

3.2 Message lying actions supported by Turret 53

3.3 Malicious actions added by Turret-W 58

3.4 Attacks and bugs (re-)discovered by Turret-W 86

4.1 List of protocols proposed and evaluated 122

ix

LIST OF FIGURES

Figure Page

2.1 FSMs of the Telnetd protocol . 9

2.2 Code snippet from Telnetd implementation for Contiki-2.4 9

2.3 A simple protocol implemented in event-driven paradigm 15

2.4 Example of symbolic execution . 16

2.5 The architecture of CHIRON . 18

2.6 A sample of a harnessed main function 28

2.7 Representation of a path constraint in two formats 31

3.1 Comparison of the routing protocols based on popularity 49

3.2 Turret-W platform . 56

3.3 Code snippet from AODV-UU showing the discovered vulnerability . . 67

3.4 PDR for the discovered attacks against AODV-UU 68

3.5 PDR for the discovered attacks against ARAND 72

3.6 PDR for the discovered attacks against OLSRD 75

3.7 PDR for the discovered attacks against DSDV-Click 79

3.8 PDR for the discovered attacks against Batman-adv 83

4.1 Tracing the path of a single node . 93

4.2 SIR model . 95

4.3 Infection dynamics . 98

4.4 Spatial distribution of RWP and TLW 100

4.5 Healer activation problem . 102

4.6 Oracle performance . 106

4.7 Healer placement using Poisson Disk Sampling and Uniform Sampling . 107

4.8 State machine of a Randomized Healer 108

4.9 State machine of a Profile Healer . 109

x

Figure Page

4.10 Motivating backoff . 112

4.11 The internals of the prediction function 117

4.12 Evaluation of RH family . 123

4.13 Effect of varying maximum backoff . 125

4.14 Evaluation of PHMSD . 126

4.15 Evaluation of various PHM . 127

4.16 Evaluation of PDH . 128

4.17 Summary of the performances of healer families for TLW 128

xi

ABBREVIATIONS

AODV Ad hoc On-Demand Distance Vector

BATMAN Better Approach To Mobile Adhoc Networking

BFS Breadth-first Search

CEX Counterexample

DFS Depth-first Search

DHCP Dynamic Host Configuration Protocol

DSDV Destination-Sequenced Distance-Vector Routing

FSM Finite State Machine

IoT Internet-of-Things

LTL Linear Temporal Logic

NFC Near Field Communication

NVT Network Virtual Terminal

OLSR Optimized Link State Routing

PDR Packet Delivery Ratio

pLTL Propositional Linear Temporal Logic

RFC Request for Comments

SE Symbolic Execution

SMT Satisfiability Modulo Theories

TCP Transmission Control Protocol

xii

ABSTRACT

Hoque, Md. Endadul PhD, Purdue University, December 2015. Ensuring Specifica-
tion Compliance, Robustness, and Security of Wireless Network Protocols. Major
Professor: Cristina Nita-Rotaru and Sonia Fahmy.

Several newly emerged wireless technologies (e.g., Internet-of-Things, Bluetooth,

NFC)—extensively backed by the tech industry—are being widely adopted and have

resulted in a proliferation of diverse smart appliances and gadgets (e.g., smart ther-

mostat, wearables, smartphones), which has ensuingly shaped our modern digital

life. These technologies include several communication protocols that usually have

stringent requirements stated in their specifications. Failing to comply with such re-

quirements can result in incorrect behaviors, interoperability issues, or even security

vulnerabilities. Moreover, lack of robustness of the protocol implementation to mali-

cious attacks—exploiting subtle vulnerabilities in the implementation—mounted by

the compromised nodes in an adversarial environment can limit the practical utility

of the implementation by impairing the performance of the protocol and can even

have detrimental effects on the availability of the network. Even having a compliant

and robust implementation alone may not suffice in many cases because these tech-

nologies often expose new attack surfaces as well as new propagation vectors, which

can be exploited by unprecedented malware and can quickly lead to an epidemic.

Given the stake associated with these wireless technologies, the requirement to

ensure secure and reliable operations calls for both pre- and post-deployment mecha-

nisms. In this dissertation, we focus on fortifying these emerging technologies along

three dimensions. First, we propose an automatic compliance checking technique

allowing a developer to ensure—before deployment—that the implementation is com-

pliant with the protocol specifications. Second, we develop an automated adversarial

xiii

testing platform to help developers find vulnerabilities in their protocol implemen-

tations prior to deployment, thereby ensuring robustness of the implementations in

adversarial environments. Finally, we devise several countermeasures to mitigate in-

fection in the event of attacks after deployment.

1

1 INTRODUCTION

In recent years, new wireless technologies have emerged and changed the way we live

and interact with the environment through various devices ranging from tiny smart

objects such as smart home appliances, implantable medical devices, to large com-

puting devices such as automobiles. The devices interact using a variety of methods

including WiFi [1], 6LoWPAN (IPv6 over IEEE 802.15.4 [2]), Bluetooth [3], RFID [4],

near field communication (NFC) [5], Internet-of-Things (IoT) [6]. These networks

have become the foundation of many applications and services that our daily life de-

pends on. Therefore, secure and reliable operations of these emerging networks have

strong impact on our socio-economic life.

Like any traditional networks, the core of these new wireless networks consists of

several communication protocols, which the user applications and services are built

on. Most of these protocols are standardized through explicit specifications, which

are often carefully studied to uncover design flaws and errors. However, many errors

and bugs can be introduced during the implementation phase, which often manifest

after the deployment of the implementation. Errors leading to inconsistent output or

incorrect behaviors cause the implementation fail to comply with its specifications and

thus make it a non-compliant implementation. Therefore, checking only the design

for compliance is not enough. Moreover, checking implementations for compliance is

a painstakingly time-consuming task, which is aggravated due to the increased design

complexity of the protocols and the limited functionalities of existing compliance

checking tools. Therefore, it is imperative to develop automated techniques that

can assist a developer to ensure whether the implementation is complaint with its

specifications prior to deployment.

Despite having an implementation compliant with its specifications, the implemen-

tation may contain vulnerabilities that manifest only at the presence of compromised

2

nodes, which can behave arbitrarily and thus mount attacks. Lack of robustness

to such attacks can limit the practical utility of the protocol. Such vulnerabilities

often remain undetected using traditional testing approaches. While such testing

approaches have been shown to be fruitful, they have some significant weaknesses.

For instance, tedious manual testing can easily become exhausting with the increased

complexity of the implementation and leave portion unexplored due to developers’ in-

ability to reason about such cases; similarly, static analysis is inevitably imprecise for

vulnerabilities that manifest only during concrete execution in an adversarial environ-

ment. Therefore, it is necessary to ensure robustness of a protocol implementation

in an adversarial environment before deployment by developing automated testing

techniques to find vulnerabilities in the implementation.

Ensuring security has always been the “arms race” between malware creators

and those seeking to thwart their activities. “Zero day” attacks after deployment

are not unprecedented in case of well-known and widely used protocol implementa-

tions [7, 8], let alone for the protocols developed for the emerging networks [9, 10].

Furthermore, the emerging networks often introduce new attack surfaces as well as

new malware propagation vectors, which can ensue an epidemic from any malware

infection. As a precautionary measure, applying compliance checking and adversar-

ial testing techniques—separately or in tandem—can help developers safeguard their

protocol implementations from numerous errors and attacks. Nevertheless, for a holis-

tic defense, it is important to investigate countermeasures to mitigate infection in the

event of attacks after deployment.

1.1 Focus and Motivation

In this thesis, we focus on fortifying the emerging wireless networks along three

dimensions. Firstly, we strive to develop automatic compliance checking techniques

aiding developers to ensure that their protocol implementations are complaint with

the respective specifications. Secondly, we aim to develop automatic testing tech-

3

niques to help developers find vulnerabilities in their protocol implementations and

thus ensure robustness of the implementations in adversarial environments. Finally,

we intend to devise countermeasures to mitigate infection in the networks as post-

deployment measures.

Compliance checking of network protocol implementations. Finite state

machines (FSM s) are often used to specify stateful network protocols (e.g., Telnet,

DHCP). Such FSMs essentially identify the protocols’ internal states and also indi-

cate under what conditions (e.g., occurrence of an event) the protocols change their

internal states. Such (stateful) network protocols are expected to comply with nu-

merous properties specified in the protocol specification documents such as RFCs.

For instance, a desired property specific to the Telnetd (Telnet server) implemen-

tation for the Contiki [11] operating system1 is: “when the server has an on-going

connected session with a client, any further connection requests should be rejected by

the server”. Failing to adhere to these properties can result in inconsistencies in

the internal states, interoperability issues, incorrect behaviors, or even security vul-

nerabilities. In the above example, if the Telnetd accepts another client connection

when there is already an ongoing client connection, the protocol can misbehave and

affect confidentiality and integrity by sending one client’s (partial) command output

to another. This is a real non-compliance reported in the Contiki forum [12].

Checking protocol implementations for non-compliances is challenging as some of

the non-compliant behaviors of the implemented protocol can only be triggered by

a long and complex sequence of events. Such intricate non-compliant executions can

remain undetected due to the developers’ inability to reason about such cases. Hence,

it is paramount to develop techniques and tools that can assist developers to detect

protocol non-compliances with limited manual effort.

The formal verification community has extensively explored the problem of check-

ing whether a program complies with some invariants [13–18]. Among the existing

1An operating system for Internet-of-Things devices

4

work, the work by Holzmann et al. [19] and Musuvathi et al. [18,20] are the most rele-

vant. Holzmann et al. [19] relies heavily on the developer annotations to syntactically

extract the FSM of an event-driven program which is then model checked with some

desired temporal logic properties [21]. Musuvathi et al. [20] develop an explicit-state

model checker for network protocols written in C, but the properties they can check

are limited to only boolean formulas and focused primarily on low-level program-

ming errors. Such techniques are not enough to detect logical programming errors

(called functional properties) introduced while implementing the FSMs described in

the specifications. Therefore, we focus on developing a protocol compliance checking

framework that allows a developer to check whether the implementation complies

with its desired functional properties derived from the RFCs, research papers, and

code documentation.

Adversarial testing of network protocol implementations. While checking

compliance of a network protocol implementation is beneficial to detecting violation

of desired properties, this technique does not necessarily evaluate how robust the

implementation is in an adversarial environment where compromised participant(s)

of the protocol can behave arbitrarily and thereby mount attacks. Such attacks can be

detrimental for protocols that run across several nodes of the network, e.g., dynamic

routing protocols.

Routing is crucial for wireless mesh networks—enabled by technologies like Wi-Fi,

WiMAX—that have emerged as a solution for metropolitan area networks (MAN) to

provide the last-few-miles connectivity. As traditional routing protocols do not per-

form well in a resource-constrained environment like wireless networks in general, a

significant volume of work has been put into designing routing protocols for wireless

networks [22–26]. Given the importance of routing as a fundamental component

of wireless networks, many protocols have been subjected to model checking the de-

sign [27] and to testing the simulator-based implementations [28, 29]. While model

checking helps to verify the validity of the design, it cannot conclude that the actual

5

implementation is free of bugs and vulnerabilities since implementations contain op-

timizations not captured by the model. Some optimizations even diverge from the

design and thus introduce new bugs. In addition, while simulators provide easier and

simpler ways to evaluate a protocol, they sacrifice some aspects of realism such as the

interaction of the protocol with the components of the operating system.

Recent research [30–32] showed the importance of performing adversarial test-

ing (i.e., testing systems implementations beyond just basic functionality such as

examining edge cases, boundary conditions, and ultimately conducting destructive

testing) for message-passing distributed systems. Adversarial testing makes proto-

cols more robust to arbitrary and extreme conditions and can discover vulnerabilities

in implementations, many of which might have not occurred in simulator-based imple-

mentations. Previous work related to wireless routing implementations has focused

exclusively on performance comparison across protocols [33–35] or on evaluating per-

formance of TCP in multihop ad hoc networks [33, 36]. Therefore, it is important

to ensure the robustness of a protocol implementation in an adversarial environment

by finding bugs and vulnerabilities that can limit the practical utility of the im-

plementation. In this thesis, we focus on automated adversarial testing of actual

implementations of wireless routing protocols.

Infection mitigation. While proactive measures like compliance checking and ad-

versarial testing augment the inventory of pre-deployment prevention mechanisms,

reactive measures are required to address the aftermath of “zero-day” attacks, which

are not unheard of in communication networks, especially, the Internet. In fact, with

the advent of smartphones and Internet-of-Things, the number of wireless devices with

complex capabilities has significantly increased. While the openness of such wireless

devices—supported by operating systems like Google’s Android [37], Contiki [11],

FreeRTOS [38]—induces developers’ motivation, it also introduces new propagation

vectors for mobile malware. Recent reports show a significant increase of malware

targeting Android devices [39–41] and IoT devices [42–44]. The most prominent mal-

6

ware propagation vectors include installation of malicious applications (apps) from

third party app stores, as well as SMSs and emails with URL links tricking users to

download malicious applications. However, the spread of malware through proximity-

based communication has not left un-attempted. Recent incidents [9, 45–47] provide

evidences of malware propagation using short-range communication such as WiFi,

Bluetooth or NFC.

Significant research focused on modeling infection propagation, detection, and ap-

plication profiling of malware in the context of wired networks [48–52]. Those results

do not model mobile malware that spreads directly from device to device by using

short-range communication. Therefore, we focus on investigating the propagation

model of mobile malware amongst humans carrying smartphones and design counter-

measures to mitigate the propagation of mobile malware under a practical scenario.

1.2 Thesis Contributions

In this thesis, we contribute towards providing specification compliance, robust-

ness, and security of emerging wireless networks through (a) checking compliance of

protocol implementations with their specifications, (b) performing adversarial testing

on the implementations to find vulnerabilities prior to deployment, and (c) miti-

gating infection in case of epidemic outbreak in the network after deployment. We

summarize our key contributions as follows:

• We present a framework, CHIRON, that can check a network protocol source

for compliance with standards and requirements collected from RFCs, academic

papers, and documentation. We develop a technique that automatically ex-

tracts the FSM from the source code of a stateful, event-driven protocol with

minimal developer assistance. A two-step validation process to rule out false

non-compliance protocol executions is also developed. We show the applicability

of CHIRON by testing 5 real protocol implementations from two different net-

work stacks—uIP of Contiki [53], FNET [54]—against 18 protocol requirements

7

and uncover 10 instances of non-compliances, several of which have security

implications.

• We develop Turret-W, a platform for automated adversarial testing of wireless

routing protocols. Turret-W can test not only general attacks against rout-

ing, but also wireless specific attacks such as blackhole and wormhole attacks.

Demonstrating Turret-W on publicly available implementations of five represen-

tative routing protocols, we (re-)discovered 37 attacks and 3 bugs. To the best

of our knowledge, all these bugs and 5 of the total attacks were not previously

reported.

• We model the propagation of mobile malware amongst humans carrying smart-

phones using epidemiology theory and study the problem as a function of the

underlying mobility models. We define the optimal approach to heal an infected

system with the help of a set of static healers (nodes that distribute patches) as

the T-Cover problem and show that it is NP-Complete. We then propose

three families of healer protocols that allow for a trade-off between the recovery

time and the energy consumed for deploying patches.

1.3 Thesis Organization

The rest of the thesis is organized as follows. We present our compliance checking

approach in Chapter 2. Our adversarial testing tool is described in Chapter 3. We

next describe how we mitigate infection propagation in the network in Chapter 4. We

present the related work in Chapter 5 and conclude the thesis in Chapter 6.

8

2 COMPLIANCE CHECKING OF NETWORK PROTOCOL

IMPLEMENTATIONS

Stateful network protocols are often specified using finite state machines (FSMs),

which identify the protocols’ internal states and indicate under what conditions (e.g.,

occurrence of an event) the protocols change their internal states. We call such a

specification FSM of a protocol an S-FSM. Fig. 2.1(a) shows the S-FSM of the

Telnet server protocol (i.e., Telnetd). Such (stateful) network protocols are often re-

quired to comply with some requirements (also known as properties) according to their

specifications (e.g., RFCs). An example requirement specific to the Telnetd imple-

mentation for the Contiki [11] operating system is: “when the server has an on-going

connected session with a client, any further connection requests should be rejected by

the server”. Failing to adhere to the desired properties can result in inconsistencies

in the internal states, interoperabilities, incorrect behaviors, or even security vulnera-

bilities. In the above example, if the Telnetd accepts another client connection when

there is already an ongoing client connection, the protocol can misbehave by sending

one client’s (partial) command output to another client, thereby affecting confiden-

tiality and integrity. This is a real non-compliance which we have detected using our

approach and is also confirmed by a bug report filed by a developer in the Contiki

forum [12]. The code snippet shown in Fig. 2.2 illustrates the bug in the implemented

Telnetd for Contiki. At line 8 of the code snippet, the protocol moves to the normal

state whenever its gets a new connection without additionally checking whether there

is already an established connection, and this causes the non-compliance.

Checking protocol implementations for non-compliances with their specifications

is challenging as it often requires an intricate sequence of network events to manifest

such non-compliances using traditional testing approaches. Some previous works [13–

18] explored the problem of checking whether a program complies with the given

9

TCANY/send_DONT

STATE_NORMAL
STATE_IAC

STATE_WONT

STATE_WILL

STATE_DONT

STATE_DOStart

TCIAC/consume_data
TCANY/-

TCIAC/-

TCWILL/-

TCWONT/-

TCDO/- TCDONT/-

TCANY
/consume_data

TCANY
/send_DONT

/send_WONT

TCANY

TCANY
/send_WONT

(a) S-FSM of the Telnetd protocol

STATE_NORMAL STATE_IAC

STATE_DO

STATE_WONT

STATE_WILL STATE_DONT

(b) E-FSM of the Telnetd protocol imple-
mented for Contiki-2.4

Figure 2.1.: FSMs of the Telnetd protocol. (a) We follow the event/action convention
when labeling transitions. The character ‘-’ denotes an empty action. The prefix TC
indicates a received Telnet command. TCANY signifies any character other than
(DO, DONT, WILL, WONT). consume data means the application consumes what
has been received as normal data. (b) For ease of exposition, we do not show the
transition labels of the E-FSM.

1 ... /* Omitted */

2 /* Protocol event dispatcher function */

3 void telnetd_appcall (void *ts)

4 {

5 if(uip_connected () /* Got a new connection? */) {

6 /* An FSM Bug can manifest here */

7 s.bufptr = 0;

8 s.state = STATE NORMAL;

9 ... /* initialize buffer pointers */

10 ... /* start shell */

11 }

12 ...

13 }

Figure 2.2.: Code snippet from Telnetd implementation for Contiki-2.4

invariants. However, their reliance on syntactic approaches, their restricted form

of properties, or their intention of focusing on low-level programming errors make

them limited to be applied to detect logical programming errors (called functional

properties) introduced while implementing the S-FSMs described in specifications.

In this work, we present CHIRON1, a protocol compliance checking framework

that allows a user to check whether a stateful, event-driven network protocol imple-

1In Greek mythology, Chiron was considered to be the wisest centaur amongst his brethren.

10

mentation in C complies with its desired properties derived manually from the RFCs,

research papers, and documentation. CHIRON, in spirit, follows the high level ap-

proach of counterexample-guided abstraction refinement (CEGAR) [55]. CHIRON

reasons about a protocol’s compliance without making any restrictive assumptions

about the underlying network stack or the behavior of the other protocol partici-

pants. The heart of CHIRON is an FSM Extractor that takes as input a couple of

configuration files provided by the developer and the C source code of the implemented

protocol. By leveraging symbolic execution [56], the FSM Extractor automatically ex-

tracts an approximated FSM of the implemented protocol. We refer to the extracted

FSM from the protocol source as the E-FSM.

Automatically extracting an E-FSM that is suitable for compliance checking is

challenging. Due to the many possible states and transitions, manually deriving

the E-FSM from the source is an error-prone and time-consuming process. Fig.

2.1(b) shows the E-FSM (6 states and 84 transitions) automatically extracted by

CHIRON from the Telnetd source for Contiki. Existing work has looked at inferring

protocol FSMs— based on network traces [57–59], using program analysis [60,61], or

through model checking [14, 62]. While network trace-based approaches often suffer

from incompleteness due to inadequate number of traces, others focus on extracting

a sequence of messages valid in a session or the low-level program FSM instead of

the protocol E-FSM. For compliance checking, however, it is required to have an

E-FSM that precisely captures the relevant details.

Once we have the E-FSM, we use a symbolic model checker to check whether the

E-FSM complies with the requirements given by the user. We consider requirements

that are written as propositional linear temporal logic (pLTL) formulas [21]. If the

E-FSM does not comply with a requirement, then the model checker outputs a

counterexample (i.e., an execution of the protocol) as evidence. Due to abstractions

in our analysis, the provided counterexample (in short, CEX) may not be realizable in

an actual execution of the protocol. Therefore, we use a two-step validation process

to rule out unrealizable CEXs.

11

Since CHIRON does not make any assumption about the other protocol par-

ticipants while extracting the E-FSM, one advantage of such an approach is that

CHIRON can aid in composable reasoning. Specifically it can enable us to reason

about the global properties of a two-party protocol by composing their individual

E-FSMs. This is also very relevant in reasoning about protocols designed for dis-

tributed systems. In addition, due to the modular nature of our approach, different

verification tools and techniques can be easily incorporated in CHIRON as pluggable

components.

Our technique of extracting the E-FSM is of independent interest. Some ex-

isting work employs fuzz testing for finding vulnerabilities in protocol implementa-

tions. To overcome the inherent coverage problem of fuzz testing, several works like

SNOOZE [63], KiF [64], and SNAKE [65] rely on user provided S-FSMs. Addi-

tionally, the extracted E-FSM can be visually checked against the S-FSM to spot

missing or spurious transitions without requiring any verification.

CHIRON can also be used as a debugging tool for developers to find missing/un-

wanted state transitions in the E-FSM. Moreover, the E-FSM can be used to per-

form counterexample driven model-based testing [66,67] of a protocol implementation.

Finally, our general analysis technique can easily be adopted in other contexts where

the implementation is also written in an event-driven fashion, e.g., Android UI testing.

We have implemented CHIRON and applied it to a total of 5 implementations of

two different protocols– Telnet server protocol (Telnetd) and DHCP client protocol

(DHCPc) – from two separate TCP/IP network stacks: uIP [53] (part of Contiki)

and FNET [54]. Contiki is a widely used open source operating system that runs

on Internet-of-Things (IoT) devices, e.g., smart home appliances [68]. FNET is a

network stack actively maintained by Freescale Semiconductor Inc., which supports

various microcontroller units (MCUs) used in a wide range of applications including

IoT devices, health-care, and vehicular control systems [69]. We use 11 representative

properties for Telnetd and 7 for DHCPc derived from their RFCs, documentation,

and/or bug reports. During compliance checking of these 5 implementations, we

12

discovered 10 non-compliance instances in total. One of these non-compliances has

security implications while others can hinder interoperability and possibly impair

performance. Although our technique is general enough to be applicable to other

network protocols, in our evaluation, we particularly focus on protocol implementa-

tions for Contiki and FNET as they are widely used by IoT devices but have not been

extensively studied. To summarize, this work makes the following contributions:

• We present a framework, CHIRON, that can check a network protocol source

for compliance with standards and requirements collected from RFCs, academic

papers, and documentation.

• We develop a technique that automatically extracts the E-FSM from the source

code of a stateful, event-driven protocol with minimal developer assistance.

• We develop a two-step validation process to rule out false non-compliance pro-

tocol executions.

• We also present optimizations that make the E-FSM extraction and compliance

checking efficient.

• We show the applicability of CHIRON by testing 5 real protocol implementa-

tions from two different network stacks— uIP of Contiki, FNET—against 18

protocol requirements. We demonstrate the efficacy of CHIRON experimen-

tally, and in the process, we uncover 10 non-compliances, several of which have

security implications.

2.1 Background

In this section, we briefly review the background materials necessary to understand

our technical contributions.

Finite state machine (FSM). A finite state machine in our setting, denoted by

M , is a tuple 〈Q,Ev,A,Vc, qI , R〉. Q represents a finite set of states q0, . . . , qn and

qI ∈ Q represents the initial state of the finite state machine M . We use Ev to

13

denote a set of events (e.g., receive) whereas we use A to denote a set of actions

(e.g., send ack) the protocol can perform. We assume Ev ∩ A = ∅. We also have

a finite set of conditional variables Vc which is disjoint from both the sets Ev and

A. The set R represents the transition relation and R ⊆ Q × Ev × C × 2A × Q

where the condition C represents a set of transition conditions and each element of

which is a quantifier-free first-order logic formula over variables Vc. If Vc = {x, y},

then an example transition condition can be x ≥ 0 ∧ x + y 6= 10 where each atomic

formula of the transition condition (e.g., x ≥ 0) is called an atom. Given a transition

〈qa, receive, uip len[0, (2B)] 6= 0∧payload[0, (1B)] = 255, {send ack}, qb〉, it signifies that

if the FSM is currently at state qa, the event receive is triggered, the receive buffer is

not empty (i.e., receive buffer length is not equal to zero), and payload’s first byte is

255, then the FSM can move to a new state qb and can take the action send ack. We

use FSMs to abstractly represent the high level operation of a protocol.

Propositional Linear temporal logic (pLTL). Propositional linear temporal

logic (in short, pLTL) extends propositional logic with temporal operators [21]. We

use pLTL to express the desired properties a protocol should have. There are two

kinds of temporal operators: past temporal operators and future temporal operators.

pLTL reasons about relative temporal ordering of states/events without considering

the explicit time at which each event/state happens. The past temporal operators are:

 (read “once”, it means that the formula following the operator was true at some

point of time in the past including the current time point),  (read “historically”, it

means the formula following the operator has been true all along in the past including

the current time point), (read “yesterday” which signifies that the following formula

was true in the immediate previous step), and S (read “since”, is a binary operator

and ϕ1 S ϕ2 is true in the current state if ϕ2 was once true in the past, possibly

in the current state, and ϕ1 has been true since then till the current state.). The

future operators  (read “eventually”),  (read “henceforth”),  (read “next”),

and U (read “until”) are duals of the past operators. The atomic elements of a

14

pLTL formula is an atomic proposition which is a drawn from a finite set P . which in

our case is P = Q∪A∪E∪T where T is a set and each element of T is a proposition

denoting the truth value of an atom. A pLTL formula ϕ can be inductively defined

as: ϕ ::= true | p | ϕ1 ∧ ϕ2 | ¬ϕ | ϕ | ϕ | ϕ | ϕ1 S ϕ2 | ϕ | ϕ | ϕ | ϕ1 U ϕ2

where p ∈ P . pLTL formulas are interpreted over infinite traces generated by a kripke

structure or in our case a finite state machine of form M , each element of which is

a state that maps each proposition in P to either true or false. For example, the

formula (receive ∧ receivedPacketIsACK → send data) specifies that whenever we

receive an acknowledgement of a packet receive it implies that we have send a packet

at some point of time in the past. The formal semantics of pLTL is standard and can

be found elsewhere (cf. [21]).

Event-driven protocol implementation. A protocol can be implemented in

plethora of ways. As a first cut in our context, we consider protocols implemented

only in the event-driven paradigm. In the event-driven style of protocol implemen-

tation, the protocol has internal states which is altered with respect to different

network events. For each event, the protocol has specific handling code that performs

the necessary protocol state transition when that event occurs. The logic behind

the transition of states with respect to a given event is protocol dependent. Let us

consider the very simple protocol skeleton in Figure 2.3. In this protocol, there are

three possible events: CONN (referring to a connection attempt), RECV (referring to

receiving of new data), and CLOSE (referring to the termination of the connection).

The main function waits for an event to occur and calls the dispatch event function

which based on the different types of events, calls its appropriate handling code that

performs necessary state transitions.

Symbolic execution (SE). Symbolic execution (SE) is a program analysis tech-

nique which is used to generate program inputs such that it is possible to test dif-

ferent execution paths to attain a high level of coverage during testing. SE as the

name suggests considers program input variables to have symbolic values and then it

15

1 // List of events

2 enum{CONN = 0, RECV , CLOSE , ...};

3 void dispatch_event(int ev){

4 switch(ev){

5 case CONN:

6 /* connection handling code */

7 ...

8 break;

9 case RECV:

10 /* data receiving code */

11 ...

12 break;

13 case CLOSE:

14 /* connection termination code */

15 ...

16 break;

17 case ...:

18 ...

19 default:

20 /* Unknown event */

21 ...

22 }

23 }

24 int main(){

25 init();

26 while (1){

27 event = getEvent ();

28 dispatch_event(event);

29 }return 0;

30 }

Figure 2.3.: A simple protocol implemented in event-driven paradigm

symbolically executes the program with those value. Special care is given in handling

conditional branches (i.e., if-else, loops). While symbolically executing the program

whenever a conditional branch is encountered, SE first checks see to whether both

the condition and its negation are satisfiable, if this the case, SE explores both paths

in the program due to the branch but adds the branch condition (resp., its negation)

as the constraint of that path. This is called the path constraint or path condition.

When new branches are encountered, they are added to the current path constraint

with conjunction. When a desired program location or the end of the program is

reached, SE consults a SMT solver to solve the path constraint and obtain concrete

values for the input variables for which the path is taken.

Consider the simple function foo presented in Figure 2.4. Let us assume x and

y are the function’s input variables. Let us also assume that they have the symbolic

value αx and αy. After executing line 5, variables x, y, and z have values αx+αy +1,

16

αy, and 0, respectively. In line 6, the condition x ≥ 5 is encountered, in which case

SE consults the SMT solver to check whether the constraints αx + αy + 1 ≥ 5 and

αx + αy + 1 < 5 are both satisfiable. If this is the case, SE adds the constraint

αx + αy + 1 ≥ 5 to the path condition of the execution where the if branch is taken

and conversely adds αx + αy + 1 < 5 to the path condition of the execution which

takes the else branch. When the execution terminates, SE again consults the SMT

solver to obtain a concrete value for each symbolic variable. For the execution that

took the if branch, SE consults the SMT solver to obtain concrete values for αx and

αy such that the path condition αx + αy + 1 ≥ 5 is true. The output of the SMT

solver (i.e., the concrete values) can be used as the program input, which will drive

the execution to take the if branch. This process is carried out by SE for each of the

execution paths of the program.

1 void foo(){

2 int x = input();

3 int y = input();

4 int z = 0;

5 x = x + y + 1;

6 if(x >= 5){

7 z = 1;

8 }

9 else{

10 z = -1;

11 }

12 }

Line 4 x=αx ; y=αy

z=0

x=αx+αy+1Line 5
...

Line 6

αx+αy+1≥ 5?

z=1 Line 7

...
z=−1

...

α
x
+
α

y

+
1
≥

5

Line 10

α
x +
α

y

+
1
<

5

Figure 2.4.: Example of symbolic execution

2.2 Chiron Design

In this section, we first present the problem definition of protocol compliance

checking. Next we present the assumptions and scope of CHIRON. Finally, we give

an overview of CHIRON’s design and then provide the detailed description of each of

its components.

17

2.2.1 Problem Definition and High Level Approach

The problem of checking compliance of protocol implementation is formally de-

fined as follows. Given an event-driven protocol implementation Ip written in C and

some desired property PROP that the protocol must comply to, is it the case that Ip

satisfies the property PROP? The property in question can express some desired func-

tionalities of the protocol or some guarantees the protocol should provide. We want

to emphasize that not all properties can be checked by our approach, and it mainly

relies on the granularity of the program analysis. This will be made clear in later

discussion.

At a high level, our approach has the following four steps:

• We first extract an FSM M , which abstractly captures the high-level opera-

tions of the protocol from Ip using a static program analysis technique. The

extracted FSM has similarity with Input-Output automata [70]. The network

events can be viewed as the FSM’s inputs whereas the actions performed by the

protocol can be viewed as FSM’s outputs. In our extracted FSM, each transi-

tion additionally has a condition over some program variables (i.e., conditional

variables).

• We then manually extract a desired property PROP from the protocol docu-

ments (e.g., RFCs, documentation) and express PROP as a pLTL formula ϕ.

• We then use a symbolic model checker to check whether M satisfies the formula

ϕ, i.e., M |=? ϕ.

• If a counterexample (CEX) is generated due to the violation of ϕ by M , i.e.,

M 6|= ϕ, we further scrutinize the CEX to ensure that the CEX is realizable in

an actual execution of the protocol.

18

Reported
CEX

Spurious
CEX Checker

FSM
Translator

Replay
CEX

CEX
Visualizer

Model
Checker

FSM
Extractor

FSM

SrcConf

Spec. Property �

Model
CEX

Consistent CEX

Factual
CEX

False CEX

Invariants
P∧Q→R

Valid �

CEX Parser

CEX
Protocol

Conf
NetStack

Propositions
P,Q,R

Figure 2.5.: The architecture of CHIRON

2.2.2 Assumptions and Scope

We assume that the source code of the protocol is available for our analysis.

Extracting E-FSM from the implementation presents numerous challenges, the major

ones being the state explosion and the precision of the FSM extraction technique. We

focus specifically on network protocols written in C using an event-driven paradigm.

We make the assumption that the implementation has an explicit representation of the

protocol state machine, i.e., protocol states are explicitly realizable through program

variables. In addition, we assume that the possible values of the state variables are

drawn from a small, finite domain. We also assume that all the event-handling code

has a common entry point (often referred to as event dispatcher function) in the

source code.

Non-compliances of the given properties can occur in an implementation due to

logical programming errors such as wrong/missing state transitions and/or protocol

actions when responding to an event; ultimately, not following the high level protocol

design. We can only check properties which impose constraints over the events, state

variables, and conditional variables. Such properties can be manually extracted from

specifications such as RFCs, documents or bug reports.

