6,473 research outputs found

    Single Event Effect Hardening Designs in 65nm CMOS Bulk Technology

    Get PDF
    Radiation from terrestrial and space environments is a great danger to integrated circuits (ICs). A single particle from a radiation environment strikes semiconductor materials resulting in voltage and current perturbation, where errors are induced. This phenomenon is termed a Single Event Effect (SEE). With the shrinking of transistor size, charge sharing between adjacent devices leads to less effectiveness of current radiation hardening methods. Improving fault-tolerance of storage cells and logic gates in advanced technologies becomes urgent and important. A new Single Event Upset (SEU) tolerant latch is proposed based on a previous hardened Quatro design. Soft error analysis tools are used and results show that the critical charge of the proposed design is approximately 2 times higher than that of the reference design with negligible penalty in area, delay, and power consumption. A test chip containing the proposed flip-flop chains was designed and exposed to alpha particles as well as heavy ions. Radiation experimental results indicate that the soft error rates of the proposed design are greatly reduced when Linear Energy Transfer (LET) is lower than 4, which makes it a suitable candidate for ground-level high reliability applications. To improve radiation tolerance of combinational circuits, two combinational logic gates are proposed. One is a layout-based hardening Cascode Voltage Switch Logic (CVSL) and the other is a fault-tolerant differential dynamic logic. Results from a SEE simulation tool indicate that the proposed CVSL has a higher critical charge, less cross section, and shorter Single Event Transient (SET) pulses when compared with reference designs. Simulation results also reveal that the proposed differential dynamic logic significantly reduces the SEU rate compared to traditional dynamic logic, and has a higher critical charge and shorter SET pulses than reference hardened design

    Approximate hardening techniques for digital signal processing circuits against radiation-induced faults

    Get PDF
    RESUMEN NO TÉCNICO. Se llama radiación al proceso por el cual una partícula o una onda es capaz de transmitir energía a través del espacio o un medio material. Si la energía transmitida es suficientemente alta, la radiación puede provocar que algunos electrones se desplacen de su posición, en un proceso llamado ionización. La radiación ionizante puede provocar problemas a los seres vivos, pero también a los diversos materiales que componen los sistemas eléctricos y electrónicos utilizados en entornos sujetos a radiación. Existen en La Tierra varios procesos que emiten radiación ionizante, como la obtención de energía en centrales nucleares o ciertos procedimientos médicos. Sin embargo, las fuentes de radiación más importantes se sitúan más allá de nuestra atmósfera y afectan fundamentalmente a sistemas aeroespaciales y vuelos de gran altitud. Debido a la radiación, los sistemas electrónicos que se exponen a cualquiera de estas fuentes sufren degradación en sus propiedades a lo largo del tiempo y pueden sufrir fallos catastróficos que acorten su vida útil. El envejecimiento de los componentes se produce por acumulación de carga eléctrica en el material, lo que se conoce como Dosis Ionizante Total (TID por sus siglas en inglés), o por distorsiones en el silicio sobre el que se fabrican los circuitos, lo que se conoce como Daño por Desplazamiento (DD). Una única partícula ionizante puede, sin embargo, provocar también diversos tipos de fallos transitorios o permanentes en los componentes de un circuito, generalmente por un cambio de estado en un elemento de memoria o fallos destructivos en un transistor. Los diferentes tipos de fallos producidos en circuitos por la acción de una única partícula ionizante se engloban en la categoría de Efectos de Evento Único (SEE por sus siglas en inglés). Para proteger los sistemas electrónicos frente a los efectos de la radiación se suele recurrir a un conjunto de técnicas que llamamos endurecimiento frente a radiación. Los procedimientos tradicionales de endurecimiento han consistido en la fabricación de componentes electrónicos mediante procesos especiales que les confieran una resistencia inherente frente a la TID, el DD y los SEE. A este conjunto de técnicas de endurecimiento se lo conoce como Endurecimiento frente a la Radiación Por Proceso (RHBP por sus siglas en inglés). Estos procedimientos suelen aumentar el coste de los componentes y empeorar