464 research outputs found

    Self-concatenated code design and its application in power-efficient cooperative communications

    No full text
    In this tutorial, we have focused on the design of binary self-concatenated coding schemes with the help of EXtrinsic Information Transfer (EXIT) charts and Union bound analysis. The design methodology of future iteratively decoded self-concatenated aided cooperative communication schemes is presented. In doing so, we will identify the most important milestones in the area of channel coding, concatenated coding schemes and cooperative communication systems till date and suggest future research directions

    EXIT charts for system design and analysis

    No full text
    Near-capacity performance may be achieved with the aid of iterative decoding, where extrinsic soft information is exchanged between the constituent decoders in order to improve the attainable system performance. Extrinsic information Transfer (EXIT) charts constitute a powerful semi-analytical tool used for analysing and designing iteratively decoded systems. In this tutorial, we commence by providing a rudimentary overview of the iterative decoding principle and the concept of soft information exchange. We then elaborate on the concept of EXIT charts using three iteratively decoded prototype systems as design examples. We conclude by illustrating further applications of EXIT charts, including near-capacity designs, the concept of irregular codes and the design of modulation schemes

    Near-capacity MIMOs using iterative detection

    No full text
    In this thesis, Multiple-Input Multiple-Output (MIMO) techniques designed for transmission over narrowband Rayleigh fading channels are investigated. Specifically, in order to providea diversity gain while eliminating the complexity of MIMO channel estimation, a Differential Space-Time Spreading (DSTS) scheme is designed that employs non-coherent detection. Additionally, in order to maximise the coding advantage of DSTS, it is combined with Sphere Packing (SP) modulation. The related capacity analysis shows that the DSTS-SP scheme exhibits a higher capacity than its counterpart dispensing with SP. Furthermore, in order to attain additional performance gains, the DSTS system invokes iterative detection, where the outer code is constituted by a Recursive Systematic Convolutional (RSC) code, while the inner code is a SP demapper in one of the prototype systems investigated, while the other scheme employs a Unity Rate Code (URC) as its inner code in order to eliminate the error floor exhibited by the system dispensing with URC. EXIT charts are used to analyse the convergence behaviour of the iteratively detected schemes and a novel technique is proposed for computing the maximum achievable rate of the system based on EXIT charts. Explicitly, the four-antenna-aided DSTSSP system employing no URC precoding attains a coding gain of 12 dB at a BER of 10-5 and performs within 1.82 dB from the maximum achievable rate limit. By contrast, the URC aidedprecoded system operates within 0.92 dB from the same limit.On the other hand, in order to maximise the DSTS system’s throughput, an adaptive DSTSSP scheme is proposed that exploits the advantages of differential encoding, iterative decoding as well as SP modulation. The achievable integrity and bit rate enhancements of the system are determined by the following factors: the specific MIMO configuration used for transmitting data from the four antennas, the spreading factor used and the RSC encoder’s code rate.Additionally, multi-functional MIMO techniques are designed to provide diversity gains, multiplexing gains and beamforming gains by combining the benefits of space-time codes, VBLASTand beamforming. First, a system employing Nt=4 transmit Antenna Arrays (AA) with LAA number of elements per AA and Nr=4 receive antennas is proposed, which is referred to as a Layered Steered Space-Time Code (LSSTC). Three iteratively detected near-capacity LSSTC-SP receiver structures are proposed, which differ in the number of inner iterations employed between the inner decoder and the SP demapper as well as in the choice of the outer code, which is either an RSC code or an Irregular Convolutional Code (IrCC). The three systems are capable of operating within 0.9, 0.4 and 0.6 dB from the maximum achievable rate limit of the system. A comparison between the three iteratively-detected schemes reveals that a carefully designed two-stage iterative detection scheme is capable of operating sufficiently close to capacity at a lower complexity, when compared to a three-stage system employing a RSC or a two-stage system using an IrCC as an outer code. On the other hand, in order to allow the LSSTC scheme to employ less receive antennas than transmit antennas, while still accommodating multiple users, a Layered Steered Space-Time Spreading (LSSTS) scheme is proposed that combines the benefits of space-time spreading, V-BLAST, beamforming and generalised MC DS-CDMA. Furthermore, iteratively detected LSSTS schemes are presented and an LLR post-processing technique is proposed in order to improve the attainable performance of the iteratively detected LSSTS system.Finally, a distributed turbo coding scheme is proposed that combines the benefits of turbo coding and cooperative communication, where iterative detection is employed by exchanging extrinsic information between the decoders of different single-antenna-aided users. Specifically, the effect of the errors induced in the first phase of cooperation, where the two users exchange their data, on the performance of the uplink in studied, while considering different fading channel characteristics