We do not focus in detecting low-level memory errors (e.g., null dereferencing,

memory corruption, segmentation faults) in the implementation. There are comple-

mentary tools and techniques for detecting such errors [71–74].

19

2.2.3 Design Overview

The architecture of CHIRON is presented in Fig. 2.5. It consists of the follow-

ing main components: FSM extractor, FSM translator, model checker, CEX parser,

spurious CEX checker, CEX replayer, and CEX visualizer.

The FSM extractor is the key component of CHIRON. Its main goal is to extract

the abstract FSM representation of the protocol using a static program analysis based

on symbolic execution [56]. To achieve this goal it takes as input the source code of

the protocol that is to be checked for compliance and two types of configurations:

(a) Configuration specific to the network stack, which the protocol relies on, and (b)

Configuration specific to the protocol implementation. The network stack configura-

tion contains information about the possible network events. Whereas the protocol

specific configuration consists of the program variables that comprise the FSM state

of the protocol, the event dispatcher function, the list of actions performed by the

protocol when responding to network events, and the set of conditional variables.

These conditional variables will be included in the FSM transitions, and they can be

referred to in the property being checked. We describe the FSM extraction algorithm

in Section 2.2.4 in details.

For compliance checking, CHIRON uses a symbolic model checker that takes as

input an FSM M represented in a high level modeling language and a pLTL formula

ϕ, which is a desired property the protocol must comply with and checks to see

whether the property ϕ is satisfied by M . In case ϕ is violated, the model checker

generates a counterexample (CEX) as evidence. The property that can be checked

depends on the granularity of the analysis, i.e., the variables that were included in

the FSM extraction. More precisely, if some information is not captured by the FSM

M due to a coarse-grained analysis, it cannot be used in the property.

To bridge the gap between the output format of the FSM extractor and the format

required by the different model checkers, we introduce an FSM translator. The FSM

translator takes as input the E-FSM represented in our XML-based intermediate

20

language and translates it to the high level modeling language expected by the model

checker. Note that the conditions associated with the transitions of the E-FSM are

quantifier-free first order logic (QF-FOL) formulas over conditional program variables,

e.g., x > 0 ∧ (x+ y = 5) ∧ y < 0. However, model checkers generally do not support

QF-FOL formulas and expects the transition conditions to be boolean variables, i.e.,

propositions. The FSM translator maps each unique atom (e.g., x + y = 5) of the

transition conditions to a unique propositional variable.

Due to abstraction during FSM extraction and also due to abstracting atoms with

propositions, the counterexample (CEX) generated by the model checker may just be

a false CEX (i.e., not factual CEX). More precisely, the CEX generated by the model

checker may not be realizable during an actual execution of the protocol. Hence, to

rule out false CEXs, we use a two-step CEX verification process.

A CEX generated by the model checker contains the boolean (i.e., true/false)

assignment to each proposition. As the model checker is oblivious to the semantics

of the atom (e.g., x > 0) associated with each proposition, it will check all possible

boolean values of the propositions during verification. It could happen that one

such boolean assignment to the propositions in a CEX is not satisfiable considering

their corresponding concrete atoms. To rule out such cases, we use a Spurious CEX

checker that consults an SMT solver to check whether each transition condition in the

CEX is satisfiable according to the truth assignment given by the model checker. If all

transition conditions of a CEX are satisfiable, we refer to the CEX as a consistent CEX.

However, in case of an inconsistent CEX, i.e., at least one transition condition is not

satisfiable, the Spurious CEX checker automatically generates invariants that notify

the model checker to rule out the unsatisfiable transition in the future verification

steps.

Due to the abstractions used during the extraction of the E-FSM, a consistent

CEX still may not be realizable in an actual execution of the protocol, especially, while

checking liveness properties [75]. Hence, to rule out such false CEXs, we use a CEX

replayer that generates concrete program inputs from the consistent CEX with the

21

help of the SMT solver, and concretely executes the protocol implementation using

those inputs. It also monitors the execution to check whether the state transitions

and the associated actions in the implementation and in the CEX agree. If a consistent

CEX is realizable during the replay, we call it a factual CEX.

Two auxiliary modules are used by CHIRON in the process of compliance check-

ing. The first is a parser (CEX parser) that converts the CEXs generated by the

model checker to the input of Spurious CEX Checker. Specifically, it takes as input

a proposition-atom map file generated by the FSM translator and the CEX gener-

ated by the model checker, then replaces the propositions with their respective atoms

in the CEX. For instance, if the map file contains the proposition-atom mapping

P 7→ {y < 5} and the CEX maps P to false, then the CEX parser replaces P 7→ false

with (y < 5) 7→ false. The second is a visualizer (CEX visualizer) that graphically

presents the factual CEX to the user so that the CEX can be easily understood.

2.2.4 FSM Extraction Algorithm

The FSM extraction algorithm takes protocol source code as input and two con-

figuration files– one related to the protocol implementation and the other related to

the network stack – and extracts the FSM of the protocol. The protocol configu-

ration file contains the following information: a list of program variables that form

the protocol FSM state, an entry point to the event handling code (i.e., event dis-

patcher function), the granularity of the analysis by selecting program variables (i.e.,

conditional variables) that should be marked as symbolic (e.g., the packet header or

the packet buffer), and the list of actions along with their signatures (e.g., send data

function with argument 255 means the action sending command byte). The network

stack configuration contains a list of events and how to trigger these events in the

code (e.g., possibly by setting a bit or by assigning a particular value to a variable).

At a high level, our algorithm has the structure of a graph search algorithm in

which we choose one of the possible events that can happen in the current state and

22

symbolically execute the protocol code from the entry point of the event handling

function until it encounters new states or transitions. In that sense, it can also be

viewed as a fixed point iteration algorithm. Specifically, the algorithm follows the

structure of the breadth-first search algorithm (BFS). However, other graph search

algorithms (e.g., depth-first search, iterative deepening search, A∗) can be easily

adopted for our purpose. Although BFS is less memory efficient than DFS, we use

BFS as it can be easily parallelizable and it can find states in shorter time. We keep

track of the values of the protocol state variables and also the path conditions that

are encountered during symbolic analysis. Whenever the value of one of the protocol

state variables are changed, we check to see whether we have seen that state. If this

is the first time the state has occurred then we mark it as a new state, which will

be used for analysis later. We also check to see whether we have seen the transition

between the current state and new state. If the transition is new then we add it to

the FSM. We use the path conditions gathered during the symbolic execution as the

condition of the transition. We continue the analysis until we do not see any new

state or transition.

A pseudocode of our algorithm is presented below (c.f., Algorithm 1). The algo-

rithm starts off by constructing the initial execution state e0 of the program. The

initial state of the program contains initialized values for both protocol state variables

and other non-symbolic global variables. It then extracts the initial protocol state q0

from e0 using the function ExtractFsmState. This function basically takes a projection

of the protocol state variables and their values from a given program state. We then

mark q0 as seen and add it to the FSM M . We then add the execution state e0 to a

working queue We. Next we process one execution state ei at a time in FIFO manner

until We is empty. We first extract the associated FSM state qi from ei. Then we

try all possible events τ that are feasible in that state. For each such event τ , we

run symbolic analysis from the protocol event handling entry point by simulating the

occurrence of τ . The symbolic execution returns all possible paths and their associ-

ated execution states, path conditions, and associated actions taken by the protocol

23

(e.g., sending an acknowledgement, retransmitting a packet). For each of the possible

paths, we take the execution state ej, the path condition on symbolic variables cj, and

the actions a performed by the protocol. We then extract the FSM state qj from ej.

We insert qj to the FSM M if we have not seen qj and mark it as seen. In that case,

we also add ej to We. We then check whether we have seen the transition qi
τ,c,a
−→ qj.

If not, we add it to M and mark it as seen.

Algorithm 1: FSM Extraction Algorithm

Input: The protocol source S, analysis configuration C, network-stack
configuration N

Output: An abstract FSM M of the protocol
1 Queue We ← ∅; FSM M ← ∅;
2 Create initial program state e0;
// q0 is the initial protocol FSM state

3 q0 ← ExtractFsmState(e0);
4 We.enqueue(e0);
5 M.Q← {q0};
// M.Q is the set of states

6 M.qI ← q0;
// M.qI is the initial state

7 M.R← ∅;
// M.R is the set of transitions

8 Mark state q0 as old;
9 while We 6= ∅ do

10 ei ← We.dequeue();
11 qi ← ExtractFsmState(ei);
12 foreach Event τ ∈ PossibleEvents do
13 Sq ← SymbolicExecution(S,C,N, ei, τ);
14 foreach 〈ej, c, a〉 ∈ Sq do
15 qj ← ExtractFsmState(ej);
16 if qj is not old then
17 We.enqueue(ej);
18 M.Q←M.Q ∪ {qj};
19 Mark state qj as old ;

20 if Transition 〈qi, τ, c, a, qj〉 is not old then
21 M.R←M.R ∪ {〈qi, τ, c, a, qj〉};
22 Mark transition 〈qi, τ, c, a, qj〉 as old ;

24

2.2.5 FSM Translation, Property Extraction and Verification

Once an abstract FSM is received from the FSM extractor, the FSM translator

automatically carries out the following two functions: (i) It generates a mapping

between each unique atom in the path conditions with a unique proposition; (ii)

It then translates the abstract FSM description to the input modeling language of

the model checker. As the model checker generally works with propositions whereas

we have quantifier-free first-order logic formulas as the path conditions (e.g., (x >

0)∧(x+y = 5)∧y < 5), the FSM translator replaces each unique atom (e.g., (x > 0))

with a propositional variable. Function (ii) of FSM translator is dependent on the

input modeling language of the model checker. This function needs to be adapted to

handle different model checkers.

The properties against which to check the protocol implementation can come from

exploring RFC documents, research papers proposing the protocol, properties from

the developer, and possible bug reports. For specifying the properties in pLTL, the

E-FSM and the atom-proposition mapping file is required.

Once the FSM is translated to the high level modeling language, the model checker

takes that model and the property to check and exhaustively searches the state space

to look for an execution of the model in which the property is violated. Once such an

example is found, it is returned as a CEX. Each state in the CEX is a truth assignment

to each of the different propositions used in the E-FSM.

2.2.6 Spurious CEX Checking

Since the model checker we use is oblivious towards the real semantic meaning

of the propositions, we can have a CEX which is spurious. More precisely, the truth

assignment given by the model checker in the CEX might not be satisfiable.

For example, let us assume we have the following three proposition-atom mappings

from the FSM translator: p 7→ {x > 0}, q 7→ {x + y = 5}, r 7→ {y < 5}. Let

us also assume that there is a transition in the FSM whose condition is p ∧ q ∧ r

25

and the counterexample assigns the propositions p, q, and r the following values:

false, true, true, respectively. Now, if y < 5 and x + y = 5, then it is apparent that

x > 0 cannot be false. Hence, ¬(x > 0) ∧ (x + y = 5) ∧ y < 5 is not satisfiable.

The purpose of the Spurious CEX checker is to rule out such cases by consulting

a SMT solver. When the CEX fails the spurious check, i.e., there is a transition

condition which is not satisfiable according to the truth assignment given by the

model checker, then the Spurious CEX checker forwards an appropriate invariant to

the model checker to rule out this case and continue verification. For instance, in our

example, the invariant will be (q ∧ r → p) (if q and r are true, then it implies that p

is true).

2.2.7 Replaying CEX

Due to abstractions (i.e., when we extract the E-FSM state from the program

state, we ignore some of the program variables), fixed number of loop iterations during

symbolic execution, and the granularity of the analysis process, we could have a CEX

which is not realizable during the real execution of the protocol even though the

CEX passes the spurious checking. This is specifically relevant while verifying liveness

properties.

For instance, let us assume that the user selects a coarse-grained analysis in which

the user does not take into consideration a specific timer. Now let us assume that

the property we want to verify is that: “Whenever the protocol is in state S1 then it

implies that the protocol will eventually move to state S2” (formally,((state = S1)→

(state = S2))). Let us assume that there is a self-loop in S1 that is conditioned by

a timeout of the timer, where the timer is not considered in the analysis. Hence, the

condition of the self-loop in the E-FSM does not include the timeout. The model

checker can easily find a counterexample in which the protocol always stays in state

S1 using the self-loop whereas in the real code, this will not happen as the timeout

will happen and the program will move to possibly a new state.

26

To rule out cases like above, we replay the CEX and follow along the execution of

the program. The replay execution is guided by the CEX which instructs the replay

mechanism what branches to take via the truth assignment of the propositions. We

monitor the different actions and state changes during the execution and whether it

matches the CEX. If the protocol execution agrees with the CEX, then we report the

CEX by visualizing the factual CEX to the user.

2.3 Implementation

In this section, we present the details related to the implementation of CHIRON.

We also describe how we address the various implementation challenges and point out

some adopted optimizations to speed up the compliance checking process of CHIRON.

2.3.1 Preparation for Analysis

Before the protocol source becomes amenable to our framework we require some

steps to prepare the source. Recall that our framework only requires the source

files that implement the protocol analyzes it in isolation. To make the source self-

contained, we carry out the following steps in order. Among the following steps, only

the code harnessing step requires manual efforts.

Preprocessing done by compiler Since we want to analyze only the protocol

source code, not any underlying network stack code, we first preprocess the necessary

protocol source files by using a C preprocessor. We basically use gcc -E -P to stop

the compilation process right after preprocessing stage. After this step, we obtain a

preprocessed source file containing all the declarations from the included header files

and having all the macros expanded.

Slicing the source Like any other program analysis, our analysis could be ad-

versely affected by the size of the source. From the user-provided configuration file,

27

we slice the protocol source using the state variables as the slicing criteria. This step

generates a smaller compilable source from the original source that only contains the

necessary program information required for the analysis. For slicing the source, we

use Frama-C (Fluorine version) [76]. We would like to emphasize that this step is not

mandatory but is useful to speed up the analysis.

Code harnessing In this step, we make the source completely self-contained by

wrapping it in a test harness if necessary. To do so, we first add a main() function

to the protocol source code, where we mark all the extern variables of the source

as symbolic (e.g., uip appdata, the network stack payload buffer in Contiki) and

then call the event dispatcher function (e.g., telnetd appcall()). An example of

a harnessed main() function for Telnetd protocol is shown in Fig. 2.6. In § 2.3.2,

we will explain the reason for calling the dispatcher function once in the main()

function. Next, we add empty stub functions for the external functions, for instance,

uip send() function of the TCP/IP stack for Contiki, which the application calls to

transmit a message over the network.

If necessary, we provide simple implementations of basic library functions such

as strlen(), memcpy(). In case a library function returns a value, for example,

is timer expired(), we provide a small stub implementation that returns a symbolic

value. Hence, our analysis can capture all the additional transitions created due to the

branching conditions on the returned symbolic value. In addition, we unroll any loop

code blocks for a fixed number of iterations. If required, we can even unroll a loop

block for a variable number of iterations by marking the loop counter as symbolic,

which results in a large number of extra, but futile, transitions due to the symbolic

loop counter.

Generating LLVM bitcode In the very last step of preparation, we use the

llvm-gcc (version 4.2 for LLVM 2.9) compiler front end to generate LLVM bitcode

of the protocol source. The output is used by the FSM extractor to carry out the

analysis for FSM generation.

28

1 int main(){

2 void *ts;

3 /* Network stack payload buffer */

4 mark_symbolic (uip_appdata);

5 /* Network stack payload length */

6 mark_symbolic (uip_len);

7 /* Network connection struct */

8 mark_symblic(uip_conn);

9 /* An opaque pointer used by the process */

10 mark_symblic(ts);

11 /* Event dispatcher function */

12 telnetd_appcall (ts);

13 return 0;

14 }

Figure 2.6.: A sample of a harnessed main function for the same Telnetd protocol
source shown in Fig. 2.2

2.3.2 Symbolic Execution for Deriving FSM

Once we have the protocol source (to be precise, LLVM bitcode) and the con-

figuration files, we extract the E-FSM out of the source using our FSM extractor.

We then use the KLEE symbolic execution engine [77] to symbolically execute the

LLVM bitcode (LLVM-2.9 version) of the given program. We have implemented and

integrated our FSM extractor in KLEE as a library containing more than 4 KLOC

of C++ code to the original KLEE code base.

The FSM extractor starts by loading the LLVM bitcode of the protocol imple-

mentation as an LLVM module. It then creates the initial program state (e0) and

extracts the corresponding initial FSM state (q0) from the LLVM module by reading

out the values of the protocol state variables. For each possible network event (τi),

the extractor injects the event into the appropriate program variable and initiates

symbolic execution of the implementation against the injected event. The execution

may fork depending on the branch conditions on any symbolically marked variables

(e.g., uip appdata) along with the execution path. Such conditions become the path-

constraint of the execution path the code took responding to the event τi. Once the

symbolic execution finishes, the FSM extractor analyzes each of the execution paths

to extract the corresponding FSM state (qj) by reading out the values of the state

29

variables and to create the corresponding transition from q0 to qj based on the con-

straints of the execution path. Next, the extractor again runs the symbolic execution

for e0 but against the event τi+1 and so on. Once it finishes executions for e0, the

extractor repeats the same steps for the next program state ej in the queue. Along-

side, the extractor builds the E-FSM containing only distinct FSM states and FSM

transitions observed during each round of the symbolic executions.

Note that the harnessed main() function in Fig. 2.6 calls the event dispatcher

function once rather than calling the dispatcher function inside a infinite loop. We do

this to ensure the termination of the symbolic execution of the program. However, to

mimic the real execution that is calling the dispatcher function every time an event

occurs, the FSM extractor starts the symbolic execution of the protocol implementa-

tion from the main() function against each event. This may seem counterintuitive as

the extractor always starts the execution from the main() function. But, in reality,

the extractor records the current program state2 information (i.e., the current values

of all the non-symbolic global variables) before KLEE removes the current program

state and uses this information to overwrite the memory of the program state to be

used in the next round of the symbolic execution just before executing the main()

function as if the program were executing from where it was left off. Thus we ensure

the termination of symbolic execution, otherwise the symbolic execution would not

terminate if we had an infinite loop in the main() function.

Recall that for an event-driven network protocol implementation, the dispatcher

function is invoked each time a network event occurs. However, one execution of

the dispatcher function is completely independent of the other. Therefore the imple-

mentation often retains the effects caused by a network event by modifying only the

global, most likely the state variables. Similarly, the FSM extractor runs the symbolic

execution multiple times, which invokes the event dispatcher function once for each

event. To resemble the independent execution of the event dispatcher function, the

2The program state is different from the protocol state. A program state consists of the current
values of all the global variables, whereas a protocol state is signified by the state (possibly global)
variable(s).

30

extractor does not carry over the path constraints from the previous round of sym-

bolic execution. However, by recording the program state information (as explained

above), the extractor retains the effects on the protocol caused by the event.

2.3.3 FSM Translation and Model Checker

The FSM extractor outputs the E-FSM in a generic XML format that needs to

be translated to the language specific to the model checker of the user’s choice. For

pLTL model checker, one could possibly choose (a) an explicit-state model checker

such as SPIN [13] or (b) symbolic model checker such as NuSMV [78]. We choose

NuSMV 2.5.4 as symbolic model checkers tend to support models with large state

space.

We implemented the FSM translator in C++ (2 KLOC), which performs the fol-

lowing four steps: (i) Parses the XML-based intermediate representation of the FSM;

(ii) Translates the constraints generated during symbolic execution, from the KQuery

language [79] to a human readable version; (iii) Generates the atom-proposition map-

ping and stores it in a file; (iv) Translates the FSM into the SMV modeling language

of NuSMV 2.5.4. Step (i), (iii), and (iv) are straightforward and hence we do not

discuss the details here. The reader might wonder why would one need the step (ii).

This is due to the fact that LLVM converts all the integers to bitvectors. KLEE

uses the STP SMT solver [80] with ARRAY and BITVECTOR theory as the under-

lying theories. Hence, even a simple constraint such as x + y + c ≤ 5 expressed in

bitvector representation can possibly be unreadable by a human. Recall that, these

constraints are referred to in the properties. It is thus reasonable to have a level of

comprehensibility to the end user who is carrying out the verification process. For

example, see Fig. 2.7 for a KQuery and its associated human-readable constraint in

our language. Although a more intuitive notation would have been desired, it is very

difficult to achieve it due to a whole different kind of possibility in the bitvector rep-

resentation. In the example in Fig. 2.7, uip len[0,(2B)] means the 2 byte value

31

which is read from the 0th byte position of the variable uip len. In the example,

(4B)0x0 uip conn[18,(2B)] signifies that the 2 byte value read from the 18th byte

position of uip conn is zero-extended to obtain a 4 byte value.

array payload[1] : w32 -> w8 = symbolic

array uip_len[2] : w32 -> w8 = symbolic

array uip_conn[48] : w32 -> w8 = symbolic

(query

[(Ule N0:(ReadLSB w16 0 uip_len)

1)

(Eq false (Eq 0 N0))

(Eq 255 (Read w8 0 payload))

(Slt 0

(ZExt w32 (ReadLSB w16 18 uip_conn)))]

false)
(a)

{{uip_len[0,(2B)]} <= 1}

&&

{{{uip_len[0,(2B)]} = 0} = FALSE}

&&

{{payload[0,(1B)]} = 255}

&&

{0 < {(4B)0x0 {uip_conn[18,(2B)]}}}
(b)

Figure 2.7.: Representation of a path constraint obtained from the Telnetd protocol
shown in Fig. 2.2: (a) in KQuery language and (b) in our human readable version

2.3.4 Property Extraction and Verification

One of the most demanding parts of this analysis is coming up with desired prop-

erties that capture the state machine inconsistencies the implementation should not

have. To obtain such properties, we explore the RFCs of the different protocols,

academic papers and Internet blog posts talking about the protocol, bug report filed

by the developers or third parties. One of the main problems we faced is that the

properties one can derive are generally described at a very high level of abstraction.

32

We then need to specify them in the implementation level details that are captured

by the extracted FSM.

To write the property, one would require the atom-proposition mapping file and

the E-FSM. We want to acknowledge that writing properties in pLTL needs a signif-

icant amount of effort. However, one can use property patterns to write the desired

properties in pLTL [81]. The property pattern gives a mapping between different re-

quirements in natural language and their pLTL counterpart. There are also automatic

tools that convert restricted natural language properties into pLTL formulas [81].

Once the property has been specified in pLTL, we add it to the input file along with

the model specification given by the FSM translator and run the model checking. If

the property has been violated by the model and a CEX is found, we forward the CEX

to the spurious CEX checker for further scrutiny. If the CEX is found to be inconsistent,

the spurious checker forwards an invariant which is added to the specification for the

next iteration of verification.

2.3.5 Spurious CEX Checker

Once we have received the parsed CEX from the NuSMV model checker, we check

consistency of each state and the transition in the CEX. For this we use the atom-

proposition map file generated by the FSM translator. We automatically generate

an SMT query from the CEX and the map file. For instance, for any state s in the

CEX, we take each proposition and its truth assignment of the form pi 7→ TVi where

TVi ∈ {true, false}, replace pi with its associated atom ai and construct a quantifier

first order formula of form
∧

i

(ai = TVi). We then call the STP SMT solver [80] with

the query and ask for a satisfiable substitution for the free variables. If the query is

satisfiable, we pass the CEX to the replay mechanism. However, if the query is not

satisfiable, we forward the following invariant “
∧

TVi=true

pi ∧
∧

TVj=false

¬pj → false” to

NuSMV using the INVAR keyword. This tells NuSMV that the states which do not

33

satisfy the invariant is an inconsistent state and should not be explored during state

exploration.

2.3.6 Replay CEX

The replay mechanism takes a consistent CEX and try to concretely execute the

CEX to check whether it is a realizable CEX. One possibility to execute the CEX is to

solve the constraints
∧

i

(ai = TVi) in each state of the CEX using the STP SMT solver

to get concrete values for the symbolic values then feed it to the replay mechanism

of KLEE in an input file. Recall that, to verify a plausible CEX we also have to

monitor that the state transitions in the CEX matches up with the state change

in the code. This will require instrumenting the source to have assertions, which

checks to see whether the state transitions and their corresponding actions match up.

However, for a different CEX, we would have to heavily instrument the source code

again. To avoid instrumenting the code to add assertions, we simulate the execution

using KLEE’s symbolic execution engine with concrete values. More precisely, at

each step of the CEX, we solve the constraints of that step using STP SMT solver

to get concrete values of each symbolic variables and overwrite the memory of each

symbolic variable with their respective concrete value. This has the advantage that

we do not require instrumenting the code at all. Additionally, we do not have to

worry about timeout events. The program runs with concrete values and we monitor

the program execution state to check whether the state transitions and actions of the

implementation match up with the state transitions and actions in the CEX. If this

is the case, we assume the CEX is a plausible one. When there is a loop in the CEX,

we unroll the loop for a fixed number of iterations and execute it accordingly.

2.3.7 Optimizations

We now describe two optimizations that we introduce in our CHIRON implementation–

one for preemptively ruling out spurious transitions generated by the FSM extraction

34

algorithm, and the other for speeding up the process of finding a consistent CEX

during verification.

Modeling Network Stack Events

Since our FSM extraction is focused on network protocol implementations, net-

work events play a critical role in extracting the E-FSM. An implementation of a

network protocol relies on the underlying network stack protocols. For instance, the

Telnet server protocol runs on top of TCP. The underlying network stack protocols

can impose restrictions on the feasible order of network events. For example, in case

of the Telnet server protocol, receiving a data packet from a client without an estab-

lished connection with the client is not feasible. As our FSM extraction algorithm

is oblivious to such restricted ordering of events, it will generate spurious transition

when a restricted ordering of events needs to be respected. Equipped with this in-

tuition, one can contemplate the following two approaches to ignore the spurious

transitions during compliance checking.

(a) During the FSM extraction We allow the user to provide a restricted event

model that regulates the order in which the network events can occur during an

actual protocol execution. Our FSM extractor can exploit this restricted event model

to generate the list possible events feasible in a particular FSM state of the E-FSM

(See line 12 of Algorithm 1).

(b) During the verification In this approach, the FSM extractor attempts all

possible events during the extraction of the E-FSM. However, we allow the user to

provide a pLTL formula Ψ that captures the feasible order of network events in which

they can occur in an actual execution. To verify the compliance of the implementation

against the property ϕ, CHIRON checks conformance against Ψ→ ϕ instead of ϕ.

Although both approaches rely on the user-provided input, which is based on

domain knowledge, there are some major differences. The first approach has the

35

advantage that the E-FSM is closer to the S-FSM. Whereas the second approach

yields both a larger FSM M and a larger formula Ψ→ ϕ against which M is model

checked. As the runtime complexity of model checking is dependent on both the

model size and the formula size, the second approach incurs a high overhead during

verification. Therefore, we select the first approach as it enables us to obtain a reduced

FSM and also speeds up the verification process.

Initial Invariants

When an inconsistent CEX is encountered by the Spurious CEX checker, it forwards

an invariant to the model checker to rule out the unsatisfiable transition for future

verification. Let us consider that we have the following atoms: payload[0, (1B)] = 255,

payload[0, (1B)] = 254, and payload[0, (1B)] = 253. The atoms signify that the first

byte of the payload buffer is 255, 254, and 253, respectively. Let us also assume that

they are respectively mapped to propositions p, q, and r. According to the semantics

of the propositions, the valid assignments are the ones where all of p, q, and r are

false or only one of them is true at a time. Since the model checker is oblivious to

the relationships between the atoms, it can require up to 4 steps (because 4 out 8

possible truth assignments are correct) before the Spurious CEX checker rules out all

the spurious cases. However, with the following set of initial invariants we can easily

rule out all the 4 unwanted truth assignments: p → ¬q ∧ ¬r, q → ¬p ∧ ¬r, and

r → ¬p ∧ ¬q.

With the increasing complexity of the implemented protocol, the number of propo-

sitions is likely to increase, which can consequently require exponential number of

steps to find a consistent CEX.

2.4 Evaluation

In this section we assess the effectiveness and practicality of CHIRON. Specifically,

we intend to answer the following research questions: (a) Is CHIRON applicable to

36

Table 2.1.: List of implementations evaluated using CHIRON

Protocol Type Implementation Protocol Notation

Contiki 2.4 Telnet C24
Telnet Server Contiki 2.7 Telnet C27

FNET 2.7.2 Telnet F
Contiki 2.7 DHCP C

DHCP Client
FNET 2.7.2 DHCP F

real protocol implementations in the wild? (b) Is CHIRON effective in finding non-

compliances? (c) How much improvement can we gain by applying the proposed

optimizations? (d) Is it possible to run compliance checking by CHIRON in a rea-

sonable amount of time?

2.4.1 Setup

We first demonstrate the efficacy of CHIRON by using it to evaluate various imple-

mentations of 2 protocols: Telnet and DHCP. Telnet is a byte-oriented bidirectional

communication protocol and often used as a mean to provide a command line interface

for interacting with a (possibly remote) device. Despite being an old protocol, Telnet

is still being used in the wild, for instance, by Android and other embedded systems’

developers, and also by Cisco network administrators. DHCP is a binary protocol

that assigns IP addresses to devices on a network. Because it greatly simplifies the

network administration, it is widely used in both home and enterprise settings.

We have obtained a total of 5 implementations of these protocols from different

TCP/IP network stacks: uIP (part of the Contiki OS) and FNET. In particular, we

focus on the Telnet server and DHCP client implementations from the source trees

of Contiki 2.4, Contiki 2.7, and FNET 2.7.2. We use Contiki 2.7 and FNET 2.7.2

because these were the latest releases at the time of evaluation. Contiki 2.4 came

to our attention because of the bug reported on its Telnetd implementation [12]. A

37

summary of the evaluated implementations can be found in Table 2.1. For brevity,

we will use the notation defined in Table 2.1 to identify each of the implementations

in the rest of our discussion.

We have configured both the Contiki and the FNET based on their default config-

uration to enable TCP/IP support for IPv4, Telnet server, and DHCP client service.

By default, the Telnet server for Contiki supports only one active client session.

Therefore, to be consistent, we have configured the Telnet server for FNET to also

handle at most 1 active session.

We run our experiments on a commodity machine equipped with an Intel Core i7-

2620M CPU and 8GB of RAM, running Ubuntu 14.04 LTS with Linux kernel version

3.13.

2.4.2 Property Verification

We have obtained 11 representative properties for the Telnet server protocol and

7 for the DHCP client protocol to demonstrate the effectiveness of CHIRON. The list

of properties as well as the verification results are shown in Table 2.2 and Table 2.3.

The properties (DP1 – DP7) for a DHCP client (see Table 2.3) are all extracted

from the RFC [82]. They govern how a DHCP client implementation must react to

various network events. However, for the Telnet server, we select the properties from

various sources (see Table 2.2). The TP1 property is specific to implementations that

support only one active client session at a time. TP2 – TP4 are obtained from the

Telnet RFC [83]. They describe how an implementation must interpret incoming data

and react accordingly. Properties like TP5 – TP7, not originated from specifications,

are used to demonstrate how a developer can use CHIRON to reason whether the

implementation transit correctly between states as desired. One important aspect of

the Telnet protocol is the Network Virtual Terminal (NVT), which is an abstraction

the Telnet protocol uses to overcome platform compatibility issues by starting with all

options disabled. Many modest Telnet servers implemented for resource-constrained

38

Table 2.2.: Telnet server properties and verification results

P
ro

p
e
rt
y

Property Description
Telnet C24 Telnet C27 Telnet F

V
al
id

F
al
se

F
ac
tu
al

V
al
id

F
al
se

F
ac
tu
al

V
al
id

F
al
se

F
ac
tu
al

TP1
The server must not accept
any new connections during
an on-going session

✓ ✓ ✓

TP2
If receive WILL after IAC,
must send DO or DONT

✓ ✓ ✓

TP3
If receive DO after IAC,
must send back WILL or
WONT

✓ ✓ ✓

TP4
If receive IAC IAC, must
consume the 2nd IAC as
regular data

✓ ✓ ✓

TP5

If receive IAC in NORMAL
state, must go to IAC state
and eventually go back to
NORMAL state

✓ ✓ ✓

TP6
If receive DO after IAC,
must go to DO state

✓ ✓ ✓

TP7
If receive WILL after IAC,
must go to WILL state

✓ ✓ ✓

TP8
For NVT, if receive DONT
after IAC, must NOT send
WONT

✓ ✓ ✓

TP9
For NVT, if receive WONT
after IAC, must NOT send
DONT

✓ ✓ ✓

TP10
For NVT, never send
DONT request

✓ ✓ ✓

TP11
For NVT, never send
WONT request

✓ ✓ ✓

Total: 6 0 5 7 0 4 11 0 0

embedded systems, including the three we have evaluated, tend to remain as NVTs

and not to provide support for any sophisticated options. Therefore, we have derived

39

Table 2.3.: DHCP client properties and verification results

P
ro

p
e
rt
y

Property Description
DHCP C DHCP F

V
al
id

F
al
se

F
ac
tu
al

V
al
id

F
al
se

F
ac
tu
al

DP1
If receive DHCPNAK in REQUESTING
state, must immediately start over DHCP
negotiation

✓ ✓

DP2

If receive DHCPOFFER in SELECTING
state, must immediately send out
DHCPREQ and move to REQUESTING
state

✓ ✓

DP3
If receive no DHCPOFFER in
SELECTING state and response timer
expired, must resend DHCPDISCOVER

✓ ✓

DP4
If receive DHCPOFFER in
REQUESTING state, must discard, not
change state, take no actions

✓ ✓

DP5
If receive DHCPACK in REQUESTING
state, must immediately move to BOUND
state

✓ ✓

DP6
If receive no DHCPACK in
REQUESTING state and response timer
expired, resend DHCPREQUEST

✓ ✓

DP7
If receive no DHCPACK in
REQUESTING state and state timer
expired, start over DHCP negotiation

✓ ✓

Total: 6 0 1 7 0 0

four additional properties (TP8 – TP11) from the Telnet RFC specifically targeting

the implementations that intend to remain as NVTs. Failing to comply with such

properties could lead to endless acknowledgment loops as pointed out in the Telnet

RFC.