su rendimiento con respecto a los componentes que usamos en nuestros sistemas electrónicos cotidianos. En oposición a las técnicas RHBP encontramos las técnicas de Endurecimiento frente a la Radiación Por Diseño (RHBD por sus siglas en inglés). Estas técnicas permiten detectar y tratar de corregir fallos producidos por la radiación introduciendo modificaciones en los circuitos. Estas modificaciones suelen aumentar la complejidad de los circuitos que se quiere endurecer, haciendo que consuman más energía, ocupen más espacio o funcionen a menor frecuencia, pero estas desventajas se pueden compensar con la disminución de los costes de fabricación y la mejora en las prestaciones que aportan los sistemas modernos. En un intento por reducir el coste de las misiones espaciales y mejorar sus capacidades, en los últimos años se trata de introducir un mayor número de Componentes Comerciales (COTS por sus siglas en inglés), endurecidos mediante técnicas RHBD. Las técnicas RHBD habituales se basan en la adición de elementos redundantes idénticos al original, cuyos resultados se pueden comparar entre sí para obtener información acerca de la existencia de un error (si sólo se usa un circuito redundante, Duplicación Con Comparación [DWC]) o llegar incluso a corregir un error detectado de manera automática, si se emplean dos o más réplicas redundantes, siendo el caso más habitual la Redundancia Modular Triple (TMR) en todas sus variantes. El trabajo desarrollado en esta Tesis gira en torno a las técnicas de endurecimiento RHBD de sistemas electrónicos comerciales. En concreto, se trata de proponer y caracterizar nuevas técnicas de endurecimiento que permitan reducir el alto consumo de recursos de las utilizadas habitualmente. Para ello, se han desarrollado técnicas de endurecimiento que aprovechan cálculos aproximados para detectar y corregir fallos en circuitos electrónicos digitales para procesamiento de señal implementados en FPGA comerciales, dispositivos que permiten implementar circuitos electrónicos digitales a medida y reconfigurarlos tantas veces como se quiera. A lo largo de esta Tesis se han desarrollado diferentes circuitos de prueba endurecidos mediante TMR y se ha comparado su rendimiento con los de otras técnicas de Redundancia Aproximada, en concreto la Redundancia de Precisión Reducida (RPR), la Redundancia de Resolución Reducida (RRR) y la Redundancia Optimizada para Algoritmos Compuestos (ORCA): • La Redundancia de Precisión Reducida se basa en la utilización de dos réplicas redundantes que calculan resultados con un menor número de bits que el circuito original. De este modo se pueden disminuir los recursos necesitados por el circuito, aunque las correcciones en caso de fallo son menos precisas que en el TMR. En este trabajo exploramos también la RPR Escalada como un método de obtener un balance óptimo entre la precisión y el consumo de recursos. • La Redundancia de Resolución Reducida es una técnica propuesta originalmente en esta tesis. Está pensada para algoritmos que trabajan con información en forma de paquetes cuyos datos individuales guardan alguna relación entre sí. Las réplicas redundantes calculan los resultados con una fracción de los datos de entrada originales, lo que reduce su tamaño y permite correcciones aproximadas en caso de fallo. • La Redundancia Optimizada para Algoritmos Compuestos es también una aportación original de esta tesis. Está indicada para algoritmos cuyo resultado final puede expresarse como la composición de resultados intermedios calculados en etapas anteriores. Las réplicas redundantes se forman como bloques que calculan resultados intermedios y el resultado de su composición se puede comparar con el resultado original. Este método permite reducir recursos y proporciona resultados de corrección exactos en la mayor parte de los casos, lo que supone una mejora importante con respecto a las correcciones de los métodos anteriores. La eficacia de las técnicas de endurecimiento desarrolladas se ha probado mediante experimentos de inyección de fallos y mediante ensayos en instalaciones de aceleradores de partículas preparadas para la irradiación de dispositivos electrónicos. En concreto, se han realizado ensayos de radiación con protones en el Centro Nacional de Aceleradores (CNA España), el Paul Scherrer Institut (PSI, Suiza) y ensayos de radiación con neutrones en el laboratorio ISIS Neutron and Muon Source (ChipIR, Reino Unido).RESUMEN TÉCNICO. Se llama radiación al proceso por el cual una partícula o una onda es capaz de transmitir energía a través del espacio o un medio