    Energy-efficient design and implementation of turbo codes for wireless sensor network

    No full text
    The objective of this thesis is to apply near Shannon limit Error-Correcting Codes (ECCs), particularly the turbo-like codes, to energy-constrained wireless devices, for the purpose of extending their lifetime. Conventionally, sophisticated ECCs are applied to applications, such as mobile telephone networks or satellite television networks, to facilitate long range and high throughput wireless communication. For low power applications, such as Wireless Sensor Networks (WSNs), these ECCs were considered due to their high decoder complexities. In particular, the energy efficiency of the sensor nodes in WSNs is one of the most important factors in their design. The processing energy consumption required by high complexity ECCs decoders is a significant drawback, which impacts upon the overall energy consumption of the system. However, as Integrated Circuit (IC) processing technology is scaled down, the processing energy consumed by hardware resources reduces exponentially. As a result, near Shannon limit ECCs have recently begun to be considered for use in WSNs to reduce the transmission energy consumption [1,2]. However, to ensure that the transmission energy consumption reduction granted by the employed ECC makes a positive improvement on the overall energy efficiency of the system, the processing energy consumption must still be carefully considered.The main subject of this thesis is to optimise the design of turbo codes at both an algorithmic and a hardware implementation level for WSN scenarios. The communication requirements of the target WSN applications, such as communication distance, channel throughput, network scale, transmission frequency, network topology, etc, are investigated. Those requirements are important factors for designing a channel coding system. Especially when energy resources are limited, the trade-off between the requirements placed on different parameters must be carefully considered, in order to minimise the overall energy consumption. Moreover, based on this investigation, the advantages of employing near Shannon limit ECCs in WSNs are discussed. Low complexity and energy-efficient hardware implementations of the ECC decoders are essential for the target applications

    EQUALISATION TECHNIQUES FOR MULTI-LEVEL DIGITAL MAGNETIC RECORDING

    Get PDF
    A large amount of research has been put into areas of signal processing, medium design, head and servo-mechanism design and coding for conventional longitudinal as well as perpendicular magnetic recording. This work presents some further investigation in the signal processing and coding aspects of longitudinal and perpendicular digital magnetic recording. The work presented in this thesis is based upon numerical analysis using various simulation methods. The environment used for implementation of simulation models is C/C + + programming. Important results based upon bit error rate calculations have been documented in this thesis. This work presents the new designed Asymmetric Decoder (AD) which is modified to take into account the jitter noise and shows that it has better performance than classical BCJR decoders with the use of Error Correction Codes (ECC). In this work, a new method of designing Generalised Partial Response (GPR) target and its equaliser has been discussed and implemented which is based on maximising the ratio of the minimum squared euclidean distance of the PR target to the noise penalty introduced by the Partial Response (PR) filter. The results show that the new designed GPR targets have consistently better performance in comparison to various GPR targets previously published. Two methods of equalisation including the industry's standard PR, and a novel Soft-Feedback- Equalisation (SFE) have been discussed which are complimentary to each other. The work on SFE, which is a novelty of this work, was derived from the problem of Inter Symbol Interference (ISI) and noise colouration in PR equalisation. This work also shows that multi-level SFE with MAP/BCJR feedback based magnetic recording with ECC has similar performance when compared to high density binary PR based magnetic recording with ECC, thus documenting the benefits of multi-level magnetic recording. It has been shown that 4-level PR based magnetic recording with ECC at half the density of binary PR based magnetic recording has similar performance and higher packing density by a factor of 2. A novel technique of combining SFE and PR equalisation to achieve best ISI cancellation in a iterative fashion has been discussed. A consistent gain of 0.5 dB and more is achieved when this technique is investigated with application of Maximum Transition Run (MTR) codes. As the length of the PR target in PR equalisation increases, the gain achieved using this novel technique consistently increases and reaches up to 1.2 dB in case of EEPR4 target for a bit error rate of 10-5

    Error-Correction Coding and Decoding: Bounds, Codes, Decoders, Analysis and Applications

    Get PDF
    Coding; Communications; Engineering; Networks; Information Theory; Algorithm

    LDPC concatenated space-time block coded system in multipath fading environment: Analysis and evaluation