We have discovered a total of 10 non-compliance instances: 5 in Telnet C24, 4 in

Telnet C27, and 1 in DHCP C. We now describe the non-compliances discovered by

CHIRON in details; however, we group the similar non-compliance instances together.

40

Non-compliance 1 (Accepting multiple client connections simultaneously)

According to the Telnet server implementation for Contiki, the server is expected to

have only one active session at a time. In other words, the server must not accept

any new connection from a Telnet client during an on-going session, which we denote

as the property (TP1). In our experiment, CHIRON generates a factual CEX for

Telnet C24 demonstrating that the Telnet server accepts a new connection from a

client even if there is an on-going session. In fact, this is due to a state machine bug

that can manifest upon receiving any additional connection. This bug was, however,

already reported [12] and fixed in the later release of Contiki-2.5.

After a close inspection, we have identified that this state machine bug can be

damaging as it has several implications: (a) inconsistent protocol behaviors as it

causes the protocol to end up in an unexpected (correct, but not in this context) FSM

state by taking an undesirable FSM transition and may change the program variables,

possibly by re-initialization, and (b) security issues as it can affect confidentiality and

integrity by sending the data intended for one connection to the other connection.

Such a state machine bug can often remain undetected during the concrete execution

of the implementation because of its nuances. Moreover, it also depends on the

developer’s ability to imagine such a scenario to manifest the bug using traditional

testing approaches (e.g., black-box testing), whereas we have discovered this non-

compliance using CHIRON with a very little effort.

Non-compliance 2 (Failed to reply appropriate Telnet command) Both

the Telnetd implementations from Contiki (Telnet C24 and Telnet C27) violate the

two properties (TP2 and TP3) that require the Telnet server must reply back the

appropriate Telnet command if it receives WILL (in case of TP2) or DO (in case

of TP3) from the connected Telnet client. The factual CEX generated by CHIRON

demonstrates that there exists an execution path in the real implementation where

the Telnet server fails to send back its response to the received Telnet command if

the buffer (i.e., telnetd buf) is full. For both the implementations, the Telnet server

41

uses this buffer to temporarily store all outgoing data including the Telnet command

responses and sends the data over the network from time to time.

A careful inspection of the source reveals that the Telnet server (to be precise,

sendopt function) does not check if it has failed to append the Telnet command

response to the buffer. Moreover, the Telnet command response is stored in an array

local to sendopt, which is lost right after the function returns. Therefore if the buffer

is full, the Telnet server would not ever notice that the response to the received Telnet

command has not been sent, which causes an interoperability issue since the Telnet

client keeps on waiting for the reply from the server. Such a non-compliance attests

to the effectiveness of CHIRON in finding subtle interoperability bugs.

Non-compliance 3 (Potential endless acknowledgment loops) Like the pre-

vious non-compliance, both the Telnetd implementation from Contiki (Telnet C24

and Telnet C27) violate the two properties TP10 and TP11. According to the Tel-

net RFC [83], the protocol must acknowledge a DONT (resp., WONT) command by

sending out a WONT (resp., DONT) only if the received DONT (resp., WONT) com-

mand causes a change in the current mode; otherwise, it must not acknowledge. This

is necessary to prevent potential endless acknowledgment loops– each party considers

the incoming commands as new commands rather than the acknowledgments. Since

both Telnet C24 and Telnet C27 are the basic implementation of the Telnet protocol

(i.e., as an NVT), a request to disable any option cannot make any change in the

mode of the terminal, and therefore they must not acknowledge any DONT/WONT

command requests. For both the implementations, CHIRON generates the corre-

sponding factual CEX, which demonstrates the Telnet server actually replies back

WONT (resp., DONT) when it receives a DONT (resp., WONT) command request

from the client.

One can argue that a Telnet client never sends a DONT/WONT command when

connected to an NVT Telnet server (like Telnet C24 and Telnet C27) since the client

would not be successful to enable any option in the first place. However, there can

42

be two possible scenarios where such endless acknowledgment loops are feasible: (a)

The first case happens when the Telnet client allows multiple new requests about

an option that is currently under negotiation, and this is not explicitly prohibited in

the Telnet RFC [84]; (b) Second case happens if the Contiki Telnet server connects

with a (possibly faulty) Telnet client that initiates a DONT/WONT request and

also acknowledges the received DONT and WONT commands. Consequently, such

loops can impair the performance of the IoT devices running either Telnet C24 or

Telnet C27 implementation. This non-compliance exhibits how CHIRON can be used

to check if an implementation complies with its RFC specifications.

Non-compliance 4 (Failed to immediately start over DHCP configuration)

According to the RFC [82] of the DHCP protocol, a DHCP client receiving a DHCP-

NAK message from the DHCP server as a response to its previously sent DHCPRE-

QUEST message must restart the DHCP configuration process by sending a new

DHCPDISCOVER message, which we denote as the property DP1. In our analy-

sis of the DHCP client implementation for Contiki (DHCP C), CHIRON generates

a factual CEX demonstrating an execution path of the implementation that violates

the property DP1.

A close inspection of the source reveals that DHCP C does not handle the re-

ception of a DHCPNAK message; instead, DHCP C keeps on re-transmitting its

DHCPREQUEST upon timeout for multiple times before giving up and restarting

the configuration process. Such a reaction of DHCP C to DHCPNAK messages,

however, does not lead to any inconsistency in the protocol state/behavior. Nev-

ertheless, this implementation hinders the performance of the DHCP protocol as it

waits for a long time before starting over the configuration process. Uncovering such

a non-compliance shows that CHIRON can help developers find some bugs capable

of impairing the protocol performance.

43

Table 2.4.: Impact of various event models on FSM extraction. EM1 corresponds to
the restricted model described in section 2.3.7, whereas EM2 considers all possible
events with no specific order.

Protocol
Notation

Event Model 1 (EM1) Event Model 2 (EM2)
States Transitions Propositions States Transitions Propositions

Telnet C24 6 84 19 6 114 19
Telnet C27 12 162 21 12 306 21
Telnet F 7 18 11 7 34 11

DHCP C 4 46 17 4 47 17
DHCP F 8 80 45 8 140 45

2.4.3 Impact of Network Event Models on FSM Extraction

Table 2.4 shows the comparison between the extracted FSMs (i.e., E-FSMs) using

two different event models. Event Model 1 (EM1) corresponds to the user-provided

restricted event model that regulates the order of the network events in which they

can occur in an actual execution of the protocol. Whereas Event Model 2 (EM2)

represents the less restrictive event model where any event can occur from the set of

all possible network events. For both the event models, the E-FSMs contain the same

number of FSM states. However, in case of EM2, the E-FSM has more transitions

as expected. Most of these transitions are spurious since in reality such transitions

can never occur. This result empirically supports our claim about the advantage of

having a restricted event model as pointed out in section 2.3.7. Note that the number

of propositions stays in the same in both the cases.

2.4.4 Execution Time of CHIRON

To evaluate the feasibility of CHIRON being a practical compliance checking

framework, we report the execution time incurred by the major components of CH-

IRON as shown in Table 2.5. In this set of experiments, we have considered both

optimizations: EM1 (the restricted event model) during FSM extraction and the ini-

tial invariants during verification. Each reported execution time is an average of ten

44

Table 2.5.: Run Time of CHIRON components (unit: seconds). For each protocol
implementation, the value for Property Verification is the aggregate time for ver-
ifying all applicable properties. ‘–’ denotes CHIRON found no consistent CEXs to
replay.

Protocol
Notation

FSM
Extraction

Property
Verification

CEX
replay

Total Run
Time

Telnet C24 0.98 8.38 1.05 10.41

Telnet C27 6.29 14.95 1.12 22.37

Telnet F 0.16 1.64 – 1.80

DHCP C 7.01 1.45 0.24 8.70

DHCP F 15.09 3043.80 – 3058.89

independent runs. Note that, once the E-FSM is extracted, we can then use it for

checking compliance of an arbitrary number of properties. For property verification,

we report the total required time to check all the 11 properties for Telnetd and 7

properties for DHCP client. CEX replay is only applicable if CHIRON has found a

consistent CEX.

Among the three Telnetd implementations, CHIRON requires the longest time to

extract the E-FSM of Telnet C27, which has a relatively larger E-FSM size (see Ta-

ble 2.4). The same trend is observed in case of the two DHCP client implementations.

Note that both the DHCP client implementations take longer time than the Telnetd

implementations. This is due to the fact that, for each receive event, a DHCP client

implementation handles a symbolic packet of size at most 552 bytes as opposed to a

Telnetd implementation that handles 1 byte at a time.

CHIRON spends the majority of its execution time in verifying properties. The

required time spent in the verification phase is influenced by the E-FSM size, the

length of the properties, and the number of propositions. However, the verification

time for DHCP C is much smaller than its FSM extraction time, and this is because

of having a relatively smaller E-FSM with a small number of propositions compared

to other implementations. On the contrary, DHCP F incurs a roughly 50-minute

verification time because it has 1.7 times as many transitions and more than 2.5 times

45

as many propositions as its Contiki counterpart, DHCP C. The high verification time

is due to the increased number of propositions, which actually causes an exponential

growth of the state-space of the model checker.

We also demonstrate the usefulness of adding initial invariants to speed up the

convergence of finding a consistent CEX. For the purpose of comparison, we repeat the

verification phase against the aforementioned properties. Without adding the initial

invariants, the time required to finish the verification step for Telnet F elevates to

333.4 seconds. Whereas none of the other implementations finished the verification

for even one property within a time limit of 60 minutes. We also observe the benefit of

the Spurious CEX checker during the verification of Telnet F against the 11 properties

as it was able to filter out a total of 1341 CEXs at an earlier stage.

2.5 Discussion

In this section, we briefly discuss how CHIRON can possibly be extended and also

discuss threats to validity of our evaluation.

What if FSM states are not realizable explicitly through program variables

Our FSM extraction technique requires the protocol FSM state to be explicitly real-

izable through program variables. However, one can implement a protocol S-FSM

either by representing the states as goto labels in the program or by not even having

any FSM representations at all. Even though it is possible to lift our analysis to

handle state machines implemented using goto labels, how to capture implicit state

information remains an open research question.

Which program variables to mark as symbolic In our analysis, only the con-

straints over symbolic variables are added to the transition of the E-FSM. Hence,

if one desires to reason about certain variables in the program during analysis, then

it is crucial that those variables are marked as symbolic. Now one obvious question

the readers might ask is that in a network protocol implementation what variables

46

should be added as symbolic. One rule of thumb for network protocols is that any

external or environmental variables (e.g., packet buffer) which can influence the state

transition of the protocol should be marked as symbolic.

Accuracy of compliance checking Since the E-FSM is an approximation of the

FSM that is implemented in the source, CHIRON may provide incorrect verdicts on

compliance checking of the protocol implementation. We have a two-step process

for ruling out false non-compliance verdicts, nevertheless, it would require further

refinement of the abstraction during FSM extraction to rule out false compliance

verdicts. However, we want to emphasize that during our evaluation all compliance

and non-compliance verdicts have been manually verified for further assurance.

Predicate abstraction To guarantee the termination of our analysis, we require

that each program variable that explicitly constitutes the protocol state takes value

from a small, finite domain. Obviously, this is restrictive and might not be satisfied

by some stateful, event-driven protocol implementations. One possibility is to intro-

duce predicates over the state variables that can take values from a large domain.

Such abstractions (i.e., predicate abstractions) will combine multiple concrete-valued

variables into a single abstract state where the predicates’ values are either true or

false. Even though we will lose precision due to abstraction, it will enable us to handle

large, possibly infinite, states of the protocol.

Alternative execution semantics CHIRON FSM extraction technique only con-

siders non-concurrent, asynchronous C programs. For handling programs with al-

ternative execution semantics, for instance, event-driven concurrent programs for

TinyOS [85] or multi-threaded C programs will require revamping the symbolic exe-

cution engine [60, 86].

Threats to validity There are a couple of threats to validity in our evaluation. (1)

KLEE has a high degree of non-determinism which may cause the different execution

47

times reported here to be not reproducible. (2) We used KLEE and STP SMT solver

with their default configuration, and our reported results on execution time may not

be the same for other configurations.

2.6 Summary

In this work, we have developed a framework CHIRON for checking whether an

event-driven protocol implementation in C complies with some desired properties

written as pLTL formulas. For checking compliance, we first extract the approximate

FSM of the protocol (i.e., E-FSM) automatically from the implementation with

minimal developer input. Once we have extracted the E-FSM from the protocol

source, we use a symbolic model checker to check the satisfaction of each of the desired

pLTL properties against the E-FSM. When the property in question is violated,

a counterexample (CEX) is generated by the model checker as evidence. We then

use a two-step validation process to rule out the false CEXs. We have implemented

CHIRON on top of KLEE and empirically showed the efficacy of it by uncovering

several non-compliances of 5 protocol implementations from different network stacks.

48

3 ADVERSARIAL TESTING OF NETWORK PROTOCOL

IMPLEMENTATIONS

Mobile ad-hoc networks allow a set of wireless nodes to communicate with each other

without any central infrastructure. As traditional routing protocols do not perform

well in a constrained environment such as wireless networks, significant work has been

put into designing routing protocols for wireless networks. Examples include proactive

protocols such as DSDV [22], and OLSR [23], reactive protocols such as AODV [24]

and DSR [25], and hybrid protocols such as DST [88]. Additionally, there have also

been efforts to improve the performance of the routing protocols by operating at

the data link layer instead of the network layer, a representative example being the

BATMAN [89] protocol. Given the increased threats that exist in wireless networks,

several secure routing protocols have been designed. Examples include SAODV [90],

ODSBR [91], ARAN [26], and Ariadne [92]. Many of the protocols mentioned above,

such as AODV, ARAN, OLSR, DSDV, and BATMAN, were implemented and are

available from public repositories [93–97].

Given the importance of routing as a fundamental component of wireless networks,

many protocols have been subjected to model checking the design [27] and to testing

the simulator-based implementation [28, 29]. For example, several model checking

tools [27,98,99] were used to verify wireless routing protocols, and several simulators

[28, 29] were used to demonstrate and test wireless routing protocols [22–25,88, 100].

While model checking helps to verify the validity of the design, it does not provide

a guarantee that the real-world implementation is free of bugs and vulnerabilities,

since implementations contain optimizations not captured by the model, sometimes

diverge from the design, and often introduce new bugs. In addition, while simulators

Some of the contents of this chapter is based on the joint work with Hyojeong Lee, Rahul Potharaju,
Charles Killian, and Cristina Nita-Rotaru [87]

49

provide easier and simpler ways to describe a protocol, they sacrifice some aspects of

realism such as the interaction of the protocol with the operating system components.

16260

1270 1571

67

1290
609

7209

150

3048

661

0

5000

10000

15000

AODV ARAN BATMAN DSDV OLSR
Protocol Name

C
o

u
n

t

Implementation Protocol

Figure 3.1.: Comparison of the routing protocols based on popularity (computed by
searching on Google Scholar). Protocol counts indicate the total number of cita-
tions to the original research paper; Implementation counts indicate citations to the
implementations and the URL of the software.

Fig. 3.1 shows the popularity of some wireless protocols in the academic com-

munity (obtained from Google Scholar) — it is evident that hundreds of researchers

use the publicly available implementations for performance comparison across proto-

cols [33–35], or to investigate properties of the network stack such as performance of

TCP in multihop ad hoc networks [33,36]. Thus, it is important to ensure that these

implementations are robust and do not include faults and security vulnerabilities that

may lead them to enter an unsafe state or exhibit degraded performance.

Some recent works like Gatling [30] showed the importance of performing ad-

versarial testing for message-passing distributed systems. By testing systems im-

plementations beyond just basic functionality (i.e. examining edge cases, boundary

conditions, and ultimately conducting destructive testing), Gatling discovered vul-

nerabilities, many of which were not captured by model checking the design or by

simulator-based testing. However, Gatling requires the target protocol to be imple-

mented in the MACE language [101]. On the other hand, Max [31] focuses on two-

party network protocols to find attacks that can manipulate the victim’s execution

50

control flow by relying on the user specified information about a known vulnerability

of the implementation to limit the search space and thereby catering itself as more

suitable for corner cases.

In this work, we focus on adversarial testing of implementations of wireless routing

protocols. We consider attacks and failures that are created through manipulation

of protocol messages and are specific to wireless routing protocols, having a global

impact on the protocol performance. We leverage the design of Turret [102]—an auto-

mated adversarial testing platform for distributed systems—to create an adversarial

testing platform for wireless routing protocols. Turret uses a network emulator to

create reproducible network conditions and virtualization to run unmodified binaries

of systems’ implementations. The platform requires the user to provide a description

of the protocol messages and corresponding performance metrics. Turret’s design is a

good starting point for a cost-effective wireless testing environment because it allows

a binary to run in its native operating system while limiting the impact of noise and

interference on the performance of the system. Our contributions in this work are:

• We present Turret-W, a platform for adversarial testing of wireless routing pro-

tocols. Turret-W leverages the design of Turret and includes new functionalities

such as the ability to differentiate routing messages from data messages, support

for protocols that use homogeneous or heterogenous packet formats, support for

protocols that run on geographic forwarding (not only IP), support for proto-

cols that operate at the data link layer instead of the network layer, support for

replay attacks, and ability to establish side-channels between malicious nodes.

As a result, Turret-W can test not only general attacks against routing, but also

wireless specific attacks such as blackhole and wormhole attacks. Our approach

is cost effective in comparison with the hardware and manpower costs required

by the approach in [35]. In addition, our approach does not pose any restric-

tion on the implementation language like Gatling [30], nor relies on a priori

knowledge of any vulnerability like Max [31].

51

• We demonstrate attack discovery with Turret-W using detailed case studies

on five representative wireless routing protocols: a reactive protocol (AODV), a

secure reactive protocol (ARAN), and three proactive protocols (OLSR, DSDV,

and BATMAN), whose implementations we obtained from public repositories.

We found 1 new and 7 known attacks in AODV, 6 known attacks in ARAN, 5

known attacks in OLSR, 4 new and 7 known attacks in DSDV, and 7 known

attacks in BATMAN, for a total of 37 attacks. While most of attacks we found

are protocol level attacks, one attack in AODV and 4 attacks in DSDV were

solely implementation level attacks, and such attacks could have been discovered

only by testing the actual implementations under adversarial environments.

• We show that Turret-W also can find bugs, as it provides a testing environment

that is realistic and controllable. Unlike attacks, bugs cause performance degra-

dation in benign executions. We discovered 3 bugs in total, 2 in AODV and 1

in ARAN. The bugs in AODV were due to a subtle interplay between AODV

code and the operating system kernel.

3.1 Platform Overview

Our goal is to test wireless routing implementations, where the network conditions

can be reproducible and also isolated from outside world interference. In our previous

work [102] we created Turret, a platform for adversarial testing of message passing

distributed systems. The design of Turret makes it an appealing choice for testing

wireless network protocols because the emulation of the network ensures reproducible

performance and limits the noise and interference, while the virtualized approach al-

lows binaries to run in their native environments. However, Turret cannot be directly

applied to wireless networks or routing protocols. Below, we first give an overview

of Turret, the platform that we built on, and then explain what functionalities we

added to support wireless routing protocols. We refer to Turret with our extension

as Turret-W.

52

Table 3.1.: Message delivery actions supported by Turret

Action Action Description Parameter

Drop Drops a message Drop probability

Delaying Injects a delay before it sends a
message

Delay amount

Duplicating Sends the same message several
times instead of sending only one
copy

Number of du-
plicated copies

Diverting Sends the message to a random
node instead of its intended des-
tination

None

3.1.1 Overview of Turret

Turret is a platform for performance-related attack discovery in unmodified dis-

tributed system binaries. Turret uses virtualization (i.e. KVM [103]) to run arbitrary

operating systems and applications, and network emulation (i.e. NS-3 [104]) to con-

nect these virtualized hosts in a realistic network setting. Turret requires a description

of the message formats that the system relies on, and a set of metrics that capture

the performance of the system.

A controller bootstraps the system by starting NS-3 and running application bi-

naries inside the virtual machines. Each of these virtual machines (VMs) acts as an

individual node of the distributed system. The VMs communicate with each other

with the help of the NS-3 emulator. Specifically, each VM is mapped to a node inside

NS3, called a shadow node, through a Tap Bridge connection (available in NS-3),

which connects the inputs and outputs of an NS-3 network device to the inputs and

outputs of the VM’s network interface (i.e., the corresponding TAP device of the VM)

as if the NS-3 network device is a local device to the VM. The controller lets each

shadow node know if it will act as a benign node or as a malicious node. A shadow

node instructed to act as malicious will activate the malicious proxy, a component

implemented by Turret on top of the Tap Bridge, to intercept messages generated

by the application running inside the virtual machine and modify them according to

53

Table 3.2.: Message lying actions supported by Turret

Action Action Description Parameter

LieValue Changes the value of the field
with a specified value

The new value

LieAdd Adds some amount to the value
of the field

The amount to
add

LieSub Subtracts some amount from the
value of the field

The amount to
subtract

LieMult Multiplies some amount to the
value of the field

The amount to
multiply

LieRandom Modifies the value with a random
value in the valid range of the
type of the field

None

an attack strategy. An attack strategy may consist of two types of malicious actions:

Message Delivery Actions that affect when and where a message is delivered (see

Table 3.1) and Message Lying Actions that affect the contents of a message (see Ta-

ble 3.2). In the case of message lying actions, different fields inside a message can be

automatically modified based on the selected attack strategy and the user-provided

message formats.

3.1.2 Limitations of Turret for Wireless Routing

Turret cannot be directly applied to wireless networks or routing protocols because

of several limitations.

Distinguishing between control plane and data plane: While Turret can inject

attacks and faults into any message-oriented protocol, it does not differentiate data

messages from routing messages. In case of routing, many attacks on the data plane

including degradation in the application performance can be amplified if the routing

mechanism is disrupted. Thus, a platform intended for routing needs to control

independently both the control (routing) plane and the data plane so that it can

inject fine-grained attacks based on the type of the control plane messages and coarse-

54

grained attacks based on the service type of the data plane messages. For wireless

networks, the separation is also needed to support basic attacks such as blackhole in

which an attacker will drop all data messages but participate in the routing algorithm

correctly.

Parsing homogeneous and heterogeneous packets: Turret expects an inter-

cepted packet to contain only one message pertaining to the target protocol. Whereas

routing protocols are typically designed to follow either homogeneous packet format

(i.e. the routing protocol packs one type of routing message(s) into a single data-

gram) or heterogeneous packet format (i.e. the routing protocol packs different types

of routing messages into a single datagram). In both cases, the length of the packet

can be fixed or variable. Routing protocols designed for wireless networks generally

adopt either packet formats, as communication is expensive in wireless networks.

Supporting non-IP packets: Turret assumes that the target protocol runs on top

of Internet Protocol (IP) at the network layer. Thus, the malicious proxy processes

each intercepted packet as an IP packet. However, not all existing wireless routing

protocols use IP as the packet forwarding protocol at the network layer. For example,

some protocols use geographic forwarding [105,106] where packets are forwarded based

on physical proximity. Others such as BATMAN [89] or HWMP [107] operate at

layer 2 (data link layer), instead of layer 3 (network layer), use MAC addresses for

routing instead of IP addresses and transport routing information encapsulated into

raw Ethernet frames. Therefore, it is important to support both non-IP and layer 2

routing packets to enable adversarial testing of such protocols.

Replaying packets: Turret does not provide the functionality to replay packets.

Replaying packets is particularly interesting in case of wireless networks since it is

a very low cost attack that can easily be launched. Note that packet replaying is

different from packet duplication. In a replay attack, an attacker records another

node’s valid packets and resends them (without modification) later to other benign

nodes via legitimate channels only if the packets contain the target control message(s).

55

This causes other nodes to add incorrect routes to their routing table. Such attacks

can be used to impersonate a specific node or simply to disrupt the routing plane.

Establishing wormhole tunnels: Turret does not support colluding attacks. How-

ever, an attack specific to wireless networks that requires coordination between two

attackers and is shown to be very detrimental is the wormhole attack where two

colluding adversaries cooperate by tunneling packets between each other to create

a shortcut in the network. As wormhole attacks are feasible (basic attack requires

only two colluding nodes), it is important to be able to test the impact of wormhole

attacks on the routing protocol.

3.1.3 Turret-W Description

We modified Turret to address the above limitations. The new platform, Turret-

W, is shown in Fig. 3.2. The controller component coordinates the testing. It gen-

erates a topology file for the network emulator using a configuration file provided by

the user. The configuration file specifies parameters such as the network topology,

number of nodes, and number of malicious nodes. The controller then starts the vir-

tual machines and binds each of them to the underlying network emulation layer. It

then loads the routing service at the routing layer and instantiates the application at

the application layer. It accepts the list of attack strategies created by the strategy

generator and injects them into the malicious proxy. Finally, it collects log messages

used to estimate the performance of the application running on top of the routing

protocol.

Wireless network emulation: Like in Turret, the virtual machines operate on top

of a network emulation layer provided by NS-31. We configure NS-3 to emulate WiFi

links. We leverage the Tap Bridge connection (available in NS-3) to connect a VM

with its corresponding shadow node so that it enables a NS-3 net device to appear as

1Note that Emulab [108], MobiNet [109], Orbit [110] could also conceptually replace NS3. Emulab
with fixed wireless provides more realism. However, the approach provides less reproducible results
because of unwanted interference on the wireless channel and requires a separate implementation of
the malicious version of the target routing protocol for each malicious node.

56

Message Formats

Message-Parser

Generator

Strategy

Generator
Controller

VM1 VM2 VMn
...

CONFIG

List of malicious nodes

Topology

Application

User-space

Kernel-space

RP RT

vnic vnic

Network Emulator Controller

Virtual

Machine

Network Emulation

NS-3 nodes

Benign

Malicious

Tap Bridge

WiFi Net Device

Tap Bridge

WiFi Net Device

Malicious

Proxy

Message

Parser

Malicious Actions

Attack

Strategy
Log

List of

attack

strategies

Figure 3.2.: Turret-W platform (RP denotes Routing Protocol, RT denotes Routing
Table and VNIC denotes Virtual Network Interface Card)

a local device inside the VM thereby allowing the VM to use this local net device for

WiFi transmission. The network emulation layer creates a virtual multi-hop wireless

environment to transmit packets from a source to a destination virtual machine.

Attacks specific to wireless routing: We modified the Turret’s malicious proxy

(implemented on top of the Tap Bridge) to differentiate between messages originating

from the routing layer and the application layer based on the port number. Differenti-

ating data messages from routing messages allows Turret-W to implement a blackhole

attack wherein a malicious node acts benign at the routing layer but selectively/en-

tirely drops messages originating from the application layer.

We also provide support for a wormhole attack as follows: a wormhole tunnel is

implemented as part of the malicious proxy inside NS-3 connecting any two colluding

adversaries (precisely, shadow nodes). However, the routing code running in the

virtual machines are oblivious of this tunnel, which introduces a new challenge to deal

with. If we just forward data messages between the end nodes forming the wormhole,

one side effect is that the routing will believe there is no direct link between the two

end points of the wormhole. Therefore, to convince the routing services of the end

nodes, forming the wormhole tunnel, that they are direct neighbors of each other, we

allow these end nodes to exchange their own beacon messages (e.g., HELLO) over the

wormhole tunnel. At the same time, the beacon messages forwarded between the ends

57

of the wormhole should be restricted only to those generated by the end nodes that

form the wormhole and not their neighbors since that will results in incorrect updates

of routing tables. All other routing protocol messages are forwarded by the colluding

nodes over the wormhole tunnel so that they can perform the wormhole attack in

the route discovery process. As a result, Turret-W supports all the malicious actions

presented in Tables 3.1, 3.2, and 3.3.

Homogeneous and heterogenous packets: To inject a malicious action, the ma-

licious proxy needs to be able to parse messages in order to act on different message

types and to lie on a particular field of a message. The message-parser reads a message

format description and outputs necessary source code that feeds into the malicious

proxy. This source code contains a set of API calls (e.g., getMessageType(), getMes-

sageSize() etc.) that expose properties of the message to the malicious proxy. An

example message format description (a route request for AODV) is given below:

AodvRreq {

uint8_t type = 1;

uint32_t dest_addr;

uint32_t dest_seqno;

uint32_t orig_addr;

uint32_t orig_seqno;

...

}

Routing protocols can follow either homogeneous packet format or heterogeneous

packet format. For instance, AODV sends a route request message in a single UDP

packet and thus, can be said to follow the homogeneous packet format. In contrast,

OLSR allows individual messages be piggybacked and transmitted together in one

transmission such as a topology control message and a HELLO message can be sent

together in a single UDP packet. We modified the message-parser generator so that

it can handle both homogeneous and heterogeneous packet formats and thus, enable

testing of a wider variety of routing protocols.

58

Table 3.3.: Malicious actions added by Turret-W

Action Action Description Parameter

Replay Records valid control messages from a
node and resends them to other benign
neighbors

None

Blackhole Drops all data packets but participates
in the routing algorithm correctly

None

Wormhole Creates a wormhole between two col-
luding nodes and tunnels packets be-
tween each other

None

Wormhole with
blackhole

Creates a wormhole between two col-
luding nodes and tunnels routing pack-
ets between each other, but drops all
data packets

None

Packet forwarding protocols: Typically routing protocol implementations use

Internet Protocol (IP) as the packet forwarding protocol at the network layer. How-

ever, developers are free to choose other packet forwarding protocols more suitable

for the target network such as geographic forwarding for wireless ad hoc networks.

The DSDV implementation [111] for the Click Modular router [112] is using such a

protocol. Instead of IP, it is built on top of the Grid service [113] that is based on

geographic forwarding. We modify the malicious proxy so that it handles routing

messages packed into either IP or non-IP packets, and thus, we enabled the testing

of routing protocols that are built on top of non-IP protocols.

Routing at layer 2: Traditionally routing protocols operate at layer 3 (the network

layer) on top of IP (or some other packet forwarding protocols). However, several

recently developed routing protocols (e.g., BATMAN) operate at layer 2 (the data

link layer) where the nodes are attached to a unique Ethernet broadcast domain

and are agnostic to the network topology. Moreover, routing in such protocols relies

on MAC addresses instead of IP addresses. To enable adversarial testing of routing

protocols like BATMAN, our malicious proxy supports injecting malicious actions into

59

routing messages even when they are encapsulated and forwarded as raw Ethernet

frames.

Attack strategy generation: The strategy generator is responsible for generating

a list of attack strategies that the target protocol should be tested against. For

example, consider the following strategies in case of AODV where the malicious proxy

is being instructed to duplicate each route request (AodvRreq) message 50 times and

drop all the route error (AodvRerr) messages (i.e. 100%):

DUP AodvRreq 50

DROP AodvRerr 100

...

Given the message format description of the protocol under test, these attack

strategies are generated based on the malicious actions listed in Tables 3.1 and 3.2

along with a value that decides the severity of that action. This attack strategy

generation is inspired from prior work [?, 31, 32]. To support the additional wireless

specific attacks listed in Table 3.3, we extended Turret’s basic set of malicious actions

with replay, blackhole, and wormhole attacks.

Support for multiple interfaces: Though Turret-W currently supports routing

protocols that rely on a single network interface out-of-box, the platform can easily be

extended to support routing protocols that leverage multiple network interfaces [114,

115]. In our current setup, each VM is equipped with only two network interfaces —

one dedicated for the target routing protocol and another for other purposes (e.g.,

controlling the VM). Therefore, to enable testing of routing protocols that leverage

multiple interfaces, we could equip the VMs with the necessary number of interfaces

and configure the network emulator to detect these interfaces.

3.2 Methodology

We demonstrate our platform on real-world implementations of five representa-

tive wireless routing protocols: AODV [24], ARAN [26], OLSR [23], DSDV [22], and

60

BATMAN [89]. AODV is a well-known reactive (routes are determined on-demand)

routing protocol whereas ARAN is not only reactive but also a secure routing pro-

tocol. On the other hand, both OLSR, DSDV, and BATMAN are proactive (routes

are determined in advance) routing protocols. For AODV, ARAN, OLSR, and BAT-

MAN we obtained the implementations from their public repositories [93–95, 97],

while for DSDV, we obtained the implementation available in the Click modular

router source [96]. It is noteworthy that the DSDV implementation runs on geo-

graphic forwarding and the BATMAN implementation operates at layer-2 (the data

link layer).Next, we describe the attacker model, our experimental setup and the

selection of system parameters.

3.2.1 Attacker Model

We focus on performance attacks mounted by malicious participants to disrupt

the routing service thereby impairing the protocol performance, which is expressed

by a performance metric that is when evaluated gives an indication of the progress

the protocol has made towards completing its goals. To find such attacks, we measure

the protocol performance, using the given performance metric, during each execution

of the protocol in the presence of malicious participants in the network. The achieved

performance is compared against a baseline performance obtained from an execution

where all nodes are benign. We define an attack as follows:

Definition 1 - Performance Attack: When the performance difference between

a malicious execution and a benign execution is greater than a threshold, δ, we say

that the attack strategy has resulted in a successful attack.

Here, δ is a system parameter that depends on the protocol under test.

By directly testing real implementations running in their target operating systems,

our platform captures the intricate interactions between the protocol being tested and

the operating system components. In addition, the isolation and the reproducibility

offered by the emulated and virtualization-based environment help us discover bugs

61

that impair the performance of the protocol even in a benign environment. Such bugs

cannot be found in a simulation environment. We define a bug as follows:

Definition 2 - Performance Bug: A performance bug is an implementation-level

error that limits the practical utility of the protocol in a benign execution by causing

100% loss of application packets sent by the source.

3.2.2 Experimental Setup

All our experiments are performed on a Dual-Quad core Intel(R) Xeon(R) CPU

E5410@2.33GHz with 8 GB RAM host machine. We use Ubuntu 10.04.4 LTS to serve

as the host OS. In all the experiments, we use 12 VMs, each allocated 128 MB RAM.

For AODV, we use Debian 6.0.5 with Linux Kernel 2.6.32 as the guest OS. One of

the advantages of our platform is that it allows us to execute binaries to run on their

target operating systems. For instance, since ARAN requires an older kernel, we use

Fedora Core 1 with Linux kernel 2.4.22 as the guest OS.

Our emulated network is a multihop wireless adhoc network. For the 802.11 MAC

layer, we use 802.11a with a bit rate of 6 Mbps and a propagation loss model (called

RangePropagationLossModel, available in NS-3) with a range of 100 meters for each

link. We perform our experiments using a static grid topology. As an application on

the VMs, we run iperf [116], a network benchmarking tool. In all the experiments,

the performance of the application we report is averaged over ten runs.

We obtain a performance baseline using benign testing, where we randomly select

pairs of source and destination nodes and transfer a stream of UDP packets between

them for 30 seconds. Since we do not intend to stress the protocol implementation,

we use a lower data rate of 128 Kbps so that the impact of attacks can be easily

observed – a low packet delivery ratio implies an attack [91,117].

As a performance metric, we use packet delivery ratio (PDR), i.e., a ratio of the

total number of packets (in our case, application packets) received by the destination

to the total number of packets sent by the source. PDR is easy to measure irre-

62

spective of the underlying routing protocol as it can be computed from the results

produced by the application (i.e. iperf). Moreover, this metric does not require any

instrumentation to the routing protocol implementation, which supports our goal of

testing unmodified routing implementations. For each protocol, we capture the PDR

achieved in each malicious execution and compare it with the baseline PDR. Given

that we look for attacks that significantly degrade the performance, we argue that

the measured baseline PDR can be used as a ground truth since it is always closed

to the maximum (i.e., 100%) as per our experimental observation (see § 3.3- 3.7).

We select malicious node(s) randomly and inject malicious strategies during the

entire experiment. We vary the total number of adversaries from 1 to 4 (out of the

total 12 nodes) exhibiting a homogeneous behavior, i.e., we inject the same attack

strategy to each malicious node. For every attack strategy applied to the routing

messages, a malicious node drops application packets with a probability of p (a system

parameter) to affect the performance of the application.

To demonstrate the effect of blackhole attacks and wormhole attacks, we perform

experiments with three different configurations of adversaries: blackhole with one ad-

versary, blackhole with two adversaries, combination of wormhole and blackhole with

two colluding adversaries. When a blackhole attack strategy is injected, an adversary

participates benignly in the routing protocol but drops 100% of application packets.

The effect of a wormhole is noticeable in terms of application performance when com-

bined with a blackhole attack. Remember that except for blackhole and/or wormhole

attacks, we use the packet dropping probability p to drop application packets in all

other malicious executions.

The threshold δ, a system parameter, is dependent on the protocol under test. The

user can specify the threshold indicating the amount of performance loss he is willing

to tolerate. Alternatively, it can be determined from ground truth by recording the

observed performances for different attack strategies and select the threshold value

that will detect the attack manifested by the weakest adversary from the set of the

known attacks where a higher threshold means a more aggressive attacker. We relied

63

on the second approach. We consider blackhole with one attacker as the weakest

adversary where the adversary drops all data messages but participates benignly in the

routing protocol. Moreover, we know all the protocols we are testing are susceptible

to blackhole attacks. Hence, we decide to choose 0.2 (i.e., 20%) as our threshold

so that our tool can detect the blackhole attack. Intuitively, any successful attack

strategy manifested by a relatively stronger adversary (attacks both the routing and

the data messages) worsens the performance. Hence, the chosen δ would also be able

to detect such attack strategies.

Overhead of Turret-W. Routing protocols usually use timeouts to prevent the

use of stale information or provide reliability of transmission. When these timeouts

expire, routing protocols take necessary measures such as removing stale entries from

routing tables, restarting new route discovery, or entering recovery state. Turret-W

can cause two different types of delays that will not be observed in real environment.

First, it can cause a processing delay when the network flow is heavier than the

network emulator capacity. Second, a malicious proxy can add delays while injecting

malicious actions. The first type of delay is due to the nature of emulation based

testing and can be prevented by over-provisioning. However, the impact of the second

type of delay needs to be measured. To evaluate the amount of delay introduced by

the malicious proxy, we performed experiments with AODV and OLSR protocols for

the malicious attacks listed in Table 3.4. We observed that the delay is in the order

of tens of µsec with a median of 40 µsec. Whereas the route expiration timeout used

in AODV and OLSR are 5 sec and 6 sec, respectively. This result demonstrates that

the computation of the malicious proxy of Turret-W does not have any significant

impact on the routing protocols due to the low overhead.

Scalability of Turret-W: The scalability of Turret-W depends on (a) the scalability

provided by the underlying emulator, and (b) the scalability of the routing protocol

under test. Turret-W leverages the emulation environment of NS-3 and hence is

subject to its limitations such as not being able to support large network sizes in

the emulation due to the overhead related to the management of the large number of

64

threads in the NS-3 process [118]. As NS-3 is one of the most widely used network

emulators and the performance of network emulation is not within the scope of our

work, we choose a reasonable size of network consisting of 12 nodes and focus on

networks that can still operate correctly under a reasonable number of malicious

nodes (up to 30% of the total nodes).

3.3 Case Study 1: AODV

We now describe how we used Turret-W to test AODV [24]. All discovered attacks

and bugs are shown in Table 3.4.

3.3.1 Protocol Description

AODV establishes a path on-demand. Specifically, when a source desires to send

a message to a destination to which it does not have a valid route, it starts a route

discovery process by broadcasting a route request (RREQ) message to its neighbors.

Each node then forwards the first received RREQ by re-broadcasting it to its neighbors.

This process continues until the RREQ reaches the destination or an intermediate node

that has a valid route to the destination. In addition to forwarding the RREQ, each

intermediate node records in its routing table (i.e., precursor list) the address of the

neighbor from which it receives the first RREQ, forming a reverse path. Once the

RREQ reaches the destination node or an intermediate node with a valid route, the

node responds to the RREQ by unicasting a route response (RREP) message to its

precursor neighbor, i.e., its neighbor on the reverse path, which in turn relays the

RREP via precursor nodes back to the source node. From then on, the source node

keeps unicasting the data to the next hop neighbor as long as the route is valid.

A node maintains connectivity with its neighbors by periodically broadcasting

beacon messages (HELLO). Whenever the next hop becomes unreachable, the up-

stream node of the broken link propagates a route error (RERR) message to each of

its upstream neighbors. Following the reverse path, the RERR finally reaches each

65

source node that contains the broken link on the route to its destination. A source

then re-initiates the route discovery if a route to the destination is still desired.

Implementation used: We use AODV-UU-0.9.6 implementation publicly available

from [93], which is RFC 3561 [119] compliant. The AODV-UU consists of two compo-

nents — a loadable kernel module (kaodv) and a user space daemon process (aodvd).

The kernel module intercepts and handles network packets by registering hooks (call-

backs) with the Linux kernel’s network stack. To register such hooks, kaodv uses the

Netfilter framework [120]. The daemon (aodvd) uses netlink socket to communicate

with kaodv and NETLINK ROUTE protocol to communicate with the kernel routing

table. We configure the protocol using the default values presented in [93].

3.3.2 Discovered Bugs

During the benign testing of AODV-UU, we discovered two unknown implemen-

tation bugs caused by a subtle interplay between the AODV-UU code and the kernel.

Bug 1. Kernel interaction order. In an attempt to measure TCP streaming

performance between a source and a destination that are multiple hops away from

each other, we observed that packets were not being delivered in the benign case. By

design, whenever an application sends a packet for a destination to which the route

is either invalid or unavailable, kaodv should hold the packet and notify aodvd to

perform a route discovery. After finishing the route discovery, aodvd should notify

the kernel to update the routing table and the koadv module to release the withheld

packet. Our investigation revealed that in the AODV-UU implementation, the order

of notification upon completion of a route discovery was incorrect, i.e., in the reverse

order.

This bug could not have been discovered if we had not attempted to measure

TCP performance where the first packet, i.e., SYN packet is crucial to establish the

connection. We also observed packet loss when initially using UDP, but like others,

66

we attributed this to the lossy behavior of UDP inside the wireless channel. We fix

the bug by reversing the order of the two notifications.

Bug 2. Route packets harder. In the process of obtaining a baseline using iperf,

we observed performance degradation over time despite the route being available and

valid in the routing table. When the kernel transport layer hands-over any locally

generated packet to the IP layer, kaodv receives the control of the packet via a hook

registered with Netfilter. Thus, kaodv is responsible for returning a value to Netfilter

so that Netfilter can decide what to do – accept/drop/ignore the packet or call the

hook again.

When kaodv receives the control for a packet and already has a valid route, kaodv

notifies Netfilter to continue processing the packet by returning NF ACCEPT. On receiv-

ing NF ACCEPT, Netfilter sends the packet down the network stack without performing

any further iptables tests [121]. As a result, Netfilter does not send the packet to the

correct next hop node on the route to the destination. We fix this bug by invoking

ip route me harder() inside kaodv before returning NF ACCEPT.

3.3.3 Discovered Attacks

Attack caused crashing. We discovered an implementation attack that can cause

all neighbors of a malicious node to crash. When a malicious proxy modifies an

RREQ message to be an RREP by changing the type of the RREQ message, a recipient

processes this altered RREQ message as an RREP message. The base RREP message

(i.e., 20 bytes) is smaller in length than a base RREQ message (i.e., 24 bytes) [119].

Therefore, a recipient of the malformed RREQ message processes the message as if

it were an RREP with extensions [119], and this causes AODV-UU of the receiver to

crash with a segmentation fault. Our inspection reveals that the root cause is an

integer overflow vulnerability in the AODV-UU code.

We show the related code snippet in Fig. 3.3. extlen is defined as an unsigned

integer (line 2) and there is no checking if the extension length matches the actual

67

1.void NS_CLASS rrep_process(..., int rreplen, ...){

2. unsigned int extlen = 0;

3. AodvExtension *ext = rrep + RREP_SIZE;

...

4. while ((rreplen - extlen) > RREP_SIZE) {

// RREP_SIZE is 20

...

// process extention according to the type

...

5. /* read ext length from packet */

6. extlen += EXT_HDR_SIZE + ext->length;

// EXT_HDR_SIZE is 2

7. ext = ext + EXT_HDR_SIZE + ext->length;

8. }

...

9. }

Figure 3.3.: Code snippet from AODV-UU showing the discovered integer overflow
vulnerability

message size. In this case, the received buffer length (rreplen) is 24 bytes. Therefore,

when the RREQ’s originator seq number field value becomes 21 or bigger, this code

will assume that the message has two extensions, one with 0 length and the other

with length 21 or larger. At line 6, it will first increase extlen to be 2, which is

the header size, then at the second iteration, it will add 2+21, and thus, extlen

becomes 25. This results in an integer overflow on the left hand expression of the

“while” condition at line 4, and therefore, the loop continues iterating. Later, the

code crashes with a segmentation fault. This vulnerability can be fixed by enforcing

careful type safety and boundary checking.

Attacks caused by malicious actions. We rediscovered several attacks on AODV-

UU based on message delivery and lying actions that decrease the PDR below the

accepted threshold. By design, AODV is known to be susceptible to these attacks [26,

90]. In case of our benign experiments, we observe a 98% PDR. Fig. 3.4(a)-3.4(d)

show the temporal impact of the attacks on PDR as a function of the number of

adversaries in the network. The impact of an attack increases as more nodes become

malicious in the network.

68

Replay RREP. By replaying an RREP message received from a node, an adversary

can fool its benign neighbors to believe that the originator is their one-hop neighbor.

The benign neighbors that are at least two hops away from the actual originator

believe the adversary is the originator node as they never receive RREP messages

directly from the originator. This attack is more damaging than others because

replaying the periodic HELLO messages causes these pseudo-links never to expire. We

observe the PDR drops as low as 17% as the number of adversaries increases.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

Time (sec)

P
ac

k
et

 D
el

iv
er

y
 R

at
io

 (
P

D
R

)

Benign
Lie Rrep hops

LieAdd Rrep destseq

Lie Rerr type
LieAdd Rreq reqid

Replay Rrep

(a) One adversary

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

Time (sec)

P
ac

k
et

 D
el

iv
er

y
 R

at
io

 (
P

D
R

)

Benign
Lie Rrep hops

LieAdd Rrep destseq

Lie Rerr type
LieAdd Rreq reqid

Replay Rrep

(b) Two adversaries

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

Time (sec)

P
ac

k
et

 D
el

iv
er

y
 R

at
io

 (
P

D
R

)

Benign
Lie Rrep hops

LieAdd Rrep destseq

Lie Rerr type
LieAdd Rreq reqid

Replay Rrep

(c) Three adversaries

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

Time (sec)

P
ac

k
et

 D
el

iv
er

y
 R

at
io

 (
P

D
R

)

Benign
Lie Rrep hops

LieAdd Rrep destseq

Lie Rerr type
LieAdd Rreq reqid

Replay Rrep

(d) Four adversaries

Figure 3.4.: Packet delivery ratio for the discovered attacks against routing messages
of AODV-UU

LieAdd RREP destsq. Whenever a node receives a control packet from another

node with the destination sequence number higher than what it has in its routing

table, the node selects the route via this other node. A malicious node adds a positive

69

value with the destination sequence number of an RREP message, and this causes the

recipient to select the route through the malicious node. In the case of 4 adversaries

the PDR drops to 56%.

LieAdd RREQ reqid. Each RREQ message is uniquely identified by the request

identifier in conjunction with the originator’s IP. For each new route request, the

request identifier is incremented by one. No node ever responds to an older RREQ

message. A malicious node tricks the destination to respond to an RREQ with a

future request identifier so that the source will be left with only one available route,

i.e., through the malicious node. We observe that this attack causes the PDR to drop

as low as 62% as the number of adversaries increases.

Lie RERR type and Lie RREP hops. Modifying the type of an RERR to RREQ

causes the recipient to discard the packet. We find that adversaries can reduce the

performance to 71% by performing this attack. Similarly, when a malicious node sets

the hop count of an RREP to 0, the recipient selects the route through the malicious

node as the recipient thinks that it can reach the destination by 1 (=0+1) hop. We

observe that this attack causes the PDR to drop up to 73%.

Blackhole/wormhole attacks. We first tested AODV-UU against blackhole attack-

ers (malicious nodes that drop all the data packets). We then introduce an additional

blackhole node that colludes with the other blackhole node via a private channel to

perform a wormhole attack. The PDR drops to 50% with the increase in blackhole

nodes, whereas the PDR drops to 40% in case of the wormhole attack.

3.4 Case Study 2: ARAN

We now describe how we used Turret-W to test the implementation of ARAN

presented in [122]. We summarize all discovered attacks and bugs in Table 3.4.

70

3.4.1 Protocol Description

ARAN [26, 122] is a secure reactive wireless routing protocol. ARAN introduces

authentication, message integrity and non-repudiation by utilizing digital signatures

on messages. Each node receives a certificate from a trusted certification authority

(CA). The protocol consists of a route discovery process utilizing three types of routing

messages: route discovery (RDP), route reply (REP), and route error (ERR). In

essence, the route discovery process of ARAN is similar to that of AODV. In addition,

ARAN guarantees end-to-end authentication. The routing messages are digitally

authenticated at every hop, which ensures that only authorized nodes participate at

each hop between the source and the destination.

Implementation used: We rely on the implementation arand -0.3.2 (referred be-

low as ARAND), publicly available from [95]. This user space routing daemon built

for Linux kernel 2.4 relies on the Ad hoc Support Library (ASL) [123] that provides

an interface to the kernel functionalities required by any on-demand ad hoc rout-

ing protocol. ASL takes care of adding/deleting routes in the kernel routing table

and notifying ARAND to initiate a route discovery for a destination in case of an

unavailable route. The ARAND daemon also utilizes the functionality provided by

the route check kernel module of ASL to delete stale routes. For the cryptographic

functionalities, it uses OpenSSL [124]. We use the default values for parameters as

used in [95].

3.4.2 Discovered Bug

Bug. Wrong postal address. We discovered an implementation bug during the

benign experiments in the setting of a multi-hop wireless network. By design, a

route discovery request should be flooded via broadcast and the response should be

delivered via unicast following the reverse path. However, in the implementation,

upon receiving a response, an intermediate node attempts to forward the response

directly to the source node (i.e., the originator of the route discovery) instead of the

71

correct next hop node that is on the reverse route to the source. If the intermediate

node is more than one hop away from the source node, this response message cannot

be delivered to the source, and thus, the route discovery fails. We fix this bug by

letting the intermediate node use the correct next hop address to forward the route

response. This bug is due to an implementation mistake that exists inside the

aran processREP() function defined in aran.c and manifests in topologies having

nodes that are at least 3 hops away from each other.

3.4.3 Discovered Attacks

Attacks caused by message forwarding actions. We rediscovered several at-

tacks on ARAND based on malicious delivery that have a significant impact on the

performance. By design, ARAN is known to be susceptible to these attacks [91,125].

We observe a 99% PDR when no attacks take place. We then measure the changes in

the PDR achieved by ARAND as a function of the number of adversaries. Fig. 3.5(a)-

3.5(d) show the temporal changes in the PDR achieved by arand as a function of the

number of adversaries. The damage created by each attack increases with the number

of adversaries.

Divert REP, Drop ERR and Delay REP : By diverting a route reply (REP) mes-

sage and by dropping a route error (ERR) message, a malicious node can cause the

most damage among these attacks. Both these messages are sent via unicast by de-

sign, and therefore, if an intermediate malicious node drops or diverts these messages,

the upstream nodes on the route remain unaware of the on-going attack. Divert-

ing REP messages disrupts the completion of route discovery whereas dropping ERR

messages keeps the source unaware of the broken link and thus, prevents the source

from re-initiating a route discovery for the destination. Four malicious nodes can

drop the PDR to below 30% by diverting REP messages and to 40% by dropping

ERR messages. On the other hand, delaying a REP message at an intermediate

72

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

Time (sec)

P
ac

k
et

 D
el

iv
er

y
 R

at
io

 (
P

D
R

)

Benign
Drop RDP 100%

Delay REP 2s

Drop ERR 100%
Divert REP

(a) One adversary

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

Time (sec)

P
ac

k
et

 D
el

iv
er

y
 R

at
io

 (
P

D
R

)

Benign
Drop RDP 100%

Delay REP 2s

Drop ERR 100%
Divert REP

(b) Two adversaries

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

Time (sec)

P
ac

k
et

 D
el

iv
er

y
 R

at
io

 (
P

D
R

)

Benign
Drop RDP 100%

Delay REP 2s

Drop ERR 100%
Divert REP

(c) Three adversaries

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

Time (sec)

P
ac

k
et

 D
el

iv
er

y
 R

at
io

 (
P

D
R

)

Benign
Drop RDP 100%

Delay REP 2s

Drop ERR 100%
Divert REP

(d) Four adversaries

Figure 3.5.: Packet delivery ratio for the discovered attacks against routing messages
of ARAND

malicious node can reduce the PDR, but the impact is less significant as compared

to diverting REP messages.

Drop RDP. An intermediate malicious node can drop a route discovery (RDP)

message instead of re-broadcasting. This attack causes a slow decrease in PDR be-

cause every intermediate node re-broadcasts the RDP packet and therefore, even if

a malicious node does not forward the RDP, the destination eventually receives the

RDP message from other benign node(s).

Blackhole/wormhole attacks. We evaluate ARAND in the presence of blackhole/-

wormhole attackers in the network. In the presence of one blackhole attacker, the

73

PDR drops to 80%. Adding another blackhole node drops the PDR to 42%. However,

when two blackhole nodes collude with each other to perform a wormhole attack, the

PDR drops to 28%.

3.5 Case Study 3: OLSR

We now describe how we used Turret-W to test OLSR [23]. All discovered attacks

are shown in Table 3.4.

3.5.1 Protocol Description

OLSR [23] is a proactive routing protocol based on the traditional link-state al-

gorithm where each node maintains topology information about the network by pe-

riodically exchanging link-state messages. OLSR minimizes the size of each control

message and the number of rebroadcasting nodes during each route update by em-

ploying a multipoint relaying strategy. During every topology update, each node in

the network selects a set of neighboring nodes, called multipoint relays, to retrans-

mit its packets. To select the multipoint relays, each node periodically broadcasts a

list of its one hop neighbors using HELLO messages. From the list of nodes in the

HELLO messages, each node selects a subset of its one hop neighbors, which cover

all of its two hop neighbors. Each node, then, disseminates information about the

subset, i.e., the set of multipoint relays, using topology control (TC) messages that are

retransmitted only by the multipoint relays of the node. Other nodes receiving these

TC messages process them but do not retransmit. Each node eventually determines

an optimal route (e.g., with minimum hops) to every known destination using the

topology information and updates its routing table. During data transmission, this

routing table is leveraged to determine route to a destination.

Implementation used: We use olsrd-0.6.3 (referred below as OLSRD) publicly

available from [94], which is RFC 3626 [126] complaint. This implementation is

a routing daemon that employs the ioctl() system call to communicate with the

74

kernel and utilizes the NETLINK ROUTE protocol to manipulate the kernel routing table.

Unlike the above reactive protocols, it does not have any kernel module that intercepts

the network packets from the network subsystem. The daemon communicates with

other nodes over UDP and interacts with the kernel only when necessary, e.g., to

add/delete a route to/from the kernel routing table, to enable IP forwarding, etc. We

use the default values for parameters as used in [127].

3.5.2 Discovered Attacks

Attacks caused by malicious actions. We rediscovered several attacks in OL-

SRD based on message delivery and lying actions that have a significant impact on

the application performance. By design, OLSR is known to be susceptible to these

attacks [128–130]. We observe a 100% PDR in a benign scenario. We measure the im-

pact of the attacks on PDR as a function of the number of adversaries in the network.

Fig. 3.6(a)-3.6(d) show the temporal impact of the attacks on PDR as a function of

the number of adversaries in the network.

Replay HELLO. When a node receives a HELLOmessage from another node, it adds

the node to its neighbor list and starts broadcasting a new HELLO message. Based on

the HELLO messages, nodes learn about their one hop neighborhood and select their

multipoint relays that forward TC messages. By replaying a HELLO received from a

neighbor, a malicious node can disrupt the routing service of its benign neighbors

that are not direct neighbors of the originator of the HELLO. We observe the PDR to

be around 80% on average, regardless of the number of attackers in the network.

Drop TC 100%. A TC message traverses the entire network via multipoint relays.

TC messages are important because a node considers all the received TC messages to

infer the network topology and thus, establishes a route to every other node. There-

fore, an attack on TC messages is more damaging in that it will lead to inconsistencies

in routing table of benign nodes. We observe that dropping TC messages results in at

75

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

Time (sec)

P
ac

k
et

 D
el

iv
er

y
 R

at
io

 (
P

D
R

)

Benign

 Replay HELLO

Lie Pkt Seq

Drop TC 100%

(a) One adversary

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

Time (sec)

P
ac

k
et

 D
el

iv
er

y
 R

at
io

 (
P

D
R

)

Benign

 Replay HELLO

Lie Pkt Seq

Drop TC 100%

(b) Two adversaries

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

Time (sec)

P
ac

k
et

 D
el

iv
er

y
 R

at
io

 (
P

D
R

)

Benign

 Replay HELLO

Lie Pkt Seq

Drop TC 100%

(c) Three adversaries

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

Time (sec)

P
ac

k
et

 D
el

iv
er

y
 R

at
io

 (
P

D
R

)

Benign

 Replay HELLO

Lie Pkt Seq

Drop TC 100%

(d) Four adversaries

Figure 3.6.: Packet delivery ratio for the discovered attacks against routing messages
of OLSRD

most 50% drop in PDR. Note that while selecting malicious nodes randomly in our

experiments, we do not add any constraints on the selection procedure.

Lie Pkt Seq. By design, OLSR follows the heterogeneous packet format where each

packet is ordered by a sequence number. Before sending out a packet, a malicious

proxy can replace the sequence number of the packet with a fake value (e.g. 0). This

malformed packet causes disruption in route calculation. Four malicious nodes can

drop the PDR of OLSRD up to 69%.

Blackhole/wormhole attacks. We measured the PDR obtained by OLSRD at the

presence of three different configurations of blackhole and wormhole attackers: one

76

blackhole attacker, two independent blackhole attackers, a colluding pair blackhole

attackers connected through a private channel. With the increase in blackhole nodes

the PDR decreases as low as 50%. The combination of the wormhole and blackhole

attackers makes the attack more significant as the PDR drops to around 30%.

3.6 Case Study 4: DSDV

We now describe how we used Turret-W to test DSDV [22]. All discovered attacks

are shown in Table 3.4.

3.6.1 Protocol Description

The DSDV (destination-sequenced distance-vector) routing protocol is based on

the Bellman-Ford family of algorithms that utilize distance vectors to calculate paths,

between any two nodes in the network, along which data can be exchanged. DSDV is a

table-driven proactive routing protocol, and therefore, each node maintains a routing

table consisting of entries for every possible destination (not just the neighbors) along

with the cost to reach the destination. As a cost metric, the protocol uses hop-count

that is the number of hops a packet has to travel to reach its destination.

Each node periodically advertises its own routing table to its neighbors using

HELLO messages. In addition, any changes to the routing table are propagated to

other nodes as quickly as possible. These updates may lead to routing loops within

the network. To avoid routing loops, each routing update from the node is tagged

with a sequence number. Each node is free to choose an even number as the starting

sequence number for the routing updates where the node is listed as the destination,

but the node increments the sequence number by 2 for each periodic update. A

sequence number defines the freshness of the route to the destination. Note that one

node cannot change the sequence number tagged with such routing updates made by

others. However, in case of a broken/expired link to one of its neighbor, the node

can increment the sequence number by 1 and trigger an update mechanism. The

77

nodes receiving this update check the sequence number and if it is an odd number,

they remove the corresponding entry from their routing table. Moreover, DSDV uses

settling time to dampen the route fluctuations due to node mobility.

Implementation used: We use the DSDV implementation presented in [111] that is

developed as part of the Grid project, which is built on the Click modular router [112]

and written in the click configuration language. The code is publicly available

from [96]. We refer to this implementation as DSDV-Click. All the states of the

routing protocol are maintained inside Click elements and are accessed through Click.

This implementation of DSDV can run either at the user-space using the Click user-

space process or the kernel-space using the Click Linux kernel module. We chose the

former due to its nature of high portability and easy debugging. At user-space, the

Click process loads a network tunnel (tun) device, which the process considers as a

file descriptor (e.g., /dev/tun0) and the operating system considers as a network in-

terface (e.g., tun0). The Click process exchanges packets with the operating system’s

network stack using this tunnel device. We use the default values for parameters as

used in [96].

3.6.2 Discovered Attacks

Attacks caused crashing. We discovered 4 implementation dependent attacks in

DSDV-Click that cause all the neighbors of a malicious node to crash.

Lie HELLO seq or dstseq with odd values : We found that there can be multiple

sequence numbers in a HELLO message. A node places its own sequence number (we

refer to it as seq) as well as the sequence number of each destination (we refer to it as

dstseq) that it is aware of into its HELLO messages. Whenever a node receives such a

HELLO message, it checks if each advertised route is active. If so, each of the received

sequence numbers must be an even number. Therefore, by simply lying on one or

more of these sequence numbers, i.e., by setting a positive odd number, a malicious

node can cause each of its neighbors to fail an assertion check and crash.

78

Lie HELLO hopcount with 255 : While advertising routes to other destinations,

the originator node also includes hopcount (i.e., the number of hops to reach each of

them from the originator) into its HELLO messages. We found an attack where an

adversary can exploit the integer overflow vulnerability associated with the hopcount

field, which is one byte in length. The adversary maliciously advertises routes with

a value of 255 as the hopcount. Whenever one of the adversary’s neighbors receives

such advertisements and decides to update its routing table, the node adds 1 to the

received hopcount. This addition overflows the field causing the node itself to crash

due to an assertion failure.

Lie HELLO dstseq with even values : Turret-W helped us discover another crashing

attack that is very subtle and delicate in terms of its execution. In this attack,

the malicious node always modifies the route advertisements with a positive even

number as the destination sequence number (dstseq), which apparently looks correct

according to the protocol. However, a positive even number as dstseq is not correct

for an advertisement of an expired route. Therefore, whenever the malicious node

sends advertisements about the recently expired routes with a positive even number

as dstseq, an assertion check on the neighbors causes them to crash.

Attacks caused by malicious actions. Like other protocols, we also found sev-

eral attacks in DSDV-Click that impair the application performance. By design,

DSDV [22] is known to be susceptible to these attacks [92,131,132]. We measure the

changes in PDR achieved by the application as a function of the number of adver-

saries in the network where each node employs the DSDV-Click as the underlying

routing protocol. Fig. 3.7(a)-3.7(d) show the temporal changes in PDR achieved by

the application as a function of the number of adversaries in the network where each

node employs the DSDV-Click as the underlying routing protocol. In the benign case,

we observe a 100% PDR.

LieAdd HELLO seq and LieAdd HELLO dstseq. Recall that, in DSDV, each node

maintains a routing table consisting of entries for all possible destinations (not only

neighbors) and periodically advertises its routing table to its neighbors using beacon

79

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

Time (sec)

P
ac

k
et

 D
el

iv
er

y
 R

at
io

 (
P

D
R

)

Benign
LieAdd HELLO seq

LieAdd HELLO dstseq

Drop HELLO 100%
Divert HELLO

Replay HELLO

(a) One adversary

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

Time (sec)

P
ac

k
et

 D
el

iv
er

y
 R

at
io

 (
P

D
R

)

Benign
LieAdd HELLO seq

LieAdd HELLO dstseq

Drop HELLO 100%
Divert HELLO

Replay HELLO

(b) Two adversaries

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

Time (sec)

P
ac

k
et

 D
el

iv
er

y
 R

at
io

 (
P

D
R

)

Benign
LieAdd HELLO seq

LieAdd HELLO dstseq

Drop HELLO 100%
Divert HELLO

Replay HELLO

(c) Three adversaries

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

Time (sec)

P
ac

k
et

 D
el

iv
er

y
 R

at
io

 (
P

D
R

)

Benign
LieAdd HELLO seq

LieAdd HELLO dstseq

Drop HELLO 100%
Divert HELLO

Replay HELLO

(d) Four adversaries

Figure 3.7.: Packet delivery ratio for the discovered attacks against routing messages
of DSDV-Click

messages (i.e., HELLO). Each of these messages contains the sequence number (seq) of

the node itself along with zero or more entries for other destinations that the node is

aware of at that very moment. Each additional entry includes the received sequence

number (dstseq) of the corresponding destination. A sequence number tagged with a

route defines the freshness of the route— a higher sequence number indicates a more

recent route. Therefore, whenever a node receives a HELLO message from another

node with the destination sequence number higher than what it is aware of, the node

selects this new route. A malicious node can exploit this fact and add a positive

even number to the destination sequence number contained in a HELLO message, and

this causes the receiving nodes to select the route through the malicious node. Note

80

that instead of a positive even number, if the adversary chooses to add a positive

odd number, the attack will cause the neighbors to crash (as explained earlier) since

DSDV expects the sequence numbers defined by the originators to be positive even

numbers.

According to our experimental results, adding positive even numbers to the dstseq

field is more damaging than performing the same attack on the seq field. We can

attribute this to the fact that by modifying the seq field the adversary just offers a

more recent route to itself whereas by modifying the dstseq fields the adversary offers

more recent (but not legitimate) routes to other destinations containing itself on these

paths. Our experiment results show that the achieved PDR can drop from 62% to

20% with the increase in the number of adversaries when the adversaries perform

such attacks on the dstseq fields. However, in case of such attacks on the seq field,

we observe the PDR to drop from 86% to 72%.

Drop HELLO and Divert HELLO. The DSDV protocol requires nodes to exchange

only HELLOmessages as control packets pertaining to the routing service to establish a

routing table. Therefore, when a malicious node drops all of its own HELLO messages,

no other nodes within the network will ever be aware that the malicious node is active.

As a result, the source node selects a path longer than the shortest one if the malicious

node is on that shortest path. Similarly, when a malicious node sends its own HELLO

messages to randomly selected nodes instead of broadcasting the messages, only a few

nodes will know about the existence of this node. However, every node eventually

learns the route to the malicious node due to the route advertisement mechanism of

the DSDV protocol. The cost metric of these routes may not be the real optimum

value. Consequently, the source may end up using a longer path than the original

shorter one. In both the cases, we observe the PDR drops roughly from 95% to 65%

with the increase in the number of adversaries.