    Get PDF
    Irregular low-density parity-check (LDPC) codes have been found to show exceptionally good performance for single antenna systems over a wide class of channels. In this paper, the performance of LDPC codes with multiple antenna systems is investigated in flat Rayleigh and Rician fading channels for different modulation schemes. The focus of attention is mainly on the concatenation of irregular LDPC codes with complex orthogonal space-time codes. Iterative decoding is carried out with a density evolution method that sets a threshold above which the code performs well. For the proposed concatenated system, the simulation results show that the QAM technique achieves a higher coding gain of 8.8 dB and 3.2 dB over the QPSK technique in Rician (LOS) and Rayleigh (NLOS) faded environments respectively

    Turbo codes and turbo algorithms

    Get PDF
    In the first part of this paper, several basic ideas that prompted the coming of turbo codes are commented on. We then present some personal points of view on the main advances obtained in past years on turbo coding and decoding such as the circular trellis termination of recursive systematic convolutional codes and double-binary turbo codes associated with Max-Log-MAP decoding. A novel evaluation method, called genieinitialised iterative processing (GIIP), is introduced to assess the error performance of iterative processing. We show that using GIIP produces a result that can be viewed as a lower bound of the maximum likelihood iterative decoding and detection performance. Finally, two wireless communication systems are presented to illustrate recent applications of the turbo principle, the first one being multiple-input/multiple-output channel iterative detection and the second one multi-carrier modulation with linear precoding

    Self-concatenated coding for wireless communication systems

    No full text
    In this thesis, we have explored self-concatenated coding schemes that are designed for transmission over Additive White Gaussian Noise (AWGN) and uncorrelated Rayleigh fading channels. We designed both the symbol-based Self-ConcatenatedCodes considered using Trellis Coded Modulation (SECTCM) and bit-based Self- Concatenated Convolutional Codes (SECCC) using a Recursive Systematic Convolutional (RSC) encoder as constituent codes, respectively. The design of these codes was carried out with the aid of Extrinsic Information Transfer (EXIT) charts. The EXIT chart based design has been found an efficient tool in finding the decoding convergence threshold of the constituent codes. Additionally, in order to recover the information loss imposed by employing binary rather than non-binary schemes, a soft decision demapper was introduced in order to exchange extrinsic information withthe SECCC decoder. To analyse this information exchange 3D-EXIT chart analysis was invoked for visualizing the extrinsic information exchange between the proposed Iteratively Decoding aided SECCC and soft-decision demapper (SECCC-ID). Some of the proposed SECTCM, SECCC and SECCC-ID schemes perform within about 1 dB from the AWGN and Rayleigh fading channels’ capacity. A union bound analysis of SECCC codes was carried out to find the corresponding Bit Error Ratio (BER) floors. The union bound of SECCCs was derived for communications over both AWGN and uncorrelated Rayleigh fading channels, based on a novel interleaver concept.Application of SECCCs in both UltraWideBand (UWB) and state-of-the-art video-telephone schemes demonstrated its practical benefits.In order to further exploit the benefits of the low complexity design offered by SECCCs we explored their application in a distributed coding scheme designed for cooperative communications, where iterative detection is employed by exchanging extrinsic information between the decoders of SECCC and RSC at the destination. In the first transmission period of cooperation, the relay receives the potentially erroneous data and attempts to recover the information. The recovered information is then re-encoded at the relay using an RSC encoder. In the second transmission period this information is then retransmitted to the destination. The resultant symbols transmitted from the source and relay nodes can be viewed as the coded symbols of a three-component parallel-concatenated encoder. At the destination a Distributed Binary Self-Concatenated Coding scheme using Iterative Decoding (DSECCC-ID) was employed, where the two decoders (SECCC and RSC) exchange their extrinsic information. It was shown that the DSECCC-ID is a low-complexity scheme, yet capable of approaching the Discrete-input Continuous-output Memoryless Channels’s (DCMC) capacity.Finally, we considered coding schemes designed for two nodes communicating with each other with the aid of a relay node, where the relay receives information from the two nodes in the first transmission period. At the relay node we combine a powerful Superposition Coding (SPC) scheme with SECCC. It is assumed that decoding errors may be encountered at the relay node. The relay node then broadcasts this information in the second transmission period after re-encoding it, again, using a SECCC encoder. At the destination, the amalgamated block of Successive Interference Cancellation (SIC) scheme combined with SECCC then detects and decodes the signal either with or without the aid of a priori information. Our simulation results demonstrate that the proposed scheme is capable of reliably operating at a low BER for transmission over both AWGN and uncorrelated Rayleigh fading channels. We compare the proposed scheme’s performance to a direct transmission link between the two sources having the same throughput
    corecore