Replay HELLO. In this attack, an adversary re-broadcasts the HELLO messages

received from the neighboring nodes without any modification. As a result, any two

benign neighbors of the adversary that are multiple hops away from each other (in

81

reality) consider themselves as 1-hop neighbors. Moreover, these false links never

expire as long as the attack continues. In this case, we observe the PDR changes

from 88% to 50% as the number of adversaries increases.

Blackhole/wormhole attacks. To test DSDV-Click in the presence of blackhole/-

wormhole attacks, we followed the same approach as for the other protocols. In the

presence of one blackhole attacker, we observe a PDR of 80% whereas the PDR drops

to 63% when we introduced another blackhole adversary. Note that in case of the

wormhole attack, the PDR drops to 49%.

3.7 Case Study 5: BATMAN

We now describe how we used Turret-W to test BATMAN [89]. All discovered

attacks are shown in Table 3.4.

3.7.1 Protocol Description

BATMAN is a proactive routing protocol for multi-hop wireless adhoc networks.

Unlike link-state protocols, BATMAN does not determine the whole path to the

destination, nor does it requires the global view of the network topology to route

packets. Instead, it requires each node to maintain only the best next hop to every

other node in the network using collective intelligence, similar to a distance-vector

protocol. Therefore, information about any topological change in the network does

not need to be instantly spread throughout the network.

Each node periodically broadcasts an originator message (OGM) to inform its

existence to its neighbors. The neighbors then rebroadcast the message to their

neighbors and so on and so forth. Therefore, every node is aware of the existence of

every other node in the network but records only the list of direct neighbors that it

has received such messages from. The best next-hop to each destination is selected

based on a metric called Transmit Quality (TQ), which measures the probability of

a successful transmission of a packet on the link between the node and the next-hop.

82

As a result, each node only knows who to handover the data (encapsulated in Unicast

messages) destined to a node that is multiple hops away. The data is handed over

to the best next-hop neighbor, which in turn repeats the mechanism until reaches its

destination.

BATMAN utilizes a distributed ARP table (DAT) to enable nodes to perform

faster ARP lookup operations. In essence, DAT mechanism creates an ARP cache

distributed across the nodes by storing ARP entries as the ARP requests/responses

travel through the network. Unlike traditional ARP requests, given an IPv4 address,

a node can identify the group of nodes that may contain the related ARP entry by

utilizing a distributed hash function. Instead of broadcasting, requests are sent as

unicast messages (Unicast4Addr). If there is no response to the request, the requester

node can fallback to the traditional ARP mechanism and broadcast the ARP request.

Implementation used. We use Batman-adv-2014.1.0 (referred below as Batman-

adv) implementation publicly available from [97]. This implementation is a kernel-

space implementation running at the data link layer where both the routing infor-

mation and the data traffic are encapsulated and forwarded as raw Ethernet frames.

Hence, the network communication does not depend on IP. The protocol emulates

a virtual network switch connecting all the nodes as if the nodes are link local, and

therefore unaware of the network topology. To reduce the packet processing over-

head incurred by a user-space routing daemon, this version of the routing protocol is

implemented as a Linux kernel module.

3.7.2 Discovered Attacks

Attacks caused by malicious actions. We rediscovered several attacks on

Batman-adv based on message delivery and lying actions that decrease the PDR

below the accepted threshold. By design, the BATMAN protocol is known to be

susceptible to these attacks [89, 133]. In case of our benign experiments, we observe

a 97% PDR. We then measure the impact of the attacks on PDR as a function of the

83

number of adversaries in the network. Fig. 3.8(a)-3.8(d) show the temporal impact of

the attacks on PDR as a function of the number of adversaries in the network. The

impact of an attack increases as more nodes become malicious in the network.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

Time (sec)

P
ac

k
et

 D
el

iv
er

y
 R

at
io

 (
P

D
R

)

Benign
Replay OGM
Lie OGM TQ

Replay Unicast4Addr
Lie Unicast type

Lie Unicast4Addr type

(a) One adversary

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

Time (sec)

P
ac

k
et

 D
el

iv
er

y
 R

at
io

 (
P

D
R

)

Benign
Replay OGM
Lie OGM TQ

Replay Unicast4Addr
Lie Unicast type

Lie Unicast4Addr type

(b) Two adversaries

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

Time (sec)

P
ac

k
et

 D
el

iv
er

y
 R

at
io

 (
P

D
R

)

Benign
Replay OGM
Lie OGM TQ

Replay Unicast4Addr
Lie Unicast type

Lie Unicast4Addr type

(c) Three adversaries

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

Time (sec)

P
ac

k
et

 D
el

iv
er

y
 R

at
io

 (
P

D
R

)

Benign
Replay OGM
Lie OGM TQ

Replay Unicast4Addr
Lie Unicast type

Lie Unicast4Addr type

(d) Four adversaries

Figure 3.8.: Packet delivery ratio for the discovered attacks against routing messages
of Batman-adv

Reply OGM. By replaying the originator messages (OGMs) received from a node,

an adversary can induce its benign neighbors to consider the originator as a direct

neighbor since OGMs are used to announce the existence of nodes in the network.

This disrupts the routing service substantially since these replayed OGMs propagate

through the network thereby affecting the best next-hop selection at the nodes that

are closer to the attacker than to the originator. This attack is more damaging than

others since replaying OGMs causes these pseudo-links never to expire. We observe

that the PDR decreases from 24% to 6% with increasing adversaries.

84

Lie OGM TQ. When sending an OGM, the originator initializes the transmit qual-

ity (TQ) field with its maximum value of 255. Prior to re-broadcasting an OGM, the

forwarding node sets the TQ field with a value that is the TQ of the received OGM

times its measured TQ towards the last hop node via which it received the OGM. As a

result, the TQ field of an OGM indicates the probability of successful transmission of

a packet towards the originator along the path the OGM has traversed. A malicious

node exploits this fact by setting the TQ field of all outgoing OGM to 255 thereby

enticing the neighbors to select itself as the best next-hop neighbor towards the orig-

inator. Our experiment results show that the PDR drops from 77% to 54% as the

number of adversaries increases.

Replay Unicast4Addr. When the source has to retrieve the MAC address of the

destination, it computes the group of nodes that may contain the related ARP en-

try and sends Unicast4Addr messages. In this attack, an adversary replays all the

Unicast4Addr messages containing either ARP request or response. Though this at-

tack cannot directly disrupt the routing table, it can overload the network with Uni-

cast4Addr packets when the number of adversaries increases in the network because the

adversaries collectively create a ripple effect by replaying each received Unicast4Addr

message. Moreover a Unicast4Addr message is quite smaller in length compared to a

message carrying data traffic. As a result, this ripple effect affects the forwarding of

the data traffic through the network. In our experiments, we observe the PDR drops

from 77% to 47% as the number of adversaries increases.

Lie Unicast type and Lie Unicast4Addr type. The source encapsulates the data

traffic in Unicast messages and hands over to the best next-hop neighbor and so does

the next-hop neighbor until the data reaches the destination. By lying on the type

field of a Unicast message, the adversary disrupts the data forwarding as the modified

Unicast message is not interpreted as the data message. We observe the PDR drops

from 70% to 9% with the increase in the number of adversaries. On the other hand,

when the adversary modifies the type field of a Unicast4Addr message, it can disrupt

the ARP request for a while. However, after a timeout, the requester falls back

85

to traditional ARP mechanism and broadcasts the ARP request, which eventually

reaches the destination or some intermediate nodes that can reply with the related

ARP entry. Therefore, in case of this attack, we observe that the attack is only

effective when the number of adversaries in the network is larger than 2 causing the

PDR to drop to 63%.

Blackhole/wormhole attacks. We test Batman-adv against blackhole/wormhole

attacks in the same way as we did for other protocols. We observe that the PDR

drops from 60% to 47% as the number of blackhole attacker increases from 1 to 2.

When these two attackers collude to create a wormhole, the PDR drops to 42%.

86

Table 3.4.: Attacks and bugs (re-)discovered by Turret-W. Attacks/bugs with
(*) means newly discovered.

Protocol
Impl.

Discovery
Type

Name Description

AODV-UU
0.9.6 [93],
Reactive,
Updated:
Apr 13, 2011

Attack* Lie RREQ type 2 Lie about RREQ message
type by setting to 2
(RREP) (causes crashing)

Attack [26] Lie RERR type 1 Lie about RERR message
type by setting to 1
(RREQ)

Attack [26,90] Lie RREP hop 0 Lie about the hop count in
route response to be 0

Attack [26] LieAdd RREQ
reqid 10

Increment the route request
id of route request by 10

Attack [26,90] LieAdd RREP
destsq 10

Increment the destination
sequence number of route
response by 10

Attack [26,90] Replay RREP Replay both route response
and hello messages

Attack [90] Blackhole Drop all data packets
Attack [26,90] Wormhole +

Blackhole
Colluding malicious nodes
drop all data packets

Bug* Kernel interaction
order

Notifies the two
components about the route
discovery in a wrong order

Bug* Route packets
harder

Returning NF ACCEPT from
hooks causes Netfilter not
to check iptables

ARAND
0.3.2 [95],
Reactive,
Updated:
Jan 31, 2003

Attack [125] Drop RDP 100% Drop each route request
message

Attack [125] Delay REP 2s Delay forwarding of route
response message by 2
seconds

Attack [125] Divert REP Divert route response
message

Attack [125] Drop ERR 100% Drop route error message
Attack [91] Blackhole Drop all data packets
Attack [91] Wormhole +

Blackhole
Colluding malicious nodes
drop all data packets

Continued on next page

87

Table 3.4.: Continued

Protocol
Impl.

Discovery
Type

Name Description

Bug* Wrong postal
address

Intermediate nodes forward
REP to the source instead
of the next hop

OLSRD
0.6.3 [94],
Proactive,
Updated:
Jun 5, 2011

Attack [128–
130]

Replay HELLO Replay a HELLO message
received from a neighbor

Attack [128–
130]

Drop TC 100% Drop all topology control
messages

Attack [128–
130]

Lie Pkt Seq 0 Lie about the sequence
number in olsr pkt to be 0

Attack [129,
130]

Blackhole Drop all data packets

Attack [129,
130]

Wormhole +
Blackhole

Colluding malicious nodes
drop all data packets

DSDV [96],
Proactive,
Updated:
Sep 24, 2011

Attack* Lie HELLO seq
255

Lie about own sequence in
HELLO messages with 255
(cause crashing)

Attack* Lie HELLO
dstseq 255

Lie about the dest.
sequences in HELLO
messages with 255 (cause
crashing)

Attack* Lie HELLO
hopcount 255

Lie about the hopcount in
HELLO messages with 255
(cause crashing)

Attack* Lie HELLO
dstseq 254

Lie about the dest.
sequences in HELLO
messages with 254 (cause
crashing)

Attack [131] Replay HELLO Replay all HELLO
messages received from
neighbors

Attack [131] Drop HELLO
100%

Drop all HELLO messages

Attack [131] Divert HELLO Divert own HELLO
messages

Attack [132] LieAdd HELLO
seq 10

Increment the own sequence
number of HELLO
messages by 10

Continued on next page

88

Table 3.4.: Continued

Protocol
Impl.

Discovery
Type

Name Description

Attack [132] LieAdd HELLO
dstseq 10

Increment each destination
sequence number in
HELLO messages by 10

Attack [92,
131]

Blackhole Drop all data packets

Attack [131] Wormhole +
Blackhole

Colluding malicious nodes
drop all data packets

Batman-adv
2014.1.0 [97],
Proactive,
Updated:
Mar 13, 2014

Attack [89,
133]

Replay OGM Replay an OGM message
received from a neighbor

Attack [89] Lie OGM TQ 255 Lie about the transmit
quality in OGM to be 255

Attack [89] Replay
Unicast4Addr

Replay an Unicast4Addr
message received from a
neighbor

Attack [89] Lie Unicast type 0 Lie about the type of an
Unicast message to be 0

Attack [89] Lie Unicast4Addr
type 0

Lie about the type of an
Unicast4Addr message to
be 0

Attack [133] Blackhole Drop all data packets
Attack [133] Wormhole +

Blackhole
Colluding malicious nodes
drop all data packets

3.8 Summary

Given the importance of routing in wireless networks, it is critical to subject their

implementations to adversarial testing before deployment. To aid developers in this

task, we develop Turret-W, an adversarial testing platform for wireless routing pro-

tocol implementations with minimal physical resources. We demonstrate our system

by evaluating actual implementations of AODV, ARAN, OLSR, DSDV, and BAT-

MAN. In total, we (re-)discovered 37 adversarial attacks capable of either crashing

the benign nodes or reducing their performance by disrupting the routing service and

3 implementation bugs that impair the protocol performance in benign environment.

89

4 INFECTION MITIGATION IN EMERGING NETWORKS

With the proliferation of smartphones, Internet-of-Things, the number of wireless

devices with complex capabilities has rapidly increased. While the openness of such

wireless devices—supported by various open source operating systems like Google’s

Android [37], Contiki [11], FreeRTOS [38], Raspbian [136], and their development

platforms—induces developers’ motivation, it also introduces new propogation vectors

for mobile malware. Recent reports show a surge of malware incidents targeting

smartphones [39–41] and IoT devices [42–44].

Significant research focused on propagation modeling, detection, and application

profiling of malware in the context of wired networks [48–52]. Those results do not

model mobile malware which spreads directly from device to device by using short-

range communication such as WiFi, Bluetooth or NFC [9, 45–47]. Mobile malware

propagation has been studied using mean field compartmental models [137] which

assume that each infected node will contact every neighbor once within one time

step, i.e., the infectivity is equal to the connectivity. Such models do not take into

account that mobile malware does not spread at an even contact rate, as spreading

requires devices to be within each other’s proximity which in turn depends on user

mobility. Most previous research on mobile malware has either not considered mo-

bility [138–140] or has given limited considerations to it [141, 142]. Approaches that

have considered mobility have used popular models like the random waypoint model

which, as it has been shown, does not realistically mimic human mobility [143].

The content of this chapter is based on the joint work with R. Potharaju, C. Nita-Rotaru, S. Sarkar,
and S.S. Venkatesh [134,135]

90

While there has been work studying mobile malware propagation, the problem

of infection containment in wireless networks was less studied. The work of [144]

analytically studies containment of infection in a mobile network through counter-

measures such as reducing communication range of nodes during an infection out-

break. The work does not consider realistic mobility models and does not propose

concrete protocols to deploy and activate such countermeasures. The work in [145]

introduces replicative and non-replicative patch disseminations assuming a network

cost function and proves that the dynamic control strategies have a simple optimal

structure. However, the impractical determination of the healer activation time and

the lack of inclusion of the resource cost incurred by each patch dissemination make

the techniques difficult to apply directly to energy constrained realistic scenarios.

In this work, we take the first step towards designing countermeasures for mal-

ware propagation under the presence of realistic mobility in a practical scenario. We

investigate the dependence of infection spread on the underlying mobility model in

order to systematize the design of countermeasures. We introduce the concept of

healers to mimic the recovery process in a standard epidemic model and we focus on

static healers, (i.e., immobile) healers, which represent a realistic model because they

can be directly mapped to real-world scenarios. For instance, static healers can be

considered as cellular base stations (where no two stations cover the same cell in most

cases) and the mobile nodes can be considered as users carrying mobile phones (mov-

ing with a certain mobility model). In contrast to the mechanism shown in [141],

our static-healers are not white-worms and do not deactivate infected nodes. Our

contributions are:

• We show that the infection spread in mobility models that mimic human be-

havior is slower than standard mobility models due to different contact rate

and spatial distribution characteristics. We compare the Truncated Levy Walk

91

(TLW) and Random Waypoint (RWP) mobility models and show that the epi-

demic spread in TLW is relatively slower compared to RWP. This finding indi-

cates that when designing countermeasure mechanisms, the time constraints are

less tight than believed and that time-dependent assumptions can be relaxed to

some extent, resulting in relatively lower consumption of energy.

• We model countermeasures to malware spread using static healer nodes. Static

healers once placed in the area, act independently to deploy a patch when they

sense nodes in their proximity. A healer-based solution optimizes: (i) the time

it takes to heal the entire system by patching all the infected nodes and (ii) the

total number of patches broadcasted. We formulate the optimal solution based

on static healers as a T-Cover problem , which is NP-Complete.

• We use ORACLE, a log(n) greedy approximation algorithm, that computes the

optimal healing time knowing the placement of the static healers and the future,

i.e. the exact time instances when the infected nodes arrive within each healer’s

proximity.

• We propose a novel healer placement strategy using blue-noise distribution gen-

erating Poisson Disk Sampling. We show that unlike random placement that

results in many overlapping healers which cover the same area, our method al-

lows healers to cover disjoint areas, thus enabling them to independently cover

more infected nodes.

• We design three families of healer protocols: randomized (RH), profile (PH),

and prediction (PDH), that allow for a trade-off between the energy consumed

for sending patches and the time taken to recover the entire system. The intu-

ition behind each protocol is as follows: (1) RH uses randomization to ensure

simplicity in healers’ functionality and achieves reasonable performance. (2) PH

uses system feedback to optimize the energy consumed for sending patches, but

92

may result in a larger recovery time. (3) PDH predicts the cost of waiting for

a suitable time instance to deploy a patch thereby achieving a smaller recovery

time but has the side-effect of utilizing more patches. We compare our protocols

with the ORACLE protocol and show through simulations that despite lacking

knowledge of the future, our healers obtain a recovery time within a 7.4x∼10x

bound of the ORACLE.

4.1 System Model

In this section, we construct a framework for analyzing the propagation of malware

over a mobile ad hoc network that relies on epidemic theory to capture both the spatial

interaction of nodes and the temporal dynamics of infection propagation.

4.1.1 Mobility Models

Due to the difficulties in adapting real-trace data to long running simulations [140],

we decided to use analytical models derived from real-trace data instead. Specifically,

we use the Random Waypoint (RWP) and Truncated Levy walk (TLW) mobility mod-

els to generate synthetic mobility traces. We selected RWP because it is a typical

mobility model used to study mobile malware propagation. We selected TLW be-

cause it provides more realistic representations of statistical patterns found in human

mobility. Unless otherwise noted, we use a node velocity of 0.6 m/s to mimic low

velocity realistic human mobility in both mobility models throughout this chapter.

Random Waypoint (RWP): RWP is a widely used mobility model [146–148] and

includes pause times between changes in direction and/or speed [25]. A mobile node

begins by staying in one location for a certain time period (pause time). Once this

time elapses, the mobile node chooses a random destination in the simulation area

93

 0

 200

 400

 600

 800

 1000

 0 200 400 600 800 1000

Y

X

Random Waypoint

(a) RWP

 0

 200

 400

 600

 800

 1000

 0 200 400 600 800 1000

Y

X

Truncated Levy Walk

(b) TLW

Figure 4.1.: Tracing the path of a single node: (a) for RWP and (b) for TLW

and a speed that is uniformly distributed between [vmin, vmax]. The mobile node

then travels toward the newly chosen destination at the selected speed. Upon arrival,

the node pauses for a specified time period and starts the whole process again (see

Fig. 4.1(a)). RWP is heavily used for mobile ad hoc network simulation [149] to

simulate mobile nodes that can move randomly and freely in a mobility area without

any restriction. This model is super-diffusive because of high-probability of long

flights. On the contrary, human walks have heavy-tail flight distributions [150] that

are not captured by common mobility models such as RWP.

94

The initial random distribution of mobile nodes is not representative of the manner

in which nodes distribute themselves when moving as the instantaneous mobile node

neighbor percentage possess high variability [151]. We use the approach suggested

by [149] and discard the initial 1000 seconds of simulation time produced by RWP

in each simulation trial.

Truncated Levy Walk (TLW): Based on the empirical studies performed on hu-

man mobility data collected through moblie devices carried by humans, Rhee et.

al. [143] reported that human walks performed in outdoor settings of tens of kilome-

ters resemble a truncated form of Levy walks commonly observed in animals such as

spider monkeys, birds and jackals. A Levy walk is a type of random walk in which the

increments are distributed according to a heavy-tailed probability distribution, i.e.,

their tails are not exponentially bounded. The distribution used is a power law of the

form y = x−α where 1 < α < 3. TLW is a random equivalent mobility model for

human walks in that it can describe some important characteristics of human walks

(e.g. flight length, pause time and inter-contact time) despite being a random model.

Inter-contact times are defined to be the time durations between two consecutive

meeting events of the same two nodes. Human walks have long inter-contact times,

which is intuitive in a sense that as humans do not move much, they will not meet

each other very often. The distributions of these inter-contact times, which follows a

power-law distribution with an exponential tail, are similar to those observed in case

of Levy walks. Similarly, the heavy-tail distributions of flight length and pause time

can be captured by Levy walkers moving in a confined area. Intuitively, Levy walks

consist of many short flights and exceptionally long flights that nullify the effect of

such short flights (see Fig. 4.1(b)).

Note that while there are other recent human mobility models similar to TLW

such as the ones proposed by Lee et al. [152], Boldrini et al. [153] and Isaacman et

95

al. [154], our end goal is to advocate the use of one of these human mobility models

while designing defenses against epidemic outbreaks.

4.1.2 Infection and Recovery Models

We adapt two classic epidemic models (SI and SIR) to take into account mobility.

First we give a brief overview of the SI and SIR models, then describe how we use

them to model malware propagation and node recovery in a mobile network.

SI Model. The SI-model is a two-state compartmental epidemic model, i.e., a node

can stay in one of two states: susceptible and infected. A susceptible node is vulnerable

and can be exploited to be infected which in turn can infect other susceptible nodes.

In this model, once a susceptible node is infected, it stays that way. The parameter

that characterizes the model is the infection rate, β.

SIR Model. The SIR Kermack-McKendrick model [155] assumes that an infected

node can be recovered. Specifically a node can be in one of the following states:

susceptible, infected, and recovered. Nodes flow from the susceptible group to the

infected group and then to the recovered group [156] as shown in Fig. 4.2. The model

is characterized by two parameters, the infection rate β and the recovery rate α.

S I R

- Infection Rate: transition

 from susceptible to infected status

- Recovery Rate: transition

 from infected to recovered status

Figure 4.2.: SIR model: S, susceptible; I, infected; R, recovered

Mobile Infection Model. The SI model makes the unrealistic assumption that

each infected node will contact every neighbor once within one time step, i.e., the

infectivity is equal to the connectivity. To take into account mobility, we assume the

96

nodes are moving according with a mobility model and we define infection spread as

a function of a parameter c which we call the probability of successful transmission.

At each time step, for every node X, we find the neighbors of X that are capable

of infecting X. For each of these neighbors, we generate a random number from a

uniform distribution between [0, 1] and if this value is smaller than c, then X becomes

infected.

Mobile Recovery Model. We adapt the SIR epidemic model as follows. Infection

is modeled as in the mobile infection model above. We map node recovery through a

healer that will change the state of an infected node to recovered through a healing

mechanism. Once recovered, a node can no longer be infected, thus if no new nodes are

added the infection will eventually disappear. The healing mechanism is distributed

through a patch, a healer can send at most once during an interval of time called

epoch, denoted as τ . We assume that healers are static, resource constrained, and act

independently. Our assumptions also include that once an infected node receives a

patch, the node instantaneously applies the patch and becomes completely recovered.

We assume that there is no packet loss but note that it is straightforward to extend

our model to a model having packet loss.

This model is characterized by the way the healers are placed and by the frequency

with which they send patches. All healers are activated once the number of infected

nodes in the system reached a system-wide parameter.

4.2 Infection Dynamics

In order to understand the infection dynamics of the two mobility models, we first

describe our methodology and then explain the results that we observed.

97

4.2.1 Methodology

We use the infection model described in previous section with the parameter that

controls the infection rate, c = 0.3 [157] to mimic a more realistic infection scenario

where infection spreads slowly. We generate RWP traces by using the methodology

outlined in [158] and TLW traces by using the algorithm outlined in [143]. We perform

our simulations using NS-3 [104]. We simulate the behavior of a system with 100,

200, and 300 nodes in a fixed area. All results have been averaged over ten simulation

runs.

We define an inversion point to be the time instant where 50% of the population

is infected. We use this metric to indicate the first point in time where the number of

infected nodes surpasses the susceptible ones, thus inverting the scenario. Intuitively,

an inversion point characterizes how fast the infection is propagating in an epidemic

system.

4.2.2 Results

Figure 4.3 shows the infection dynamics in RWP and TLW mobility models. Ob-

serve that the inversion point for RWP occurs quite early in the simulation (Fig. 4.3(a)

indicates a time around 500 seconds) in comparison with TLW (Fig. 4.3(a) indicates

times between 1500-3000 seconds). This indicates that the time required to infect the

system is far less in case of RWP differing almost by a factor of 3 from TLW. To the

best of our knowledge, this phenomenon has not been observed before as most earlier

research [141, 142] has studied these mobility models in isolation. As protocols are

to be designed mostly for realistic mobility models (TLW in this case), this comes as

a good news in that certain assumptions such as time-constrained-ness of a protocol

can be relaxed to some extent, resulting in relatively lower consumption of energy.

98

 0

 0.2

 0.4

 0.6

 0.8

 0 1000 2000 3000 4000 5000 6000 7000 8000

Time (sec)

F
ra

ct
io

n
 o

f
m

o
b

il
e

n
o

d
es

RWP mobility model
Susceptible: 100 nodes

Infected: 100 nodes
Susceptible: 200 nodes

Infected: 200 nodes
Susceptible: 300 nodes

Infected: 300 nodes

 0

 0.2

 0.4

 0.6

 0.8

 1

TLW mobility model

Susceptible: 100 nodes
Infected: 100 nodes

Susceptible: 200 nodes
Infected: 200 nodes

Susceptible: 300 nodes
Infected: 300 nodes

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Contacts per second

C
D

F

RWP mobility model

100 nodes
200 nodes
300 nodes

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

TLW mobility model

100 nodes
200 nodes
300 nodes

(b)

Figure 4.3.: Infection dynamics: (a) Inversion point in RWP and TLW (the infection
spread is slower in TLW) (b) Explaining the slow propagation (the contact rate in
TLW is less than RWP)

We gain insights into the reasons behind the slow infection propagation for TLW

by using two metrics: (i) contact rate, and (ii) spatial distributions of node mobility.

1. Contact Rate: Contact rate is the average number of nodes encountered by

any given node over the duration of simulation. We plot an empirical cumulative

99

distribution curve (ECDF) of the contact rate in Fig. 4.3(b) for RWP and TLW.

Observe that the median contact rate of nodes in case of RWP is almost always higher

than that in TLW. The same effect can be observed for the 95th percentile indicating

that in RWP, a given node comes in contact with a relatively higher number of nodes

thereby increasing its chances of infecting other nodes or getting infected by other

infected nodes.

2. Spatial Distributions: The spatial distribution (i.e., frequency of visits in the

simulation area) of the mobility models reveals another reason behind the slow infec-

tion propagation. In order to evaluate the spatial distribution of infected nodes that

move according to each of the models, we take an approach similar to [159]. Specif-

ically, we divide the simulation area into small size cells (e.g., divide a 1000x1000m2

into 20x20m2 size cells) and characterize each one of them using a histogram that

captures the duration of how long an infected node stays in a particular cell. We end

the simulation after 50,000 seconds.

Fig. 4.4(a) shows the resulting spatial distribution and contour lines for a particu-

lar simulation run using RWP. We observe that the spatial distribution has a peak in

the middle of the area, i.e., an infected node is most likely to be found in the central

cells of the simulation area and the probability that a node is located at the border

of the area goes to zero. Fig. 4.4(b) shows the spatial distribution and contour lines

for TLW. Observe that the non-homogeneous behavior seen in the case of RWP is

absent in the case of TLW, i.e., TLW exhibits a homogeneous spatial distribution.

The reason for the non-homogeneous behavior in RWP is well known [159–161]. In

short, RWP chooses a uniformly distributed destination point rather than a uniformly

distributed angle. This means that nodes located at the border of the simulation area

are very likely to move back toward the middle of the area. However, this is not the

case as per the original definition [143] of TLW. Under a TLW, at the beginning of

100

 0
 20

 40
 60

 80
 100

 120
 140

 160
 180

 200
X

 0
 20

 40
 60

 80
 100

 120
 140

 160
 180

 200

Y

 1.9
 2

 2.1
 2.2
 2.3
 2.4
 2.5
 2.6
 2.7
 2.8
 2.9

(a)

 0
 100

 200
 300

 400
 500

 600
 700

 800
 900

 1000
X

 0
 100

 200
 300

 400
 500

 600
 700

 800
 900

 1000

Y

 0.9
 1

 1.1
 1.2
 1.3
 1.4
 1.5
 1.6
 1.7
 1.8
 1.9

(b)

Figure 4.4.: Spatial distribution of mobility models: (a) RWP: The non-homogeneous
distribution of node mobility indicates the center to be the most frequented region.
(b) TLW: The nearly-homogeneous distribution of node mobility indicates that all
regions are equally frequented.

each step, an infected node chooses a direction randomly from a uniform distribution

of angle within [0, 2π], a finite flight time randomly based on some distribution, and

its flight length and pause time from some chosen probability distributions. In the

long run, the positions of the random walker (infected node in our case) has been

shown to converge to another distribution, called the Levy stable distribution, which

101

leads to super-diffusive paths, thus making the infected nodes cover the area in a

nearly homogeneous manner.

In summary, in case of RWP, depending on the origin of the infection, the spread

can progress rapidly because most nodes have to pass through a common point in

the center which also explains why the contact rate of the nodes is higher than that

in TLW. In case of TLW, due to the underlying homogeneous behavior, the rate

of infection propagation is nearly the same irrespective of the point of origin of the

infection.

Impact on the design of countermeasures:

• Static healers placement: In case of RWP, positioning a few static healers

somewhere near the center of the field in a non-overlapping manner should

suffice because most nodes will traverse the central point in the field anyways.

However, this is not the case for TLW, because the node distribution is uniform

across the field, thus requiring a way to optimize healer placement such that

they cover as much field as possible.

• Healer patch dissemination: In case of designing a healer for TLW, having a

higher patch dissemination rate will result in a lot of patches being delivered to

the same set of nodes since due to the low velocity (and thus low contact rate)

many nodes may continue to stay within the proximity of the healer. Therefore,

for a system optimizing energy, healer patch dissemination is a function of the

contact rate (details in § 4.3.5).

4.3 Defense Protocols Based on Static Healers

In this section, we discuss defense protocols against mobile malware. We first

present the problem definition, formally define the static optimal healer activation

problem, and design a greedy approximation algorithm. We discuss strategies for

102

healer placement and present three families of static healers heuristics: randomized,

profile, and prediction.

0 τ1 m n...

x
x

x

x

x

x

x

x

x

x

timeHealer Node x Mobile Node

Figure 4.5.: Healer activation problem: Without information about its future states,
predict when to broadcast a patch so that the healing time is optimized

4.3.1 Problem Definition

Healers have the ability to broadcast a patch periodically at every epoch τ . We

consider the decision problem of when the healer node should be activated (i.e.

switched on) within this time period to deliver a patch, to optimize along two di-

mensions: (i) the time it takes to heal the entire system, and (ii) the total number of

patches broadcast.

We assume that healers are not susceptible to the infection. In addition to this,

we also assume that healers can sense the number of neighbors surrounding them but

cannot determine which of the nodes are infected/susceptible/recovered1. Note that

this increases the complexity of the problem significantly. Consider the example in

Fig. 4.5. At time slot 1, if the healer decides to utilize its patch, it will heal at most

three nodes whereas at time slot m, it can heal at most two nodes and at time slot

n, it can heal at most five nodes. An oracle that has access to the future will pick a

1Identifying the state of a node based on the interaction with the node is quite similar to the problem
of detecting rootkits using the intrusion detection systems (IDSs) that rely on the system itself. In
fact, when a system is compromised by rootkits, IDSs must not rely on the system [162]. Hence our
healers treat each node equally.

103

time slot that will make an effective use of the patch to heal the maximum number

of nodes (in this case, time slot n). However, in practice, the future is not available

to healer nodes.

We ask the questions: What is an effective strategy for positioning the static

healers so that two healers will avoid healing the same set of infected nodes? and

How does the healer decide whether it should deliver the patch or wait in anticipation

of a higher number of nodes in the future? Without loss of generality, we consider

that the energy consumption in delivering the patch is much higher than any other

communication activity initiated by a healer. Intuitively, we are solving the problem

of effectively distributing a patch without knowing the arrival distribution of infected

nodes.

4.3.2 Design of an Oracle Optimal Healer

In the following, we formally define the static optimal healer activation problem,

and design a greedy approximation algorithm instead.

Let us call the task of designing a strategy for an optimal healer as the T-Cover

problem.

Definition 1 (T-Cover Problem). Let I be the set of all infected nodes in the

network and T =
⋃

i Ti, where each Ti is the set of infected nodes seen by all the

healers at time instance i. Furthermore, let no two healers exist within the range of

each other, and a patch from a healer can heal all infected nodes within its range and

will consume one time unit. The T-Cover problem of It = (I, T) is to find a set

W ⊆ T such that it covers the entire set of infected nodes I (i.e.
⋃

Ti∈W
Ti = I) and

W has minimum cardinality.

104

Here, the cost ci associated with Ti is equivalent to the time instance value, i.e., i.

Minimizing the total cost
∑

i∈W ci is equivalent to minimizing both the total time to

recover the infected nodes and the required number of patches to do so. For example,

let I = {1, 2, 3, 4} and T = {T1, T2, T3} where T1 = {1}, T2 = {1, 2, 3} and T3 = {3, 4}

be the sets of infected nodes seen by the healer, then the T-Cover is W = {2, 3}

meaning that a patch should be deployed at time t = 2 and t = 3 for optimality. We

can restate this optimization problem as a decision problem.

Definition 2 (T-Cover Decision Problem). Given a system It = (I, T), the T-

Cover decision problem is to determine whether It has a T-Cover of size at most

k.

In other words, we wish to determine whether there is a set W ⊆ T such that

|W | ≤ k and
⋃

Ti∈W
Ti = I. In essence, T-Cover problem is the same as the min

set cover problem, which we define below for completeness.

Definition 3 (Min Set Cover (MSC) Problem). Let S = {S1, S2, ..., Sm} be a

collection of finite sets, where Si’s elements are drawn from a universal set U =
⋃m

i=1 Si. The MSC of Is = (U,S) is a set C ⊆ S such that
⋃

Si∈C
Si = U and C has

minimum cardinality.

For example, assume U = {1, 2, 3, 4, 5} and S = {S1, S2, S3, S4}, where S1 =

{1, 2, 3}, S2 = {2, 4}, S3 = {3, 4} and S4 = {4, 5}. The minimum set cover is

C = {S1, S4}. Similarly, we can restate this optimization problem as a decision

problem.

Definition 4 (Min Set Cover (MSC) Decision Problem). Given Is = (U,S), the

MSC decision problem is to determine whether Is have a set cover of size at most k.

105

In other words, we wish to determine whether there is a set C ⊆ S such that

|C| ≤ k and U =
⋃

Si∈C
Si. As the MSC decision problem is NP-Complete, it

follows that the T-Cover decision problem is NP-Complete.

Algorithm 2: Greedy Approximation (ORACLE)

Input Let I be the list of all infected nodes, Si be the set of infected nodes
seen at each time i, wi be the list of costs associated with each arrival at i
Initially:
R is the set of elements that are not covered as yet
C is the set of covered elements
w is the weight vector
R = I and C = φ

repeat
let Si be the set that minimizes wi

|Si∩R|

C = C ∪ {Si}
R = R− Si

until R = φ

return C

According to the above theorem, we can employ any heuristic that solves the set

cover problem to solve the T-Cover problem. Algorithm 2, based on the greedy set

cover algorithm [163], gives a greedy approximation for the T-Cover. The algorithm

takes as input the arrival times of the infected nodes. Here, Si is the set of infected

nodes seen at any one time instant and we equate the weight vector wi to the time of

arrival – cost of healing nodes at a later time is higher because it introduces delay. The

main loop iterates for O(n) time, where |I| = n. The minimum W can be found in

O(log m) time, using a priority heap, where there are m sets in a set cover instance

giving us a total time of O(nlog(m)). Fig. 4.6 shows that even in the presence of

hundreds of thousands of node sets, we are able to compute the optimal solution in

under 8 seconds.

106

Infected Node Sets (log scale)

T
im

e
 (

s
e

c
o

n
d

s
)

3

4

5

6

7

8

1000 10000 50000 1e+05

Nodes

100

200

300

Figure 4.6.: Oracle Performance (The algorithm terminates in less than 8 seconds
even in long simulation scenarios)

4.3.3 Effective Healer Placement

Since the healers are static, the healer placement has an impact on our defense

protocols and thus their coverage area depends on their placement strategy. Our

simulations showed that a naive placement using uniform random distribution resulted

in a scenario where many healers ended up covering the same region thereby leaving

a lot of uncovered area. Another naive approach is the grid placement of healers in

which healers cover the entire arena and therefore each mobile node will always be in

the range of at least one healer. This approach would require N number of healers

to cover the entire arena which could be a very large number depending on the size

of arena and the range of healers2,3. Note that the infection containment problem

becomes trivial in case of grid placement. For instance, if healers were placed in grids,

the defense protocol would require all the healers to broadcast one patch each at the

same time instance t and thus, the entire system would be recovered in one second at

2For an arena of 500 × 500 (meter)2 and 20 meter healer-range, N would be at least 157, whereas
we used N = 20 healers for the same setup.
3N would no longer be a fixed number

107

the cost of N patches. However, in realistic environments, it is not practical to have

so many static healers. We focus instead of scenarios using a much smaller number

of static healers.

X

Y

100

200

300

400

500

Poission Disk Sampling

100 200 300 400 500

Uniform Sampling

100 200 300 400 500

Figure 4.7.: Healer placement using Poisson Disk Sampling and Uniform Sampling
(Poisson Disk Sampling approach increases the coverage of the simulation area)

For our healer placement strategy, what we need is a type of a constraint that re-

jects certain configurations that place healers very close to each other. This problem

can be directly reduced to a problem from the field of computer vision which involves

producing sampling patterns with a blue noise Fourier spectrum. Formally, the prob-

lem can be defined as the limit of a uniform sampling process with a minimum-distance

rejection criterion. Successive points are independently drawn from the uniform dis-

tribution [0, 1]. If a point is at a distance of at least R from all points in the set

of accepted points, it is added to that set. Otherwise, it is rejected. The choice of

R controls the minimum allowable distance between points. This procedure called

Poisson Disk Sampling [164] has been actively studied and many efficient algorithms

exist. We adapted this algorithm by setting R = 2r, where r is the range of our each

healer. Fig. 4.7 clearly highlights the merits of using this specific sampling process -

healers are no longer close to each other and hence cover more of the simulation area.

108

4.3.4 Family of Randomized Healers

We first present a heuristic where a healer randomly decides at what time within

an epoch to send a patch. Note that a healer will decide to send a patch regardless

of the number of nodes in its vicinity. Fig. 4.8 depicts the state machine of the

randomized healer (RH). It contains two states, an initialization phase where an

epoch timer is started and an execution phase where the healer prepares to deliver

a patch. The epoch timer fires a callback function that has two responsabilities: (i)

pick a random time from the interval [0, τ], where τ is the epoch length, and use this

random time to schedule a broadcast, called the patch timer and (ii) re-schedule the

epoch timer to be fired for the next epoch. τ depends on the range of the healer and

velocity of the mobile node. When the patch timer expires, the healer broadcasts a

patch with a probability p, we call it the patch deployment probability.

Initialization

Complete

INITIALIZATION

PHASE

EXECUTION

PHASE
Epoch elapsed

if rand() < p:

 Schedule(Patch)

0 1

Figure 4.8.: State machine of a Randomized Healer

Algorithm 3 outlines the pseudo-code for the randomized healer. Varying p will

generate a family of randomized healers. On one hand, setting p = 1 (RH(p=1)) makes

the healer broadcast a patch at every epoch and thus attempts to minimize the time

it takes to heal the system. However, notice that the number of patches delivered

would be equal to Dsim

τ
, where Dsim is the simulation duration. On the other hand,

setting p < 1 makes the healer broadcast a patch only during certain epochs. The

time taken to heal the system is inversely proportional to p whereas the number of

patches delivered is directly proportional to it.

109

Algorithm 3: Randomized Healers (RH)

Input Epoch length τ and patch deployment probability p

Initially:
start epoch timer(τ)

Upon the expiration of epoch timer:
select a duration t randomly from (0, τ)
start patch timer(t)
start epoch timer(τ)

Upon the expiration of patch timer:
Broadcast a patch with probability p

4.3.5 Family of Profile Healers

0

Initialization

Complete

INITIALIZATION

PHASE

Epoch elapsed

Record number of

neighbors in proximity

LEARNING PHASE

t > T

Estimate threshold

Epoch elapsed

if num_neighbors() > threshold:

 Schedule(Patch)

EXECUTION PHASE

1

2

Figure 4.9.: State machine of a Profile Healer

One limitation of the RH approach is that healers may send more patches than

needed since they decide to send patches regardless of how many infected nodes are

present in their proximity. We propose a new approach, PH, where a healer attempts

to learn the arrival distribution of nodes and subsequently determine whether or not

it is cost effective to deliver a patch. The decision is made based on a threshold that

captures the number of nodes in its vicinity.

Each healer can exist in one of three states as depicted in Fig. 4.9 - an initialization

phase which prepares the healer, a learning phase where the healer passively records

the number of neighbors it is observing during each epoch (in general), and an exe-

110

cution phase where the healer utilizes information that it learnt during the previous

phase to decide whether or not to deliver a patch. Algorithm 4 describes this healer

(PH) in detail. In the initialization phase, each healer sets its own state to LEARNING

and starts the sensing timer (sensing timer) with a duration of 1 second. Upon the

expiration of sensing timer, the healer checks whether the observation time T has

elapsed yet. If not, the healer records the number of neighbors (num of neighbors) in

its proximity and restarts sensing timer. When the observation time T has elapsed,

the healer first estimates the threshold from the recorded information and moves to

the EXECUTION state. Now at every second, the healer checks whether the number of

neighboring nodes exceeds the threshold. If so, the healer deploys a patch and starts

a timer (epoch timer), which expires at the end of the current epoch. Until then, the

healer does no sensing at all. Upon the expiration of epoch timer, the healer starts

sensing again by setting sensing timer.

The goal of learning phase is to learn the distribution of node arrivals specific to a

healer’s locality for a certain observation time T which is a multiple of τ . Specifically,

the goal is to learn a threshold of nodes that will determine whether the healer should

send a patch or not. We use two metrics described below.

• MSD = Mean + 1.5 × Standard Deviation: MSD is well-known for normal

distributions and makes the healer broadcast a patch only if the number of

neighbors exceeds its estimate of the 95th percentile.

• M = Median: M is the median of the observed distribution. Median is very

robust to outliers – it handles cases where a healer observes a burst of infected

nodes during an epoch.

During our simulations, we observed that relying solely on a threshold was leading

to a wastage of patches - due to the low contact rate we observed in §4.2.2. Consider

Fig. 4.10 which depicts the healing sequence of a set of five healers during the epochs

111

Algorithm 4: Profile healers (PH)

Input Epoch length τ , observation time T such that T > 1

Initially:
t← 0, ∆← 1, state← LEARNING, next epoch time← 0
Start sensing timer(∆) ⊲ Start timer with duration ∆

Upon the expiration of sensing timer:
t← t+∆
if state = LEARNING then

if t < T then

Record num of neighbors in proximity
else

Estimate threshold from the recorded num of neighbors at each ∆
state← EXECUTION

next epoch time← t+ τ

end if

Start sensing timer(∆)
else

if current num of neighbors > threshold then

Broadcast a patch
Start epoch timer(next epoch time− t)

else

Start sensing timer(∆)
end if

end if

Upon the expiration of epoch timer:
t← next epoch time

next epoch time← t+ τ

Start sensing timer(∆)

112

0

4
0

4
0

4
0

4
0

4

 0 50 100 150 200 250

N
o
 o

f
re

co
v
er

ed
 n

o
d
es

Epoch

healer 1
healer 2

healer 3
healer 4

healer 5

Figure 4.10.: Motivating backoff: Most consecutive patches do not heal infected nodes
indicating that it is better to backoff after a patch delivery

of one simulation run. Points situated at 0 indicate that the healer deployed a patch

as the number of neighbors was above the threshold but the patch did not heal any

infected nodes. Any other number indicates the number of infected nodes healed with

that patch. Observe that most patches are going to waste, i.e., they are not healing

any nodes. In the worst case, it takes at least healer range

node velocity
seconds for a node to go out

of range of a healer. Therefore, for shorter epochs, consecutive patches are delivered

to the same set of nodes. We address this issue by introducing a random backoff, i.e.,

once a patch has been broadcast, the healer selects a random backoff delay κ from

the interval (0, η), where η is the maximum backoff in epochs, and skips that many

epochs. Algorithm 5 also describes the backoff algorithm in detail. We refer to this

algorithm as PHB. This algorithm is similar to Algorithm 4 except that each healer

now selects a random backoff delay κ ∈ {1, . . . , η−1} to remain silent after the deploy

of a patch. Upon the expiration of this remaining period, the healer starts sensing

again.

Both PH and PHB have two shortcomings. First, both require to wait until the

end of the learning phase (i.e., a certain observation time T to learn the distribution of

113

Algorithm 5: Profile healers with backoff (PHB)

Input Epoch time τ , observation time T such that T > 1 and maximum backoff η

such that η > 1
Initially:

t← 0, ∆← 1, state← LEARNING, next epoch time← 0
Start sensing timer(∆) ⊲ Start timer with duration ∆

Upon the expiration of sensing timer:
t← t+∆
if state = LEARNING then

if t < T then

Record num of neighbors in proximity
else

Estimate threshold from the recorded num of neighbors at each ∆
state← EXECUTION

next epoch time← t+ τ

end if

Start sensing timer(∆)
else

if current num of neighbors > threshold then

Broadcast a patch
Randomly select κ between (0, η)
Start epoch timer(next epoch time− t+ κ× τ)

else

Start sensing timer(∆)
end if

end if

Upon the expiration of epoch timer:
t← get current time()
next epoch time← t+ τ

Start sensing timer(∆)

114

node arrivals) to start healing the system. Second, the healers learn and estimate the

threshold only once. This may not characterize the node arrival distribution of the

system accurately. Note that any attempts to improve one shortcoming will worsen

the other. For instance, on one hand, decreasing the observation duration T , to start

healing early, introduces the possibility of inaccurately estimating the threshold (due

to insufficient data points) and hence leads to consuming more patches. On the other

hand, if T were to be increased (to better capture the node arrival distribution),

it results in an increased system recovery time. To address these limitations, we

adopt a hybrid approach where healers perform online learning and heal the system

simultaneously. This approach is an extension of the PHB algorithm where each

healer never stops learning. Moreover, at the end of every Γ epochs, each healer

dynamically estimates a new decision threshold based on what it has learned in the

last Γ epochs and uses the newly estimated threshold for the next Γ epochs. We

refer to this algorithm as D-PHB (see Algorithm 6). Note that, unlike both PH and

PHB, each healer can be either in LEARN EXEC state when it both learns and heals or

in ONLY LEARN state when it only learns. However, each D-PHB healer uses random

backoff mechanism like PHB healers.

4.3.6 Family of Prediction Healers

The optimal healer ORACLE (see Algorithm 2) has several advantages compared

to the profile healers. Firstly, an optimal healer has the global view of the entire

network, whereas a profile healer has only the local view (neighbors at its vicinity).

Secondly, an optimal healer can explicitly identify the state (e.g., susceptible, infected,

recovered) of every mobile node, but a profile healer is not capable of identifying the

state of a mobile node in its proximity. Finally, while the former knows the future

(i.e., time instance at which each healer is going to observe the maximum number

115

Algorithm 6: Profile healers with backoff and dynamic threshold scheme (D-
PHB)

Input Epoch time τ , observation epochs Γ such that Γ > 1, initial threshold α, and
maximum backoff η such that η > 1
Initially:

t← 0, ∆← 1, next epoch time← τ , state← LEAR EXEC

threshold← α, epoch count← 0, time to switch state← 0
Start sensing timer(∆) ⊲ Start timer with duration ∆

Upon the expiration of sensing timer:
t← t+∆
Record num of neighbors in proximity into Σ
if state = LEAR EXEC then

if current num of neighbors > threshold then

Broadcast a patch
Randomly select κ between (0, η)
time to switch state← next epoch time− t+ κ× τ

state← ONLY LEARN

end if

end if

if t = next epoch time then

epoch count← epoch count+ 1
if epoch count = Γ then

Estimate threshold from the recorded num of neighbors at each ∆
Clear records from Σ
epoch count← 0

end if

next epoch time← next epoch time+ τ

end if

if t = time to switch state then

state← LEAR EXEC

end if

Start sensing timer(∆)

116

of infected nodes), the latter has no such knowledge. All these advantages make the

optimal healers ideal, but impractical. Having the first two capabilities of an optimal

healer would make any healer impractical for real world. However, in case of the third

capability, we can equip a healer with the ability to predict the event of observing

relatively higher number of mobile nodes4 in the near future with the goal of hitting

a middle ground between the optimal healers and the profile healers. Therefore, we

propose a new family of healers called prediction healers (PDH).

Similar to a profile healer, each prediction healer can exist in one of the three

states as shown in Fig. 4.9, except it does not estimate a threshold. Instead, each

healer now computes a stationary transition probability matrix 5. Let Xh
t be the state,

i.e., the total number of mobile nodes observed by the hth healer at time instance t.

Further, assume that the stationary transition probability matrix for the healer h is

Ph = [phij]n×n where phij = Pr[Xh
t+1 = j|Xh

t = i], i.e., the probability of observing j

nodes in the next time instance given that the healer has seen i nodes at the current

time instance and n be the total number of mobile nodes in the system6. Each healer

must deploy a patch during every epoch, but it is free to choose the deployment time

instance within an epoch. This deployment time instance is chosen based on whether

it is worth deploying the patch now or to hold off for a better future state that may be

observed within this epoch. If the healer reaches the deadline of the current epoch and

has not deployed the patch yet, it must deploy the patch right away. Each prediction

healer uses a prediction function F which is based on this intuition. We define the

function F , formally, as follows:

F(λ, x|P) =











1 if G(λ, x|P) >
∑

y pxyG(λ− 1, y|P)

0 otherwise

4Mobile nodes in general, not only infected ones
5Similar to the transition probability matrix of a Markov Model
6Superscript means the identity of the healer, not the h-step transition probabilities of Markov chain.

117

where, λ is the remaining time to the deadline of the current epoch, x is the current

state of the healer, y is any possible next state and y ∈ [0, n], P is the transition

probability matrix of the healer, and

G(λ, x|P) =























0 if λ < 0

x if λ = 0

max{x,
∑

y pxyG(λ− 1, y|P)} otherwise

Note that G(λ, x|P) ≥ G(λ−1, x|P), for all λ, x. That is, the worth of the patch either

stays the same or diminishes with the decrease in λ (equivalently, with the increase in

time). In other words, the more a healer waits to deploy a patch, the more the patch

loses its worth. Note that it captures the time constraint of the T-Cover problem.

Fig. 4.11 shows the internals of the prediction function where x is the current state

of the healer. In the next time instance, the healer can move to any state j ∈ [0, n]

with probability pxj. The healer predicts the future and decides on whether or not to

deploy a patch using F(λ, x|P) at the current state x.

x

0

i

n

...
...

λ λ-1

px0

pxi

pxn

Remaining time to the deadline of the current epoch

Current
state

The set of
possible

 next states

Transition
probability

Figure 4.11.: The internals of the prediction function used by a prediction healer

Algorithm 7 describes the healer in detail. During the LEARNING state, each healer

records the number of neighbors observed at each time instance. After the observation

period, each healer computes the transition probability matrix P and stores it for

118

Algorithm 7: Prediction Healers (PDH)

Input Epoch length τ , observation time T such that T > 1
Initially:

t← 0, ∆← 1, state← LEARNING, deploy status←false

λ← 0 ⊲ λ is the time to be elapsed until the deadline of the current epoch
Start sensing timer(∆) ⊲ Start timer with duration ∆

Upon the expiration of sensing timer:
t← t+∆
if state = LEARNING then

if t < T then

Record num of neighbors in proximity and store in S
else

Compute P from the recorded S ⊲ P is the transition probability matrix
state← EXECUTION

λ← τ

end if

else if state = EXECUTION then

λ← λ− 1 ⊲ Elapsed one second
x← current num of neighbors in promixity
if deploy status = false then

if λ = 0 or F(λ, x|P) = 1 then

Broadcast a patch
deploy status← true

end if

end if

if λ = 0 then

λ← τ

deploy status← false

end if

end if

Start sensing timer(∆)

119

future reference. In the EXECUTION state, each healer decides to deploy the patch

if (1) the healer has reached the deadline of the current epoch or (2) it is worth

deploying at the current time instance based on F(λ, x|P). Whenever λ becomes

zero, it performs some reinitialization to prepare itself for the next epoch.

Computing F(λ, x|P) requires a healer to compute the G(.) recursively from λ to

0. Recursive implementations of F(.) and G(.) are highly expensive when the system

contains hundreds of nodes and the epoch length is in the order of minutes. In addi-

tion, recursive implementation wastes computations by solving the same subproblem

multiple times. To overcome these challenges, we leverage dynamic programming, to

efficiently implement G and F . The intuition behind dynamic programming is to

first solve the smaller subproblems and then utilize the answers to solve the overall

problem. The pseudocode for G(.) is shown in Algorithm 8. A healer computes F(.)

in a similar way.

4.4 Healer-Based Protocols Evaluation

In this section, we describe our evaluation methodology and present the perfor-

mance of the various healer-based defense mechanisms outlined in §4.3. Table 4.1

summarizes the notations and the parameters of the healer algorithms that we eval-

uate in the section.

4.4.1 Evaluation Methodology

To evaluate the performance of the families of healers we proposed, we simulate

the various healer-based protocols we described (see Table 4.1) using the NS-3 [104]

network simulator on a network containing 300 nodes. We perform two different sets

of experiments, one with nodes having RWP and the other with TLW as their mo-

120

Algorithm 8: Compute G(.)

Input Total number of nodes n, epoch size τ , the transition probability matrix PT

Output A matrix GT of size τ × n

1: Declare a matrix GT of size τ × n

2: for j ← 0 to n

3: GT (0, j)← j

4: end for

5: for i← 1 to τ

6: for j ← 0 to n

7: sum← 0
8: for k ← 0 to n

9: sum← sum+ PT (j, k) ∗GT (i− 1, k)
10: if j > sum then

11: GT (i, j)← j

12: else

13: GT (i, j)← sum

14: end if

15: end for

16: end for

17: end for

18: return GT

121

bility model. We assume that the range of each healer is 20 meters and the epoch

length, τ , is 30 seconds (so that each node stays within the range of a healer for

one epoch length on an average before leaving the coverage area of the healer). In

addition, 10% of the population is assumed to be initially infected to enable boot-

strapping the system. We can technically start with one infected node (which was our

initial attempt), but we observe that this only delays infection spread and increases

the chance that infection will disappear. Healers are placed in the system using the

strategy outlined in §4.3.3 and are activated (i.e., started) when the fraction of in-

fected nodes exceeds 70% of the total population to give the system sufficient time

to warm-up. We note that 70% is one possible worst case scenario and projects the

capabilities of the healer. In real-world scenarios, this value depends on how fast one

can setup healers during an epidemic outbreak. However, to analyze the sensitivity

of these two parameters on the performance we conducted two-way analysis of vari-

ance (ANOVA)7 tests with significance level of 0.05. We varied the number of initially

infected nodes as 10%, 15%, and 20% and the time to activate healers when the 50%,

60%, and 70% of the population become infected. Both the parameters, either with

or without the interaction between them, did not make any statistically significant

impact on the performance. We also conducted pairwise comparison tests amongst

the different categorical values of a parameter to see what significant differences are

present amongst the values of the parameter. For both the parameters, the results

indicate that there are no statistically significant pairwise differences between the

categorical values. Therefore, we choose to proceed with 10% of the nodes as initially

infected and to activate healers when 70% of the nodes becomes infected considering

less aggressive nature in the both the cases.

7In statistics, a two-way ANOVA test is used to examine the influence of different categorical inde-
pendent variables on one dependent variable [165].

122

Table 4.1.: List of protocols proposed and evaluated

Protocol Description Parameters (default values)

RHp Randomized healers
Patch deployment probability p

(= 1)

PHMSD Profile healers
Decision threshold
MSD = Mean+ 1.5× stddev

PHM Profile healers Decision threshold M = Median

PHBM
Profile healers with
backoff

Maximum no. of epochs to
backoff η (= 2) and decision
threshold M

D-PHBM

Profile healers with
backoff and dynamic
threshold scheme

Observation epochs Γ (= 10),
maximum no. of epochs to
backoff η (= 2) and decision
threshold M

PDH Prediction healers

Once the healers are activated, they follow the protocols outlined in §4.3.4, §4.3.5,

and §4.3.6. All results are averaged across 10 runs of each experiment, to obtain statis-

tically significant results, by varying the seed of a pseudo-random number generator.

To measure the performance of each protocol, we define:

• Total recovery time: It represents the amount of simulation time required by

the set of healers to recover at least 95% of the nodes in the system.

• Total number of patches : It represents the count of patches deployed by the

set of healers to heal the system such that at least 95% of the total number of

nodes are recovered.

Note that we choose 95% to account for scenarios similar to the rare block prob-

lem [166] in P2P networks - we observe the presence of some infected nodes that take

exceedingly long time to enter the range of healers because they are wandering along

the edge of the field and hence prolong our simulation.

123

 0

 0.2

 0.4

 0.6

 0.8

 0 1000 2000 3000 4000 5000 6000

Time (sec)

F
ra

ct
io

n
 o

f
m

o
b

il
e

n
o

d
es

RWP, Susceptible: 300 nodes
RWP, Infected: 300 nodes

RWP, Recoverd: 300 nodes
RWP, Oracle: 300 nodes

 0

 0.2

 0.4

 0.6

 0.8

 1

TLW, Susceptible: 300 nodes
TLW, Infected: 300 nodes

TLW, Recoverd: 300 nodes
TLW, Oracle: 300 nodes

(a) RH(p=1)

 0

 0.2

 0.4

 0.6

 0.8

 0 1000 2000 3000 4000 5000 6000 7000 8000

Time (sec)

F
ra

ct
io

n
 o

f
m

o
b

il
e

n
o

d
es

RWP, Susceptible: 300 nodes
RWP, Infected: 300 nodes

RWP, Recoverd: 300 nodes
RWP, Oracle: 300 nodes

 0

 0.2

 0.4

 0.6

 0.8

 1

TLW, Susceptible: 300 nodes
TLW, Infected: 300 nodes

TLW, Recoverd: 300 nodes
TLW, Oracle: 300 nodes

(b) RH(p=0.5)

Figure 4.12.: Evaluation of Randomized Healer family

4.4.2 Results for Family of Randomized Healers

Fig. 4.12(a) - 4.12(b) show the temporal view of infection propagation and the

recovery of the system for RH family using RWP and TLW. The graphs show that

regardless of the protocol, the required recovery time is always smaller in case of RWP

than TLW which is due to RWP’s higher contact rate.

124

Fig. 4.12(a) shows the required recovery time for randomized healers with p = 1,

i.e., RH(p=1). The upper graph is for TLW and the lower one is for RWP. Additionally,

we also point out the recovery time required by ORACLE using a vertical line. In

case of RWP, ORACLE requires 502 seconds to heal the system whereas RH(p=1)

requires almost double this time, i.e., 1,241 seconds. In case of TLW, ORACLE

needs 645 seconds to heal the system whereas RH(p=1) requires about nine times the

optimal recovery time. We also note that the recovery time required by RH(p=1) is

the minimum time that we can achieve using healers that do not depend on system

feedback (e.g., estimating the arrival distribution of nodes).

Fig. 4.12(b) shows the results for RH(p=0.5), i.e., each healer deploys a patch per

epoch with a probability p = 0.5. It is expected thatRH(p=0.5) requires more time than

RH(p=1) to heal the system since now the healers skip some epochs. In comparsion

with the recovery time required by RH(p=1), RH(p=0.5) shows 48% increase in case of

RWP and 31% increase in case of TLW.

4.4.3 Results for Family of Profile Healers

To measure the impact of different maximum backoff values on the PHBMSD and

the PHBM , we varied the maximum backoff from 2 epochs to 16 epochs. Fig. 4.13

shows the results of this experiment. We also include the results of RH(p=1) as a

baseline of the performance. We use two Y-Axes for this graph: the left one for the

total number of patches and the right one for the total recovery time. Each point is the

average of 10 different runs of the simulation and is plotted along its 95% confidence

intervals. With the increase in maximum backoff values, the total recovery time is

increasing rapidly in case of PHBMSD in comparison with PHBM . On the other hand,

the total of number of patches is decreasing rapidly for PHBMSD in comparison with

PHBM . We conjecture that if the recovery time is to be optimized, then PHBM

125

is a better solution; but if the energy of the healers is to be optimized, then the

PHBMSD is a better choice. However, the downside of PHB is its large observation

time. D-PHB is a solution to this downside of PHB. We also include the performance

of D-PHBM in Fig. 4.13. The results demonstrate that D-PHBM performs as good as

PHBM in terms of both the metrics. So if the large observation time is unacceptable,

D-PHBM heals the system as fast as PHBM and does not require any observation

time.

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

RH (p=1) 2 4 6 8 10 12 14 16
 5000

 6000

 7000

 8000

 9000

 10000

 11000

 12000

 13000

 14000

T
o

ta
l

n
u

m
b

er
 o

f
p

at
ch

es

T
o

ta
l

re
co

v
er

y
 t

im
e

(s
ec

)

Maximum backoff (epochs)

PHB with MSD: Total patches
PHB with MSD: Recovery time

PHB with M: Total patches
PHB with M: Recovery time

D-PHB with M: Total patches
D-PHB with M: Recovery time

Figure 4.13.: Effect of varying maximum backoff (D-PHBM performs as good as
PHBM in terms of both the metrics with the added advantage that it does not have
an observation time)

LetXMSD andXM represent a profile-based healerX that utilizes MSD(= Mean+

1.5×Standard Deviation) and M(= Median) as its threshold, respectively. Fig. 4.14

shows the performance of PH for the RWP and the TLW mobility models. PHMSD

requires more time to heal the system in comparison with the other two RH healers.

Since we are more interested in the human-mimicking mobility model, we evaluate

PHB and D-PHB for only TLW in Fig. 4.15(a) and Fig. 4.15(b), respectively. Due

126

 0

 0.2

 0.4

 0.6

 0.8

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Time (sec)

F
ra

ct
io

n
 o

f
m

o
b

il
e

n
o

d
es

RWP, Susceptible: 300 nodes
RWP, Infected: 300 nodes

RWP, Recoverd: 300 nodes
RWP, Oracle: 300 nodes

 0

 0.2

 0.4

 0.6

 0.8

 1

TLW, Susceptible: 300 nodes
TLW, Infected: 300 nodes

TLW, Recoverd: 300 nodes
TLW, Oracle: 300 nodes

Figure 4.14.: Evaluation of PHMSD

to space limitation, we present the performance of PHB and D-PHB with maximum

backoff η = 2 and M as the threshold value in Fig. 4.15(a)- 4.15(b). When we compare

PHMSD, PHBM , and D-PHBM using the TLW mobility model, PHBM outperforms

the other two in terms of total recovery time.

4.4.4 Results for Family of Prediction Healers

Fig. 4.16 shows the temporal view of the infection propagation and recovery of the

system using prediction healers in case of the TLW mobility model. The prediction

healers require the least amount of time to recover the system when compared to

the RH and PH families. This is due to the prediction capability of the healers that

allow them to deploy patches efficiently. The recovery time required by the prediction

healers is 18% less and 22.5% less than the best random healers RH(p=1) and the best

profile healers PHBM , respectively.

127

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000 6000 7000

N
u

m
b

er
 o

f
m

o
b

il
e

n
o

d
es

 (
F

ra
ct

io
n

)

Time (sec)

Susceptible: 300 nodes
Infected: 300 nodes

Recoverd: 300 nodes
Oracle: 300 nodes

(a) PHBM with η = 2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000 6000 7000 8000

N
u

m
b

er
 o

f
m

o
b

il
e

n
o

d
es

 (
F

ra
ct

io
n

)

Time (sec)

Susceptible: 300 nodes
Infected: 300 nodes

Recoverd: 300 nodes
Oracle: 300 nodes

(b) D-PHBM with η = 2

Figure 4.15.: Evaluation of various PHM

Summary: Fig. 4.17 summarizes the results consisting of both the metrics obtained

by each of the healers for the TLW mobility model. In terms of the number of patches,

PHMSD requires the least number of patches but at the cost of a larger recovery time.

The prediction healers PDH outperforms the others in terms of the total recovery

time. However, it requires 89% more patches than PHMSD. Next comes the RH(p=1)

that requires 21% more recovery time than PDH. However, in order to achieve this

128

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000 6000 7000 8000

N
u

m
b

er
 o

f
m

o
b

il
e

n
o

d
es

 (
F

ra
ct

io
n

)

Time (sec)

Susceptible: 300 nodes
Infected: 300 nodes

Recoverd: 300 nodes
Optimal: 300 nodes

Figure 4.16.: Evaluation of PDH

100

1000

10000

Oracle RHp=1 RHp=0.5 PHMSD PHBM D-PHBM PDH

T
o

ta
l

re
co

v
er

y
 t

im
e

(s
ec

)

Protocols

645

5810 7655 8794 6156 7172 4771

10

100

1000

10000

T
o

ta
l

#
 o

f
p

at
ch

es

420

3791
2540

1076 1394 1518 2033

Figure 4.17.: Summary of the performances of healer families for TLW

recovery, RH(p=1) has to deploy the maximum amount of patches. In fact, PHBM

performs the best since it requires only 29% more recovery time in comparison to

PDH and only 30% more patches than that of PHMSD.

Our results show that each of the schemes has advantages and disadvantages.

First, randomized healers offer the immediate advantage that they do not rely on

system feedback nor do they have to learn the system before starting to recover the

129

system. Second, prediction healers would be beneficial in a time-constrained system

as these healers are fastest at recovering an infected system by utilizing prediction

capability. However, they result in using 1.8x patches than the profile healers (with

MSD threshold). Finally, profile healers with backoff offer intelligent decision making

thereby saving energy in the form of utilizing less number of patches and would benefit

the most in an energy-constrained environment. However, they result in taking 1.8x

time to recover in comparison to PDH healers. On the other hand, when compared

with the ORACLE, we observe that PDH, RH, and PHBM healers take 7.4x, 9x, and

9.5x recovery time, respectively. Furthermore, to recover the system PHMSD healers

require 2.5x patches than the ORACLE.

4.5 Summary

Mobile malware have become an emerging problem that threatens smartphones

which are growing significantly in recent days. In this work, we considered realistic

mobility patterns to model proximity dependent malware and compared them against

de facto models like random waypoint mobility model. We presented several defense

mechanisms that allow tuning of parameters to control the optimization along two

dimensions: time to recovery and energy utilized. The extensive evaluation of all our

defense mechanisms shows that prediction healers would be more effective in a time

constrained environment whereas profile healers would benefit the most in an energy

constrained environment.

130

5 RELATED WORK

The related work for Chapters 2, 3, and 4 is discussed here. For clarity, we present

the related work on compliance checking, adversarial testing, and infection mitigation

in Section 5.1, 5.2, and 5.3, respectively.

5.1 Compliance Checking

We now outline the previous work that are closely related to our compliance

checking work by grouping them into different categories.

Software model checking Formally proving that a program satisfies some prop-

erties has been considered an important problem [167,168]. Software model checking

can be roughly divided into the following categories: execution-based [13, 169, 170]

and abstraction-based techniques [14, 171]. Counterexample-guided abstraction re-

finement (CEGAR) [55] exploits the best of the above two approaches by automati-

cally generating the abstractions of the program under verification and refining when

a spurious counterexample is encountered. CEGAR ensures that the abstract state

space of the program is small enough to be searched efficiently. Many automatic tools

that use some form of CEGAR, e.g., SLAM [16], BLAST [17], CPACHECKER [15]

have been proposed. In spirit, our compliance checking technique uses the CEGAR

approach. While, the above tools are used for verifying general program, CHIRON is

targeted towards checking compliance of event-driven network protocols and hence we

can use protocol specific optimizations for compliance checking. Jaffar et al. [172] ex-

ploits symbolic execution and interpolants to learn infeasible paths and hence avoids

131

exploring an exponential number of paths. The above analysis techniques can im-

prove CHIRON’s precision and scalability while extracting the E-FSM. Gulavani

et al. [173] proposes a new property checking algorithm that combines the ideas of

counterexample-guided model checking, directed testing, and partition refinement.

Verifying network protocols and event-driven programs Holzmann et al. [19]

extract the abstract event-driven program model from a source code using a purely

syntactic approach, which requires the end user to annotate the source code heavily.

The extracted model is later model checked against the given properties after har-

nessing the model further by utilizing the user provided map of source statements

relevant to the verification to be performed and the user provided test driver to sim-

ulate the necessary behaviors to interact with the application. Our approach uses

symbolic execution and requires significantly less developer inputs to automatically

extract the E-FSM of the protocol.

The work by Musuvathi et al. [18,20] is the closest to our approach. They develop

an explicit state model checker for C/C++ source CMC that verifies user-provided

invariants. CHIRON differs from CMC in the following four ways: (1) CHIRON

uses pLTL to express properties whereas CMC uses boolean formulas, (2) CHIRON

explicitly extracts the E-FSM whereas CMC generates parts of the E-FSM as nec-

essary for verification, (3) CHIRON uses a symbolic model checker whereas CMC is

an explicit-state model checker, (4) CMC focuses on low-level programming errors

whereas we are focused on detecting logical programming errors while implementing

the S-FSM. Clarke et al. [174] propose a specialized model checker for security pro-

tocols. However, the protocol is required to be expressed in their high level language.

CHIRON works on the C source of the protocol. Chaki and Datta [175] combine

software model checking with standard protocol security model to verify authentica-

tion and secrecy properties of protocol. They require the source to be ported to their

132

language ASPIRE. CHIRON’s FSM extractor directly works on the source and does

not emphasize on authentication or secrecy. Bhargavan et al. [99] uses SPIN [13] and

HOL theorem prover [176] to prove key properties of distance vector routing proto-

cols standards. However, their approach cannot handle protocol implementations.

Bhargavan et al. [177] advocate the automatic extraction and verification of symbolic

cryptographic models from executable code; however, they require the implementa-

tion to be in specific language (i.e., F#).

Counterexample guided testing Counterexamples have been used as test inputs

to test non-trivial properties [66,67]. The basic idea is generating a model and testing

it against some well-formed property. If the property is violated, the CEX is used to

generate tests for the program. CHIRON’s automatic extraction of the E-FSM of

the protocol can help generate more targeted and non-trivial test cases from the CEX.

Inferring protocol specification Several other works have looked at inferring

protocol specification— based on network traces [57–59,178,179], using program anal-

ysis [60, 61, 180, 181], or through model checking [14, 62]. Comparetti et al. [57] infer

protocol state machines from observed network traces by clustering messages based

on the similarity of message contents and their reaction to the execution. While

Caballero et al. [58] extracts the protocol message format from a trace of protocol

messages, Cho et al. [59] extracts the protocol state machines from network traces

with the help of a set of user-provided abstraction functions to generate an abstract

alphabet out of trace messages. However, the protocol state machines extracted fol-

lowing these techniques merely capture the sequences of messages that represent valid

sessions of the protocol, which often remains incomplete as it depends on the captured

network traces and does not possibly represent the actual protocol FSM.

133

On the other hand, MACE [61] infers the abstract model given a seed of protocol

messages by constructing an abstract grammar and performs concolic execution on

the protocol binary to discover vulnerabilities, while iteratively refining the model as

it encounters new input/output messages. Unlike MACE, our work does not rely on

any seed of messages and extract the actual FSM implemented by the protocol rather

than a state machine depicting the sequence of messages of a valid session. Kothari et

al. [60] employs symbolic execution to derive the FSM from TinyOS programs. How-

ever, the FSM is built from the program states representing a very low-level program

state machine rather than the protocol FSM. Whereas our work focuses on extracting

the high-level protocol FSM from the C-based implementation of the protocol. Sim-

ilarly, Lie et al. [62] uses a source-to-source transformation procedure that translates

the protocol implementation (C code) to the modeling language (metal) for the model

checker (Murphi). In addition, it requires the end users to annotate the protocol code

in the metal language, which will be used to slice the selected protocol code from the

large code base. The users also need to provide a list of translation patterns to be

used to translate the sliced- program AST into model checking language. The ex-

tracted model combined with user provided hardware model are used to model check

against the specified correctness properties. Whereas our technique is much richer in

a sense that we extract a high-level protocol FSM, not the program FSM, by using

utilizing program analysis rather than source-to-source transformation. Additionally,

our technique is independent of the modeling language and the model checker one

uses for verification.

Vulnerability discovery in network protocols A variety of works focus on find-

ing vulnerability in network protocol implementations, many using fuzzing. While

random fuzz testing [182] is often effective in finding interesting corner case errors,

the probability of “hitting the jackpot” is substantially low because it typically mu-

134

tates the well-formed inputs and tests the program on the resulting inputs. To over-

come this inherent problem of fuzzing, a set of works like SNOOZE [63], KiF [64],

SNAKE [65] leverage protocol state machine to cover deeper and more relevant por-

tions of the search space. All of them require the end users to provide the protocol

specification (e.g., message format, state machine) and various fault injection scenar-

ios or evaluation metric to discover vulnerabilities in stateful protocols such as SIP

and transport protocols. On the contrary, several works like MACE [61], Prospex [57]

infer protocol models (a sequence of messages valid in a session) to be used for fuzzing

to discover vulnerabilities. Our work orthogonally focuses on checking compliance of

high-level properties in protocol implementations, which may lead to discovery of

state machine bugs.

Several other works [31,183–185] leverage program analysis, for example, symbolic

execution, to find vulnerabilities in protocol implementations. MAX [31] focuses on

two-party protocols to find performance attacks mounted by a compromised partici-

pant that can manipulate the victim’s execution control flow. However, MAX relies

on the user specified information about a known vulnerability of the implementation

to limit the search space during symbolic execution. Similarly, SymbexNet [183] tests

two-party protocols by executing one party symbolically to operate on symbolically

marked input packets. Thus it can generate high-coverage test input packets for the

implementation, which are verified against the packet rules manually derived from

the specification. Unlike them, KleeNet [184] and SDE [186] apply symbolic execu-

tion to network protocols and distributed systems, respectively. The key idea is to

spawn a symbolic execution instance for each participant and allow communication

between the symbolic states of different participants as if they were exchange mes-

sages through network packets. Besides low-level programming errors, it allows the

end users to check simple high-level properties by providing global assertions.

135

General bug finding tools There is a rich literature (e.g., DART [187], CUTE [188],

KLEE [77], EXE [189], BitBlaze [190], S2E [191]) on general bug finding tools that

employ symbolic execution. Some (e.g., DART, CUTE, SAGE) are built on the

concept of concolic execution – which concretely runs a single execution path and

collects and solves symbolic constraints to drive the concrete execution to the next

path, whereas others (e.g., KLEE, S2E, EXE) try to execute all possible paths in a

single run of the system. These techniques have been effectively used to find bugs

or to generate exploits in sequential programs such as Unix utilities. Such bugs of-

ten manifest due to low-level programming errors (e.g., segmentation faults, various

memory errors due to read/write overflows). While such tools allow the end users to

specify invariants in the code using special code construct, such code constructs are

not always sufficient to check complex and intricate invariants (e.g., state transition

due to a specific network event) as they require additional code to extract the protocol

state and perform invariants checking, which further increases the burden on the end

users (or the verifier). However, without negating the necessity of those techniques,

we intend to find if the implementation under test violates any given high-level pro-

tocol properties thereby complementing the general bug finding tools that focus on

low-level errors.

5.2 Adversarial Testing

Model checking techniques [13, 192, 193] have been used to verify the correctness

of protocol models. Once the model is specified in a high-level modeling language,

its correctness is verified mathematically. Many works extended such methods to

consider the wireless environment [98,99,194,195]. While model checking techniques

have been helpful to show the correctness of the model of a protocol, the high-level

descriptions abstract away many details of the actual implementation resulting in

136

missing vulnerabilities in the abstract model, which may manifest in the actual im-

plementation. Exploration based model checking techniques [18, 20, 170, 196] apply

model checking directly on implementations. Specifically, CMC [18] has been applied

on different implementations of the AODV protocol, but requires the implementations

to be ported to its specialized runtime environment.

Without denying the benefit of model checking, our work is orthogonally different

since we focus on bugs/attacks that impair the performance of the protocol in actual

executions of the implementation. In addition, one can argue to establish ground truth

using model checking or using formally verified reference implementation like [197].

However, note that being able to model check liveness and performance properties is

a challenging problem, and to the best of our knowledge, the existing model checking

techniques cannot be used to check performance properties. Also, to the best of our

knowledge, there are no verified reference implementation for the protocols we tested.

Systematic fault injection is another popular method to improve software robust-

ness [198,199]. Unlike model checking or symbolic execution, fault injection focuses

on exceptional behavior of software by injecting faults. However, such works do not

consider adversarial environments as ours where we inject malicious faults that are

tailored to imitate attackers.

Several network emulation tools have been developed, for example, NIST Net [200],

DummyNet [201], catering wired networks and Emulab [108], Orbit [110], Mobi-

Net [109] catering wireless networks. Some of them even support emulation of network

faults while testing various network protocols. Conceptually, these tools, at least the

ones designed for wireless networks, could replace the NS-3 network emulator and the

virtualization-based nodes. However, such tools would require the user to provide a

separate (and malicious) implementation of the routing protocol under test and that

137

is for each adversary in the network. Whereas, we do not require any such malicious

version of the protocol under test.

There have been some recent effort on finding attacks automatically in imple-

mentations [30–32, 102]. Kothari et al. [31] automatically find attacks that manip-

ulate control flow by modifying messages using static analysis by relying on a priori

knowledge about vulnerability. Stanojevic et al. [32] automatically search for gulli-

bility in two-party protocols by leveraging a variety of techniques: packet-dropping

and packet header modifications. Lee et al. [30] automatically discover performance

attacks caused by insiders in distributed systems without requiring instrumented im-

plementation. All these works except [102] require the implementation to be written

in a specific language.

5.3 Infection Mitigation

We divide the previous works related to our infection mitigation work into two

groups. In the first group, we discuss related work in the area of mathematical mod-

eling and analysis of worms and viral epidemics. We then move on to discussing the

existing works on controlling the worm propagation.

Epidemic models. Wired networks have been the focus of most literature on worm

propagation. A comprehensive overview of major malware outbreaks in networks

with a discussion of their trends is given in [202]. There are two popular models

that are generally used to describe worm propagation: deterministic [49–51, 203–

207] and stochastic [208, 209] epidemiological models. Staniford et al. [205] use the

SIR epidemiological model to capture the effects of human countermeasures and the

congestion due to the worm spread. Shen et al. [210] provide a discrete-time worm

model that considers patching, cleaning and certain local scanning techniques. All

138

these approaches abstract network topology and change in the size of vulnerable

population as the worm spreads. Theodorakopoulos et al. [211] take deterministic

modeling one step further and combine it with a game theoretic process that involves

learning. A probabilistic queueing framework has been proposed in [212] to model

the spread of mobile viruses using short range wireless interfaces (e.g., Bluetooth)

of mobile devices. While similar in spirit, our work focuses on modeling infection

dynamics in MANETs as a function of the mobility models.

Peng et al. [213] propose a two-dimensional cellular automata to characterize the

propagation dynamics of worms in smartphones. Their scheme integrates an infec-

tion factor evaluate the spread degree of infected nodes, and a resistance factor to

evaluate the degree that susceptible nodes resist. Wang et al. [214] deploy agents in

the form of hidden contacts on the device to capture messages sent from malicious

applications. The authors combine these captured messages in conjunction with a

latent space model to estimate the current dynamics of the system and use this to

predict the future state of malware propagation within the mobility network. Our

work is complementary to these efforts in that our decentralized algorithms can utilize

their models during the learning phase. Szongott et al. [215] present a prototype of a

replicating mobile malware that spreads from device to device in downtown Chicago.

Using simulations, they show that smartphones create a viable substrate for epidemic

mobile malware. Our work differs from them in two key aspects. First, unlike them,

we use a more realistic truncated levy walk mobility model. Second, they only study

infection propagation whereas we propose several algorithms for recovery.

Worm containment. There have been some works in controlling the spread of

worms inside a wireless network [52, 144, 145, 216–218]. Williamson et al. [216]

present a technique to limit the rate of connections to “new” machines. This is effec-

139

tive at both slowing and halting virus propagation without affecting normal traffic.

Their work is based on heuristics and simulations which consider a static choice of

reduced communication rate. Wong et al. [217] present a technique that relies on

limiting the contact rate of worm traffic. Specifically, they investigate rate control at

individual end hosts and at the edge and backbone routers, for both random propaga-

tion and local-preferential worms. They show that both host and edge-router based

rate control result in a slowdown that is linear to the number of hosts implementing

the rate limiting filter.

More recently, Barbera et al. [219] consider the problem of computing an efficient

patching strategy to stop worm spreading between smartphones. They consider cases

where the worm spreads between the devices and where the worm attacks the cloud

before moving to the device. Tang et al. [220] propose distributing patches to certain

key nodes so they can opportunistically disseminate them to the rest of the network.

In their work, they present a predictive mobile malware containment system where

devices collect co-location data in a decentralized manner and report to a central

server which processes and targets delivery of hot fixes to a small subset of k devices

at runtime. In contrast, our work does not assume a central server and all our

algorithms are fully decentralized.

Cole et al. [218] present both analytic and simulation analysis of worm propa-

gation focusing specifically on the features of a tactical, battlefield MANETs which

are unique to a defense environment. Their goal was to develop an accurate set

of performance requirements on potential mitigation techniques of worm propaga-

tion for such MANETs. Zou et al. [221] compare email worm propagation on three

topologies: power law, small world, and random graph topologies; and then study

how the topology affects immunization defense on email worms. Their email worm

model includes the effect of human interactions. Yang et al. [222] utilize a software

140

diversity approach to deal with the spread of worm in wireless sensor networks. Zhu

et al. [223] take into account the social relationship of mobile users to contain MMS

worms within a limited range in cellular networks. Unlike them, we introduce a suite

of defense protocols used by a set of static healers to thwart the epidemic spread

inside MANETs.

141

6 CONCLUSION

Given the importance of the emerging wireless networks, it is essential to ensure their

secure and reliable operations, which calls for both pre- and post-deployment mea-

sures. Pre-deployment measures are great for proactively identifying and fixing errors

in the protocol implementations, thereby gaining confidence in the implementations.

In contrast, post-deployment measures are crucial for addressing the aftermath of a

security attack through rapid containment of the infection while reducing the recov-

ery time and costs. This dissertation provides novel techniques to fortifying these

wireless networks through specification compliance checking and adversarial testing

of protocol implementations before deployment, and through infection mitigation at

the event of attack after deployment.

Checking implementations for specification compliance using the existing tools

is a painstakingly challenging task as they often require extensive manual efforts to

specify the model that is checked against the desired properties and suffer from im-

precisions due to the underlying syntactic approaches. In this regard, our work on

compliance checking, CHIRON, has filled a vital gap by extracting the FSM of the

protocol automatically from the source code of the given implementation by symbol-

ically executing the code while requiring a little input from the developer. CHIRON

then follows a model-checking approach utilizing a symbolic model checker to check

if each of the desired properties is valid against the extracted FSM. In case of any vi-

olations, the model checker generated counterexamples undergo CHIRON’s two-step

validation process to rule out the false positives.

142

We provide a concrete implementation of CHIRON on top of KLEE. To demon-

strate the effectiveness of CHIRON, we applied it to 5 protocol implementations and

uncovered 10 instance of non-compliances having security, interoperability, and per-

formance implications. Using traditional testing approaches (e.g., manual testing,

random fuzz testing, unit testing), some of these non-compliances can easily remain

undetected as they would require the developer to imagine those subtle and intricate

sequences of actions to drive the implementations follow some relatively rare execution

paths. On the contrary, we discovered these non-compliances using CHIRON with a

very little effort and time. Therefore, we conclude that CHIRON can expedite the

process of developing specification compliant implementations of network protocols.

Having a specification compliant implementation does not necessarily provide ro-

bustness to attacks mounted by compromised nodes in an adversarial environment.

Therefore, we proposed Turret-W, an adversarial testing platform to automatically

test wireless routing protocol implementations. Turret-W uses a network emulator

and virtualization to test unmodified protocol implementations beyond their basic

functionalities. Besides general attacks against routing, Turret-W can test various

wireless specific attacks.

By using Turret-W on 5 routing protocol implementations, we discovered 37 at-

tacks capable of either impeding the availability by crashing the benign nodes or

reducing their performance by disrupting the routing service, and 3 implementation

bugs that impair the protocol performance even in a benign environment. To the

best of our knowledge, all these bugs and 5 of the total attacks were not previously

reported. Given the significance of routing as a fundamental component of wireless

networks, we concentrated on the routing protocol implementations in our work of

Turret-W. However, it can easily be extended for the protocols operated on the other

143

layers of the network stack. Therefore, we consider that Turret-W can be applied to

greatly improve the robustness of various network protocol implementations.

With the evidence of malware capable of propagating through proximity-based

communication (e.g., Bluetooth, NFC), the aftermath of such attacks demands for

reactive measures—specific to these networks—to contain the infection and reduce

the impacts. In our infection mitigation work, we model the propagation of such mal-

ware amongst humans carrying smartphones using epidemiology theory and study the

problem as a function of the underlying mobility models. We improve the state-of-the-

art by taking into account realistic mobility patterns to model proximity dependent

malware as opposed to using the de facto mobility models like random waypoint mo-

bility model. Since the optimal approach to heal an infected network using a set of

static healers is an NP-Complete problem, we provide three families of healer proto-

cols that allow tuning of parameters to control the optimization along two dimensions:

time to recovery and energy utilized. We were very thorough in evaluating the de-

fense mechanisms, i.e., the healer protocols. We observe that the profile healers would

benefit the most in an energy constrained environment while the prediction healers

would be more effective in a time constrained environment.

Future work. There are several compelling directions to pursue for future work.

First, CHIRON requires the properties to be derived manually from the specifications

and written in pLTL format. Automating this process is challenging as it involves

semantic parsing of the protocol specifications written in natural languages (e.g.,

English). To tackle this problem, one can leverage well-studied natural language

processing techniques. Second, the adversarial testing with Turret-W can be improved

by guiding the search of the attack-space using high-coverage test input packets. To

tackle this problem, one can leverage some white-box testing techniques to eliminate

redundant test input packets and to guide the search toward previously unexplored

144

execution paths. Finally, in our infection mitigation work, we only provide empirically

evaluation of the proposed defense mechanisms through simulation. One can perform

complexity analysis to achieve theoretical bounds on those defense mechanisms. This

problem is challenging as it requires to take into account some extraneous factors

inherent to these mobile networks such as the mobility aspects and the transmission

range of the wireless nodes.

REFERENCES

145

REFERENCES

[1] M. Gast. 802.11 Wireless Networks: The Definitive Guide. O’Reilly Media,
2005.

[2] N. Kushalnagar, G. Montenegro, D. Culler, and J. Hui. Transmission of
IPv6 packets over IEEE 802.15.4 networks. RFC 4944, 2007. http://www.
rfc-editor.org/rfc/rfc4944.txt.

[3] B. Miller and C. Bisdikian. Bluetooth revealed. Prentice Hall PTR, Upper
Saddle River, NJ, USA, 2001.

[4] K. Finkenzeller. RFID handbook: Fundamentals and applications in contactless
smart cards and identification. John Wiley & Sons, Inc., New York, NY, USA,
2003.

[5] R. Want. Near field communication. IEEE Pervasive Computing, (3), 2011.

[6] L. Atzori, A. Iera, and G. Morabito. The Internet-of-Things: A survey. Com-
puter Networks, 54(15), 2010.

[7] Apple’s SSL/TLS bug. https://www.imperialviolet.org/2014/02/22/
applebug.html. Accessed: 2015.

[8] The Heartbleed bug. http://heartbleed.com/. Accessed: 2015.

[9] C. Miller. Exploring the NFC attack surface. In Proceedings of Blackhat, 2012.

[10] Anatomy of an attack – The Internet-of-Things (IoT). https://trapx.com/
anatomy-of-an-attack-2/. Accessed: 2015.

[11] Contiki: The open source OS for the Internet of things. http://www.
contiki-os.org/.

[12] Contiki bug report. http://github.com/contiki-os/contiki/commit/
d862e. Accessed: 2015.

[13] G. Holzmann. The model checker SPIN. IEEE Transactions on Software En-
gineering (TSE), 23(5), 1997.

[14] J. Corbett, M. Dwyer, J. Hatcliff, S. Laubach, C. Păsăreanu, R. Bby, and
H. Zheng. Bandera: Extracting finite-state models from Java source code.
In Proceedings of the 2000 International Conference on Software Engineering
(ICSE), 2000.

http://www.rfc-editor.org/rfc/rfc4944.txt
http://www.rfc-editor.org/rfc/rfc4944.txt
https://www.imperialviolet.org/2014/02/22/applebug.html
https://www.imperialviolet.org/2014/02/22/applebug.html
http://heartbleed.com/
https://trapx.com/anatomy-of-an-attack-2/
https://trapx.com/anatomy-of-an-attack-2/
http://www.contiki-os.org/
http://www.contiki-os.org/
http://github.com/contiki-os/contiki/commit/d862e
http://github.com/contiki-os/contiki/commit/d862e

146

[15] S. Löwe. CPAchecker with explicit-value analysis based on CEGAR and in-
terpolation. In Proceedings of the 19th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS). Springer-
Verlag, 2013.

[16] T. Ball and S. Rajamani. The SLAM project: Debugging system software via
static analysis. In Proceedings of the ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL). ACM, 2002.

[17] D. Beyer, T. Henzinger, R. Jhala, and R. Majumdar. The software model
checker Blast: Applications to software engineering. International Journal on
Software Tools for Technology Transfer (STTT), 9(5), 2007.

[18] M. Musuvathi, D. Park, A. Chou, D. Engler, and D. Dill. CMC: Pragmatic ap-
proach to model checking real code. ACM SIGOPS Operating Systems Review,
36(SI), 2002.

[19] G. Holzmann and M. Smith. A practical method for verifying event-driven
software. In Proceedings of the 21st International Conference on Software En-
gineering (ICSE), 1999.

[20] M. Musuvathi and D. Engler. Model checking large network protocol implemen-
tations. In Proceedings of the Conference on Symposium on Networked Systems
Design and Implementation (NSDI), 2004.

[21] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent
Systems. Springer-Verlag New York, Inc., New York, NY, USA, 1992.

[22] C. E. Perkins and P. Bhagwat. Highly dynamic destination-sequenced distance-
vector routing (DSDV) for mobile computers. ACM SIGCOMM Computer
Communication Review, 24(4), 1994.

[23] P. Jacquet, P. Muhlethaler, T. Clausen, A. Laouiti, A. Qayyum, and L. Viennot.
Optimized link state routing protocol for ad hoc networks. In Proceedings of
the IEEE International Multi Topic Conference, 2001.

[24] C. Perkins and E. Royer. Ad-hoc on-demand distance vector routing. In Pro-
ceedings of the Second IEEE Workshop on Mobile Computing Systems and Ap-
plications (WMCSA), 1997.

[25] D.B. Johnson and D.A. Maltz. Dynamic source routing in ad hoc wireless
networks. Mobile computing, 353, 1996.

[26] K. Sanzgiri, B. Dahill, B.N. Levine, C. Shields, and E.M. Belding-Royer. A
secure routing protocol for ad hoc networks. In Proceedings of the IEEE Inter-
national Conference on Network Protocols (ICNP), 2002.

[27] F. de Renesse and A. Aghvami. Formal verification of ad-hoc routing pro-
tocols using SPIN model checker. In Proceedings of the IEEE Mediterranean
Electrotechnical Conference (MELECON), 2004.

[28] Network simulator 2. http://www.isi.edu/nsnam/ns/. Accessed: 2015.

[29] Xiang Zeng, Rajive Bagrodia, and Mario Gerla. GloMoSim: A library for
parallel simulation of large wireless networks. ACM SIGSIM Simulation Digest,
28(1), 1998.

http://www.isi.edu/nsnam/ns/

147

[30] H. Lee, J. Seibert, C. Killian, and C. Nita-Rotaru. Gatling: Automatic at-
tack discovery in large-scale distributed systems. In Proceedings of Network &
Distributed System Security Symposium (NDSS), 2012.

[31] N. Kothari, R. Mahajan, T. Millstein, R. Govindan, and M. Musuvathi. Finding
protocol manipulation attacks. ACM SIGCOMM Computer Communication
Review, 41(4), 2011.

[32] M. Stanojevic, R. Mahajan, T. Millstein, and M. Musuvathi. Can you fool me?
Towards automatically checking protocol gullibility. In Proceedings of the ACM
Workshop on Hot Topics in Networks (HotNets), 2008.

[33] A. Gupta, I. Wormsbecker, and C. Wilhainson. Experimental evaluation of
TCP performance in multi-hop wireless ad hoc networks. In IEEE International
Symposium on Modeling, Analysis and Simulation of Computer and Telecom-
munication Systems (MASCOTS), 2004.

[34] G. Anastasi, E. Ancillotti, M. Conti, and A. Passarella. Experimental analysis
of a transport protocol for ad hoc networks (TPA). In Proceedings of the ACM
International Workshop on Performance Evaluation of Wireless Ad hoc, Sensor
and Ubiquitous Networks (PE-WASUN), 2006.

[35] R. Gray, D. Kotz, C. Newport, N. Dubrovsky, A. Fiske, J. Liu, C. Masone,
S. McGrath, and Y. Yuan. Outdoor experimental comparison of four ad hoc
routing algorithms. In Proceedings of the 7th ACM International Symposium on
Modeling, Analysis and Simulation of Wireless and Mobile Systems (MSWiM),
2004.

[36] S. ElRakabawy and C. Lindemann. A practical adaptive pacing scheme for
TCP in multihop wireless networks. IEEE/ACM Transactions on Networking
(ToN), 19(4), 2011.

[37] Android operating system. https://www.android.com/. Accessed: 2015.

[38] FreeRTOS. http://www.freertos.org/. Accessed: 2015.

[39] McAfee Threats Report: 3rd Quarter 2011. http://goo.gl/jIQPJ. Accessed:
2015.

[40] Juniper Mobile Threats Report 2010-11. http://goo.gl/v3yFg. Accessed:
2015.

[41] Android is target for 98 percent of all mobile malware. http://goo.gl/bpnF2i.
Accessed: 2015.

[42] The Internet of things has arrived – and so have massive security issues. http://
goo.gl/Ft4Js. Accessed: 2015.

[43] The Internet of things is wildly insecure – and often unpatchable. http://goo.
gl/a597n9. Accessed: 2015.

[44] Secure all the (Internet of) things. http://searchsecurity.techtarget.com/
feature/Secure-all-the-things. Accessed: 2015.

[45] Single NFC bonk subjugated Samsung Galaxy SIII and slurped it out. http://
www.theregister.co.uk/2012/09/21/android_nfc/. Accessed: 2015.

https://www.android.com/
http://www.freertos.org/
http://goo.gl/jIQPJ
http://goo.gl/v3yFg
http://goo.gl/bpnF2i
http://goo.gl/Ft4Js
http://goo.gl/Ft4Js
http://goo.gl/a597n9
http://goo.gl/a597n9
http://searchsecurity.techtarget.com/feature/Secure-all-the-things
http://searchsecurity.techtarget.com/feature/Secure-all-the-things
http://www.theregister.co.uk/2012/09/21/android_nfc/
http://www.theregister.co.uk/2012/09/21/android_nfc/

148

[46] McAfee warns of NFC malware risk. http://www.itpro.co.uk/malware/
19275/mcafee-warns-nfc-malware-risk. Accessed: 2015.

[47] Wall Of Sheep hacker group exposes NFC’s risks At DefCon 2013. http://
goo.gl/j59SQ7. Accessed: 2015.

[48] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford, and N. Weaver.
Inside the Slammer worm. IEEE Security & Privacy, 1(4), 2003.

[49] C. Zou, W. Gong, and D. Towsley. Code Red worm propagation modeling and
analysis. In Proceedings of the ACM conference on Computer and communica-
tions security (CCS). ACM, 2002.

[50] A. Wagner, T. Dübendorfer, B. Plattner, and R. Hiestand. Experiences with
worm propagation simulations. In Proceedings of the ACM workshop on Rapid
malcode (WORM). ACM, 2003.

[51] J. Kephart and S. White. Directed-graph epidemiological models of computer
viruses. In Proceedings of the IEEE Computer Society Symposium on Research
in Security and Privacy. IEEE CompSoc, 1991.

[52] S. Sellke, N. Shroff, and S. Bagchi. Modeling and automated containment of
worms. IEEE Transactions on Dependable and Secure Computing (TDSC),
5(2), 2008.

[53] A. Dunkels. Full TCP/IP for 8-bit architectures. In Proceedings of the ACM In-
ternational conference on Mobile systems, applications and services (MobiSys).
ACM, 2003.

[54] FNET embedded TCP/IP stack. http://fnet.sourceforge.net/. Accessed:
2015.

[55] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided
abstraction refinement. In Proceedings of the International Conference on Com-
puter Aided Verification (CAV), 2000.

[56] J. King. Symbolic execution and program testing. Communications of the
ACM, 19(7), 1976.

[57] P. Comparetti, G. Wondracek, C. Kruegel, and E. Kirda. Prospex: Protocol
specification extraction. In Proceedings of the IEEE Symposium on Security
and Privacy (S&P). IEEE, 2009.

[58] J. Caballero, P. Poosankam, C. Kreibich, and D. Song. Dispatcher: Enabling
active botnet infiltration using automatic protocol reverse-engineering. In Pro-
ceedings of the ACM Conference on Computer and Communications Security
(CCS). ACM, 2009.

[59] C. Cho, D. Babi ć, E. Shin, and D. Song. Inference and analysis of formal
models of botnet command and control protocols. In Proceedings of the ACM
Conference on Computer and Communications Security (CCS). ACM, 2010.

[60] N. Kothari, T. Millstein, and R. Govindan. Deriving state machines from tinyos
programs using symbolic execution. In Proceedings of the IEEE International
Conference on Information Processing in Sensor Networks (IPSN). IEEE, 2008.

http://www.itpro.co.uk/malware/19275/mcafee-warns-nfc-malware-risk
http://www.itpro.co.uk/malware/19275/mcafee-warns-nfc-malware-risk
http://goo.gl/j59SQ7
http://goo.gl/j59SQ7
http://fnet.sourceforge.net/

149

[61] C. Cho, D. Babic, P. Poosankam, K. Chen, E. Wu, and D. Song. MACE: Model-
inference-assisted concolic exploration for protocol and vulnerability discovery.
In Proceedings of the USENIX Conference on Security (SEC), 2011.

[62] D. Lie, A. Chou, D. Engler, and D. Dill. A simple method for extracting models
from protocol code. In Proceedings of the 28th Annual International Symposium
on Computer Architecture. IEEE, 2001.

[63] G. Banks, M. Cova, V. Felmetsger, K. Almeroth, R. Kemmerer, and G. Vigna.
SNOOZE: Toward a stateful network protocol fuzzer. In Proceedings of the 9th
international conference on Information Security (ISC). Springer-Verlag, 2006.

[64] H. Abdelnur, R. State, and O. Festor. KiF: A stateful SIP fuzzer. In Proceedings
of the International Conference on Principles, Systems and Applications of IP
Telecommunications. ACM, 2007.

[65] S. Jero, H. Lee, and C. Nita-Rotaru. Leveraging state information for auto-
mated attack discovery in transport protocol implementations. In Proceedings
of the IEEE/IFIP International Conference on Dependable Systems and Net-
works (DSN), 2015.

[66] G. Fraser, F. Wotawa, and P. Ammann. Testing with model checkers: A survey.
Software Testing, Verification & Reliability, 19(3), 2009.

[67] D. Beyer, A. Chlipala, T. Henzinger, R. Jhala, and R. Majumdar. Generating
tests from counterexamples. In Proceedings of the International Conference on
Software Engineering (ICSE), 2004.

[68] Out in the open: The little-known open source os that rules the internet of
things. http://www.wired.com/2014/06/contiki/. Accessed: 2015.

[69] Using the fast ethernet controller on the Qorivva MPC564xB/C. http://
cache.freescale.com/files/32bit/doc/app_note/AN4577.pdf. Accessed
2015.

[70] N. Lynch and M. Tuttle. An introduction to input-output automata. Technical
Report MIT-LCS-TM-373, Massachusetts Institute of Technology (Cambridge,
MA US), 1988.

[71] C. Cadar and K. Sen. Symbolic execution for software testing: Three decades
later. Communications of the ACM, 56(2), 2013.

[72] C. Cadar, P. Godefroid, S. Khurshid, C. Păsăreanu, K. Sen, N. Tillmann, and
W. Visser. Symbolic execution for software testing in practice: Preliminary
assessment. In Proceedings of the International Conference on Software Engi-
neering (ICSE), 2011.

[73] C. Păsăreanu and W. Visser. A survey of new trends in symbolic execution
for software testing and analysis. International Journal on Software Tools for
Technology Transfer, 11(4), 2009.

[74] P. Godefroid, P. de Halleux, A. Nori, S. Rajamani, W. Schulte, N. Tillmann,
and M. Levin. Automating software testing using program analysis. IEEE
Software, 25(5), 2008.

http://www.wired.com/2014/06/contiki/
http://cache.freescale.com/files/32bit/doc/app_note/AN4577.pdf
http://cache.freescale.com/files/32bit/doc/app_note/AN4577.pdf

150

[75] B. Alpern and F. Schneider. Recognizing safety and liveness. Distributed Com-
puting, 2(3), 1987.

[76] Frama-C. http://frama-c.com. Accessed: 2015.

[77] C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted and automatic gen-
eration of high-coverage tests for complex systems programs. In Proceedings of
the 8th USENIX Conference on Operating Systems Design and Implementation
(OSDI), 2008.

[78] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri,
R. Sebastiani, and A. Tacchella. NuSMV version 2: An open source tool for
symbolic model checking. In Proceedings of the International Conference on
Computer-Aided Verification (CAV). Springer, 2002.

[79] KQuery language. http://klee.github.io/docs/kquery/. Accessed: 2015.

[80] V. Ganesh and D. Dill. A decision procedure for bit-vectors and arrays. In Pro-
ceedings of the 19th International Conference on Computer Aided Verification
(CAV). Springer-Verlag, 2007.

[81] M. Autili, L. Grunske, M. Lumpe, P. Pelliccione, and A. Tang. Aligning qualita-
tive, real-time, and probabilistic property specification patterns using a struc-
tured english grammar. IEEE Transactions on Software Engineering (TSE),
41(7), 2015.

[82] R. Droms. Dynamic host configuration protocol. RFC 2131, 1997. http://
www.rfc-editor.org/rfc/rfc2131.txt.

[83] J. Postel and J. Reynolds. Telnet protocol specification. RFC 854, 1983.
http://www.rfc-editor.org/rfc/rfc854.txt.

[84] D.J. Bernstein. The Q method of implementing telnet option negotiation. RFC
1143, 1990. http://www.rfc-editor.org/rfc/rfc1143.txt.

[85] TinyOS. http://www.tinyos.net/.

[86] T. Bergan, D. Grossman, and L. Ceze. Symbolic execution of multithreaded
programs from arbitrary program contexts. In Proceedings of the ACM In-
ternational Conference on Object Oriented Programming Systems Languages &
Applications (OOPSLA). ACM, 2014.

[87] M. Hoque, H. Lee, R. Potharaju, C. Killian, and C. Nita-Rotaru. Adversarial
testing of wireless routing implementations. In Proceedings of the ACM Confer-
ence on Security and Privacy in Wireless and Mobile Networks (WiSec). ACM,
2013.

[88] S. Radhakrishnan, G. Racherla, C.N. Sekharan, N. Rao, and S. Batsell. DST
– A routing protocol for ad hoc networks using distributed spanning trees. In
Proceedings of the IEEE Wireless Communications and Networking Conference
(WCNC), 1999.

[89] A. Neumann, C. Aichele, M. Lindner, and S. Wunderlich. Better approach to
mobile ad-hoc networking (B.A.T.M.A.N.). http://tools.ietf.org/html/
draft-wunderlich-openmesh-manet-routing-00. Accessed: 2015.

http://frama-c.com
http://klee.github.io/docs/kquery/
http://www.rfc-editor.org/rfc/rfc2131.txt
http://www.rfc-editor.org/rfc/rfc2131.txt
http://www.rfc-editor.org/rfc/rfc854.txt
http://www.rfc-editor.org/rfc/rfc1143.txt
http://www.tinyos.net/
http://tools.ietf.org/html/draft-wunderlich-openmesh-manet-routing-00
http://tools.ietf.org/html/draft-wunderlich-openmesh-manet-routing-00

151

[90] M. Zapata and N. Asokan. Securing ad hoc routing protocols. In Proceedings
of the ACM Workshop on Wireless Security (WiSE). ACM, 2002.

[91] B. Awerbuch, R. Curtmola, D. Holmer, C. Nita-Rotaru, and H. Rubens.
ODSBR: An on-demand secure byzantine resilient routing protocol for wire-
less ad hoc networks. ACM Transactions on Information and System Security
(TISSEC), 10(4), 2008.

[92] Y. Hu, A. Perrig, and D. Johnson. Ariadne: A secure on-demand routing
protocol for ad hoc networks. Wireless Networks, 11(1-2), 2005.

[93] AODV-UU. http://sourceforge.net/projects/aodvuu. Accessed: 2015.

[94] OLSRD. http://www.olsr.org. Accessed: 2015.

[95] ARAN. http://prisms.cs.umass.edu/arand. Accessed: 2012.

[96] Click modular router. http://www.read.cs.ucla.edu/click. Accessed: 2015.

[97] B.A.T.M.A.N. Advanced. http://www.open-mesh.org/projects/
batman-adv/wiki. Accessed: 2015.

[98] S. Chiyangwa and M. Kwiatkowska. A timing analysis of AODV. Proceedings
of the 7th IFIP WG 6.1 International Conference on Formal Methods for Open
Object-based Distributed Systems (FMOODS), 2005.

[99] K. Bhargavan, D. Obradovic, and C.A. Gunter. Formal verification of standards
for distance vector routing protocols. Journal of the ACM (JACM), 49(4), 2002.

[100] S. Woo and S. Singh. Scalable routing protocol for ad hoc networks. Wireless
Networks, 7(5), 2001.

[101] C. Killian, J. Anderson, R. Braud, R. Jhala, and A. Vahdat. Mace: Language
support for building distributed systems. ACM SIGPLAN Notices, 42(6), 2007.

[102] H. Lee, J. Seibert, E. Hoque, C. Killian, and C. Nita-Rotaru. Turret: A platform
for automated attack finding in unmodified distributed system implementations.
In Proceedings of the International Conference on Distributed Computing Sys-
tems (ICDCS). IEEE, 2014.

[103] I. Habib. Virtualization with kvm. Linux Journal, 2008.

[104] Network simulator 3. http://www.nsnam.org. Accessed: 2015.

[105] G. Finn. Routing and addressing problems in large metropolitan-scale internet-
works. Technical report, ISI/RR-87-180, Information Sciences Institute, 1987.

[106] B. Karp and H. Kung. GPSR: Greedy perimeter stateless routing for wireless
networks. In Proceedings of the Annual International Conference on Mobile
Computing and Networking (MobiCom). ACM, 2000.

[107] M. Bahr. Update on the hybrid wireless mesh protocol of IEEE 802.11s. In
Proceedings of the IEEE International Conference on Mobile Adhoc and Sensor
Systems (MASS). IEEE, 2007.

http://sourceforge.net/projects/aodvuu
http://www.olsr.org
http://prisms.cs.umass.edu/arand
http://www.read.cs.ucla.edu/click
http://www.open-mesh.org/projects/batman-adv/wiki
http://www.open-mesh.org/projects/batman-adv/wiki
http://www.nsnam.org

152

[108] Emulab – network emulation testbed. http://www.emulab.net/. Accessed:
2015.

[109] P. Mahadevan, A. Rodriguez, D. Becker, and A. Vahdat. Mobinet: A scalable
emulation infrastructure for ad hoc and wireless networks. ACM SIGMOBILE
Mobile Computing and Communications Review, 10(2), 2006.

[110] ORBIT. http://www.orbit-lab.org. Accessed: 2015.

[111] B. Chambers. The grid roofnet: A rooftop ad hoc wireless network. PhD thesis,
Massachusetts Institute of Technology, 2002.

[112] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. Kaashoek. The click modular
router. ACM Transactions on Computer Systems (TOCS), 18(3), 2000.

[113] Grid project. http://pdos.csail.mit.edu/grid/. Accessed: 2015.

[114] P. Kyasanur and N. Vaidya. Routing and link-layer protocols for multi-channel
multi-interface ad hoc wireless networks. ACM SIGMOBILE Mobile Computing
and Communications Review, 10(1), 2006.

[115] Y. Peng, Y. Yu, L. Guo, D. Jiang, and Q. Gai. An efficient joint channel
assignment and QoS routing protocol for IEEE 802.11 multi-radio multi-channel
wireless mesh networks. Journal of Network and Computer Applications, 36(2),
2013.

[116] Iperf. http://sourceforge.net/projects/iperf. Accessed: 2015.

[117] S. Paris, C. Nita-Rotaru, F. Martignon, and A. Capone. Cross-layer metrics
for reliable routing in wireless mesh networks. IEEE/ACM Transactions on
Networking (TON), 21(3), 2013.

[118] A. Alvarez, R. Orea, S. Cabrero, X. Pañeda, R. Garćıa, and D. Melendi. Limi-
tations of network emulation with single-machine and distributed NS-3. In Pro-
ceedings of the International ICST Conference on Simulation Tools and Tech-
niques (SIMUTools). ICST, 2010.

[119] C. Perkins, E. Belding-Royer, and S. Das. Ad hoc on-demand distance vec-
tor (AODV) routing. RFC 3561, 2003. http://www.rfc-editor.org/rfc/
rfc3561.txt.

[120] Netfilter. http://www.netfilter.org/. Accessed: 2015.

[121] N. Horman. Understanding and programming with Netlink sockets. http://
www.smacked.org/docs/netlink.pdf, 2004. Accessed: 2015.

[122] K. Sanzgiri, D. LaFlamme, B. Dahill, B.N. Levine, C. Shields, and E.M.
Belding-Royer. Authenticated routing for ad hoc networks. IEEE Journal
On Selected Areas in Communications, 23, 2005.

[123] ASL. http://sourceforge.net/projects/aslib. Accessed: 2015.

[124] OpenSSL toolkit. http://www.openssl.org/. Accessed: 2015.

http://www.emulab.net/
http://www.orbit-lab.org
http://pdos.csail.mit.edu/grid/
http://sourceforge.net/projects/iperf
http://www.rfc-editor.org/rfc/rfc3561.txt
http://www.rfc-editor.org/rfc/rfc3561.txt
http://www.netfilter.org/
http://www.smacked.org/docs/netlink.pdf
http://www.smacked.org/docs/netlink.pdf
http://sourceforge.net/projects/aslib
http://www.openssl.org/

153

[125] Q. Li, M. Zhao, J. Walker, Y. Hu, A. Perrig, and W. Trappe. SEAR: A secure
efficient ad hoc on demand routing protocol for wireless networks. Security and
Communication Networks, 2(4), 2009.

[126] T. Clausen and P. Jacquet. Optimized link state routing protocol (OLSR). RFC
3626, 2003. http://www.rfc-editor.org/rfc/rfc3626.txt.

[127] OLSRD source package in Debian. https://launchpad.net/debian/
+source/olsrd/0.6.3-4.

[128] C. Adjih, T. Clausen, P. Jacquet, A. Laouiti, P. Muhlethaler, and D. Raffo.
Securing the OLSR protocol. In Proceedings of the IFIP Annual Mediterranean
Ad Hoc Networking Workshop (Med-Hoc-Net), 2003.

[129] C. Adjih, D. Raffo, and P. Mühlethaler. Attacks against OLSR: Distributed key
management for security. In Proceedings of the 2nd OLSR Interop/Workshop,
2005.

[130] T. Clausen and E. Baccelli. Securing OLSR problem statement. https://
tools.ietf.org/html/draft-clausen-manet-solsr-ps-00, 2005. Accessed:
2015.

[131] Y. Hu, D. Johnson, and A. Perrig. SEAD: Secure efficient distance vector
routing for mobile wireless ad hoc networks. Ad Hoc Networks, 1(1), 2003.

[132] T. Wan, E. Kranakis, and P. Van Oorschot. Securing the destination-sequenced
distance vector routing protocol (S-DSDV). In Javier Lopez, Sihan Qing, and
Eiji Okamoto, editors, Information and Communications Security, volume 3269
of Lecture Notes in Computer Science. Springer, 2004.

[133] E. Graarud. Implementing a secure ad hoc network. Master’s thesis, Norwegian
University of Science and Technology, 2011.

[134] E. Hoque, R. Potharaju, C. Nita-Rotaru, S. Sarkar, and S.S. Venkatesh. Taming
epidemic outbreaks in mobile adhoc networks. Ad Hoc Networks, 24, Part A,
2015.

[135] R. Potharaju, E. Hoque, C. Nita-Rotaru, S. Sarkar, and S.S. Venkatesh. Closing
the pandora’s box: Defenses for thwarting epidemic outbreaks in mobile adhoc
networks. In Proceedings of the IEEE International Conference on Mobile Adhoc
and Sensor Systems (MASS). IEEE, 2012.

[136] Raspbian. https://www.raspbian.org/. Accessed: 2015.

[137] A. Khelil, C. Becker, J. Tian, and K. Rothermel. An epidemic model for infor-
mation diffusion in MANETs. In Proceedings of the ACM International Sym-
posium on Modeling, Analysis and Simulation of Wireless and Mobile Systems
(MSWiM). ACM, 2002.

[138] A. Bose, X. Hu, K. Shin, and T. Park. Behavioral detection of malware on
mobile handsets. In Proceedings of the ACM International Conference on Mobile
Systems, Applications and Services (MobiSys). ACM, 2008.

[139] C. Fleizach, M. Liljenstam, P. Johansson, G. Voelker, and A. Mehes. Can you
infect me now?: Malware propagation in mobile phone networks. In Proceedings
of the 2007 ACM Workshop on Recurring Malcode (WORM). ACM, 2007.

http://www.rfc-editor.org/rfc/rfc3626.txt
https://launchpad.net/debian/+source/olsrd/0.6.3-4
https://launchpad.net/debian/+source/olsrd/0.6.3-4
https://tools.ietf.org/html/draft-clausen-manet-solsr-ps-00
https://tools.ietf.org/html/draft-clausen-manet-solsr-ps-00
https://www.raspbian.org/

154

[140] A. Bose and K. Shin. On mobile viruses exploiting messaging and bluetooth
services. In Proceedings of Securecomm and Workshops. IEEE, 2006.

[141] G. Zyba, G. Voelker, M. Liljenstam, A. Méhes, and P. Johansson. Defending
mobile phones from proximity malware. In Proceedings of the IEEE Interna-
tional Conference on Computer Communications (INFOCOM). IEEE, 2009.

[142] R. Potharaju and C. Nita-Rotaru. Pandora: A platform for worm simulations
in mobile ad-hoc networks. ACM SIGMOBILE Mobile Computing and Com-
munications Review, 14(4), 2011.

[143] I. Rhee, M. Shin, S. Hong, K. Lee, S. Kim, and S. Chong. On the levy-walk
nature of human mobility. IEEE/ACM Transactions on Networking (TON),
19(3), 2011.

[144] M. Khouzani, E. Altman, and S. Sarkar. Optimal quarantining of wireless mal-
ware through reception gain control. IEEE Transactions on Automatic Control,
57(1), 2012.

[145] M. Khouzani, S. Sarkar, and E. Altman. Optimal dissemination of security
patches in mobile wireless networks. IEEE Transactions on Information Theory,
58(7), 2012.

[146] J. Broch, D. Maltz, D. Johnson, Y. Hu, and J. Jetcheva. A performance com-
parison of multi-hop wireless ad hoc network routing protocols. In Proceedings
of the Annual International Conference on Mobile Computing and Networking
(MobiCom). ACM, 1998.

[147] C. Chiang and M. Gerla. On-demand multicast in mobile wireless networks.
In Proceedings of the IEEE International Conference on Network Protocols
(ICNP). IEEE, 1998.

[148] J. Garcia-Luna-Aceves and M. Spohn. Source-tree routing in wireless networks.
In Proceedings of the IEEE International Conference on Network Protocols
(ICNP). IEEE, 1999.

[149] T. Camp, J. Boleng, and V. Davies. A survey of mobility models for ad hoc
network research. Wireless Communications and Mobile Computing, 2(5), 2002.

[150] M. Gonzalez, C. Hidalgo, and A. Barabasi. Understanding individual human
mobility patterns. Nature, 453(7196), 2008.

[151] J. Boleng. Normalizing mobility characteristics and enabling adaptive protocols
for ad hoc networks. In Proceedings of the Local and Metropolitan Area Networks
Workshop (LANMAN), 2001.

[152] K. Lee, S. Hong, S. Kim, I. Rhee, and S. Chong. Slaw: A new mobility model
for human walks. In Proceedings of the IEEE International Conference on
Computer Communications (INFOCOM). IEEE, 2009.

[153] C. Boldrini and A. Passarella. HCMM: Modeling spatial and temporal prop-
erties of human mobility driven by users’ social relationships. Computer Com-
munications, 33(9), 2010.

155

[154] S. Isaacman, R. Becker, R. Cáceres, M. Martonosi, J. Rowland, A. Varshavsky,
and W. Willinger. Human mobility modeling at metropolitan scales. In Pro-
ceedings of the ACM International conference on Mobile systems, applications
and services (MobiSys). ACM, 2012.

[155] V. Capasso and G. Serio. A generalization of the Kermack-McKendrick deter-
ministic epidemic model. Mathematical Biosciences, 42(1), 1978.

[156] C. Huang, C. Sun, and H. Lin. Influence of local information on social simula-
tions in small-world network models. Journal of Artificial Societies and Social
Simulation, 8(4), 2005.

[157] R. Potharaju, C. Nita-Rotaru, S. Sarkar, and S. Venkatesh. Infection quaran-
tining for wireless networks using power control. In Proceedings of the Annual
Information Security Symposium (SREIS). CERIAS - Purdue University, 2010.

[158] N. Aschenbruck, R. Ernst, E. Gerhards-Padilla, and M. Schwamborn. Bonn-
Motion: A mobility scenario generation and analysis tool. In Proceedings of
the 3rd International ICST Conference on Simulation Tools and Techniques
(SIMUTools). ICST, 2010.

[159] C. Bettstetter and C. Wagner. The spatial node distribution of the random
waypoint mobility model. In Proceedings of the German Workshop on Mobile
Ad Hoc Networks (WMAN), 2002.

[160] G. Resta and P. Santi. An analysis of the node spatial distribution of the
random waypoint mobility model for ad hoc networks. In Proceedings of the
ACM International Workshop on Principles of Mobile Computing (POMC).
ACM, 2002.

[161] E. Hyytiä and J. Virtamo. Random waypoint mobility model in cellular net-
works. Wireless Networks, 13(2), 2007.

[162] J. Levine, J. Grizzard, and H. Owen. Detecting and categorizing kernel-level
rootkits to aid future detection. IEEE Security & Privacy, 4(1), 2006.

[163] V. Vazirani. Approximation Algorithms. Springer-Verlag New York, Inc., 2001.

[164] R. Bridson. Fast Poisson disk sampling in arbitrary dimensions. In ACM
SIGGRAPH. ACM, 2007.

[165] Two-way analysis of variance. http://en.wikipedia.org/wiki/Two-way_
analysis_of_variance. Accessed: 2015.

[166] C. Gkantsidis and P. Rodriguez. Network coding for large scale content dis-
tribution. In Proceedings of the IEEE International Conference on Computer
Communications (INFOCOM). IEEE, 2005.

[167] R. Floyd. Assigning meaning to programs. In J. T. Schwartz, editor, Proceedings
of a Symposium on Applied Mathematics, volume 19. American Mathematical
Society, 1967.

[168] C. Hoare. An axiomatic basis for computer programming. Communications of
the ACM, 12(10), 1969.

http://en.wikipedia.org/wiki/Two-way_analysis_of_variance
http://en.wikipedia.org/wiki/Two-way_analysis_of_variance

156

[169] T. Andrews, S. Qadeer, S. Rajamani, J. Rehof, and Y. Xie. Zing: A model
checker for concurrent software. In Proceedings of the International Conference
on Computer Aided Verification (CAV). Springer, 2004.

[170] P. Godefroid. Model checking for programming languages using verisoft. In
Proceedings of the 24th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL). ACM, 1997.

[171] M. Das, S. Lerner, and M. Seigle. ESP: Path-sensitive program verification in
polynomial time. In Proceedings of the ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI). ACM, 2002.

[172] J. Jaffar, V. Murali, J. Navas, and A. Santosa. TRACER: A symbolic exe-
cution tool for verification. In Proceedings of the International Conference on
Computer Aided Verification (CAV). Springer, 2012.

[173] B. Gulavani, T. Henzinger, Y. Kannan, A. Nori, and S. Rajamani. Synergy: A
new algorithm for property checking. In Proceedings of the 14th ACM SIGSOFT
International Symposium on Foundations of Software Engineering (FSE), 2006.

[174] E. Clarke, S. Jha, and W. Marrero. Verifying security protocols with Brutus.
ACM Transactions on Software Engineering and Methodology (TOSEM), 9(4),
2000.

[175] S. Chaki and A. Datta. ASPIER: An automated framework for verifying security
protocol implementations. In Proceedings of the 22nd IEEE Computer Security
Symposium (CSF), 2009.

[176] M. Gordon and T. Melham, editors. Introduction to HOL: A theorem proving
environment for higher order logic. Cambridge University Press, New York,
NY, USA, 1993.

[177] K. Bhargavan, C. Fournet, A. Gordon, and S. Tse. Verified interoperable im-
plementations of security protocols. ACM Transactions on Programming Lan-
guages and Systems (TOPLAS), 31(1), 2008.

[178] Y. Wang, Z. Zhang, D. Yao, B. Qu, and L. Guo. Inferring protocol state
machine from network traces: A probabilistic approach. In Proceedings of the
9th International Conference on Applied Cryptography and Network Security
(ACNS). Springer-Verlag, 2011.

[179] W. Cui, J. Kannan, and H. Wang. Discoverer: Automatic protocol reverse en-
gineering from network traces. In Proceedings of 16th USENIX Security Sym-
posium, 2007.

[180] Z. Lin, X. Jiang, D. Xu, and X. Zhang. Automatic protocol format reverse engi-
neering through context-aware monitored execution. In Proceedings of Network
& Distributed System Security Symposium (NDSS), volume 8, 2008.

[181] J. Caballero, H. Yin, Z. Liang, and D. Song. Polyglot: Automatic extraction of
protocol message format using dynamic binary analysis. In Proceedings of the
ACM Conference on Computer and Communications Security (CCS). ACM,
2007.

157

[182] B. Miller, L. Fredriksen, and B. So. An empirical study of the reliability of unix
utilities. Communications of the ACM, 33(12), 1990.

[183] J. Song, C. Cadar, and P. Pietzuch. SymbexNet: Testing network protocol
implementations with symbolic execution and rule-based specifications. IEEE
Transactions on Software Engineering, 40(7), 2014.

[184] R. Sasnauskas, O. Landsiedel, M. Alizai, C. Weise, S. Kowalewski, and
K. Wehrle. KleeNet: Discovering insidious interaction bugs in wireless sensor
networks before deployment. In Proceedings of the IEEE International Confer-
ence on Information Processing in Sensor Networks (IPSN). ACM, 2010.

[185] R. Banabic, G. Candea, and R. Guerraoui. Finding trojan message vulnerabili-
ties in distributed systems. In Proceedings of the 19th International Conference
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS), 2014.

[186] R. Sasnauskas, O. Dustmann, B. Kaminski, K. Wehrle, C. Weise, and
S. Kowalewski. Scalable symbolic execution of distributed systems. In Pro-
ceedings of the International Conference on Distributed Computing Systems
(ICDCS). IEEE, 2011.

[187] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed automated random
testing. In Proceedings of the 2005 ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI). ACM, 2005.

[188] K. Sen, D. Marinov, and G. Agha. CUTE: A concolic unit testing engine for
C. In Proceedings of the 10th European Software Engineering Conference held
jointly with 13th ACM SIGSOFT International Symposium on Foundations of
Software Engineering (ESEC/FSE). ACM, 2005.

[189] C. Cadar, V. Ganesh, P. Pawlowski, D. Dill, and D. Engler. EXE: Automatically
generating inputs of death. ACM Transactions on Information and System
Security (TISSEC), 12(2), 2008.

[190] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. Kang, Z. Liang, J. New-
some, P. Poosankam, and P. Saxena. BitBlaze: A new approach to computer
security via binary analysis. In Proceedings of the 4th International Conference
on Information Systems Security (ICISS). Springer-Verlag, 2008.

[191] V. Chipounov, V. Kuznetsov, and G. Candea. S2E: A platform for in-vivo
multi-path analysis of software systems. In Proceedings of the International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 2012.

[192] K. McMillan. Symbolic model checking: An approach to the state explosion
problem. PhD thesis, Pittsburgh, PA, USA, 1992.

[193] D.L. Dill, A.J. Drexler, A.J. Hu, and C.H. Yang. Protocol verification as a
hardware design aid. In Proceedings of the 1991 IEEE International Conference
on Computer Design on VLSI in Computer & Processors (ICCD). IEEE, 1992.

[194] S. Nanz and C. Hankin. A framework for security analysis of mobile wireless
networks. Theoretical Computer Science, 367(1), 2006.

158

[195] I. Zakiuddin, M. Goldsmith, P. Whittaker, and P. Gardiner. A methodology
for model-checking ad-hoc networks. In Thomas Ball and Sriram K. Rajamani,
editors, Model Checking Software, volume 2648 of Lecture Notes in Computer
Science. Springer, 2003.

[196] W. Visser, K. Havelund, G. Brat, S.J. Park, and F. Lerda. Model checking
programs. Automated Software Engineering (ASE), 10(2), 2003.

[197] B. Beurdouche, K. Bhargavan, A. Delignat-Lavaud, C. Fournet, M. Kohlweiss,
A. Pironti, P. Strub, and J. Zinzindohoue. A messy state of the union: Taming
the composite state machines of TLS. In Proceedings of the IEEE Symposium
on Security and Privacy (S&P). IEEE, 2015.

[198] P.D. Marinescu and G. Candea. Efficient testing of recovery code using fault
injection. ACM Transactions on Computer Systems (TOCS), 29(4), 2011.

[199] H. Gunawi, T. Do, P. Joshi, P. Alvaro, J. Hellerstein, A. Arpaci-Dusseau,
R. Arpaci-Dusseau, K. Sen, and D. Borthakur. Fate and Destini: A framework
for cloud recovery testing. In Proceedings of the Conference on Symposium on
Networked Systems Design and Implementation (NSDI). Usenix, 2011.

[200] M. Carson and D. Santay. NIST Net: A Linux-based network emulation tool.
ACM SIGCOMM Computer Communication Review, 33(3), 2003.

[201] L. Rizzo. Dummynet: A simple approach to the evaluation of network protocols.
ACM SIGCOMM Computer Communication Review, 27(1), 1997.

[202] D.M. Kienzle and M.C. Elder. Recent worms: A survey and trends. In Pro-
ceedings of the ACM Workshop on Rapid Malcode (WORM). ACM, 2003.

[203] J.O. Kephart, S.R. White, and D.M. Chess. Computers and epidemiology.
IEEE Spectrum, 30(5), 1993.

[204] J.O. Kephart and S.R. White. Measuring and modeling computer virus preva-
lence. In Proceedings of the IEEE Symposium on Security and Privacy (S&P).
IEEE Computer Society, 1993.

[205] S. Staniford, V. Paxson, and N. Weaver. How to own the Internet in your spare
time. In Proceedings of the 11th USENIX Security Symposium. Usenix, 2002.

[206] G. Serazzi and S. Zanero. Computer virus propagation models. In M. Calzarossa
and E. Gelenbe, editors, Performance Tools and Applications to Networked Sys-
tems, volume 2965 of Lecture Notes in Computer Science. Springer, 2004.

[207] G. Kesidis, I. Hamadeh, and S. Jiwasurat. Coupled Kermack-McKendrick mod-
els for randomly scanning and bandwidth-saturating Internet worms. In Pro-
ceedings of the 3rd International Conference on Quality of Service in Multi-
service IP Networks (QoS-IP). Springer-Verlag, 2005.

[208] R.M. Anderson and R.M. May. Infectious Diseases of Humans: Dynamics and
Control. Oxford University Press, 1992.

[209] H. Andersson and T. Britton. Stochastic Epidemic Models and Their Statistical
Analysis. Springer Verlag, 2000.

159

[210] Z. Chen, L. Gao, and K. Kwiat. Modeling the spread of active worms. In Pro-
ceedings of the IEEE International Conference on Computer Communications
(INFOCOM). IEEE, 2003.

[211] G. Theodorakopoulos, J.S. Baras, and J.Y. Le Boudec. Dynamic network secu-
rity deployment under partial information. In Proceedings of the 46th Annual
Allerton Conference on Communication, Control, and Computing. IEEE, 2008.

[212] J. Mickens and B. Noble. Modeling epidemic spreading in mobile environments.
In Proceedings of the ACM Workshop on Wireless Security (WiSe). ACM, 2005.

[213] S. Peng, G. Wang, and S. Yu. Modeling the dynamics of worm propagation
using two-dimensional cellular automata in smartphones. Journal of Computer
and System Sciences, 79(5):586 – 595, 2013.

[214] W. Wang, I. Murynets, J. Bickford, C. Wart, and G. Xu. What you see predicts
what you getlightweight agent-based malware detection. Security and Commu-
nication Networks, 6(1), 2013.

[215] C. Szongott, B. Henne, and M. Smith. Evaluating the threat of epidemic mobile
malware. In Proceedings of the IEEE 8th International Conference on Wire-
less and Mobile Computing, Networking and Communications (WiMob). IEEE,
2012.

[216] M. Williamson. Throttling viruses: Restricting propagation to defeat malicious
mobile code. In Proceedings of the 18th Annual Computer Security Applications
Conference (ACSAC). IEEE, 2002.

[217] C. Wong, C. Wang, D. Song, S. Bielski, and G. Ganger. Dynamic quarantine
of internet worms. In Proceedings of the IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN). IEEE, 2004.

[218] R. Cole. Initial studies on worm propagation in MANETs for future army
combat systems. In Proceedings of the 24th Army Science Conference, 2004.

[219] M. Barbera, S. Kosta, J. Stefa, P. Hui, and A. Mei. CloudShield: Efficient anti-
malware smartphone patching with a P2P network on the cloud. In Proceedings
of the IEEE 12th International Conference on Peer-to-Peer Computing (P2P).
IEEE, 2012.

[220] J. Tang, H. Kim, C. Mascolo, and M. Musolesi. STOP: Socio-temporal oppor-
tunistic patching of short range mobile malware. In Proceedings of the IEEE
International Symposium on World of Wireless, Mobile and Multimedia Net-
works (WoWMoM). IEEE, 2012.

[221] C. Zou, D. Towsley, and W. Gong. Email worm modeling and defense. In
Proceedings of the 13th International Conference on Computer Communications
and Networks (ICCCN). IEEE, 2004.

[222] Y. Yang, S. Zhu, and G. Cao. Improving sensor network immunity under worm
attacks: A software diversity approach. In Proceedings of the ACM International
Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc). ACM,
2008.

160

[223] Z. Zhu, G. Cao, S. Zhu, S. Ranjan, and A. Nucci. A social network based
patching scheme for worm containment in cellular networks. In M. Thai and
P. Pardalos, editors, Handbook of Optimization in Complex Networks, volume 58
of Springer Optimization and Its Applications. Springer New York, 2012.

VITA

161

VITA

Md. Endadul Hoque received his Bachelor of Science in Computer Science and

Engineering from Bangladesh University of Engineering and Technology (BUET),

Bangladesh in 2008 and Master of Science in computer science from Marquette Uni-

versity, Wisconsin in 2010. He received his PhD in computer science from Purdue

University in 2015. During his time at Purdue, he was a member of the Dependable

and Secure Distributed Systems Lab and was affiliated with the Center for Education

and Research in Information Assurance and Security (CERIAS). His research focused

on network security—compliance checking of protocol implementations, vulnerability

discovery using adversarial testing, and countermeasures to mitigate malware infec-

tion in the network. He also conducted research on finding performance attacks in

reliable distributed system implementations.

	Purdue University
	Purdue e-Pubs
	January 2015

	ENSURING SPECIFICATION COMPLIANCE, ROBUSTNESS, AND SECURITY OF WIRELESS NETWORK PROTOCOLS
	Md Endadul Hoque
	Recommended Citation

	tmp.1541002327.pdf.I5tSE