material. Si la energía transmitida es suficientemente alta, la radiación puede provocar que algunos electrones se desplacen de su posición, en un proceso llamado ionización. La radiación ionizante puede provocar problemas a los seres vivos, pero también a los diversos materiales que componen los sistemas eléctricos y electrónicos utilizados en entornos sujetos a radiación. Existen en La Tierra varios procesos que emiten radiación ionizante, como la obtención de energía en centrales nucleares o ciertos procedimientos médicos. Sin embargo, las fuentes de radiación más importantes se sitúan más allá de nuestra atmósfera y afectan fundamentalmente a sistemas aeroespaciales y vuelos de gran altitud. Debido a la radiación, los sistemas electrónicos que se exponen a cualquiera de estas fuentes sufren degradación en sus propiedades a lo largo del tiempo y pueden sufrir fallos catastróficos que acorten su vida útil. El envejecimiento de los componentes se produce por acumulación de carga eléctrica en el material, lo que se conoce como Dosis Ionizante Total (TID, Total Ionizing Dose), o por distorsiones acumuladas en la matriz cristalina del silicio en el que se fabrican los circuitos, lo que se conoce como Daño por Desplazamiento (DD, Displacement Damage). Una única partícula ionizante puede, sin embargo, provocar también diversos tipos de fallos transitorios o permanentes en los componentes de un circuito, generalmente por un cambio de estado en un elemento de memoria o la activación de circuitos parasitarios en un transistor. Los diferentes tipos de fallos producidos en circuitos por la acción de una única partícula ionizante se engloban en la categoría de Efectos de Evento Único (SEE, Single Event Effects). Para proteger los sistemas electrónicos frente a los efectos de la radiación se suele recurrir a un conjunto de técnicas que llamamos endurecimiento frente a radiación. Los procedimientos tradicionales de endurecimiento han consistido en la fabricación de componentes electrónicos mediante procesos especiales que les confieran una resistencia inherente frente a la TID, el DD y los SEE. A este conjunto de técnicas de endurecimiento se lo conoce como Endurecimiento frente a la Radiación Por Proceso (RHBP, por sus siglas en inglés). Estos procedimientos suelen aumentar el coste de los componentes y empeorar su rendimiento con respecto a los componentes que usamos en nuestros sistemas electrónicos cotidianos. En oposición a las técnicas RHBP encontramos las técnicas de Endurecimiento frente a la Radiación Por Diseño (RHBD, por sus siglas en inglés). Estas técnicas permiten detectar y tratar de corregir fallos producidos por la radiación introduciendo modificaciones en los circuitos. Estas modificaciones suelen aumentar la complejidad de los circuitos que se quiere endurecer, haciendo que consuman más energía, ocupen más espacio o funcionen a menor frecuencia, pero estas desventajas se pueden compensar con la disminución de los costes de fabricación y la mejora en las prestaciones que aportan los sistemas modernos. En un intento por reducir el coste de las misiones espaciales y mejorar sus capacidades, en los últimos años se trata de introducir un mayor número de Componentes Comerciales (COTS, por sus siglas en inglés), endurecidos mediante técnicas RHBD. Las técnicas RHBD habituales se basan en la adición de elementos redundantes idénticos al original, cuyos resultados se pueden comparar entre sí para obtener información acerca de la existencia de un error (si sólo se usa un circuito redundante, Duplicación Con Comparación [DWC, Duplication With Comparison]) o llegar incluso a corregir un error detectado de manera automática, si se emplean dos o más réplicas redundantes, siendo el caso más habitual la Redundancia Modular Triple (TMR, Triple Modular Redundancy) en todas sus variantes. El trabajo desarrollado en esta Tesis gira en torno a las técnicas de endurecimiento RHBD de sistemas electrónicos comerciales. En concreto, se trata de proponer y caracterizar nuevas técnicas de endurecimiento que permitan reducir el alto consumo de recursos de las técnicas utilizadas habitualmente. Para ello, se han desarrollado técnicas de endurecimiento que aprovechan cálculos aproximados para detectar y corregir fallos en circuitos electrónicos digitales para procesamiento de señal implementados en FPGA (Field Programmable Gate Array) comerciales. Las FPGA son dispositivos que permiten implementar circuitos electrónicos digitales diseñados a medida y reconfigurarlos tantas veces como se quiera. Su capacidad de reconfiguración y sus altas prestaciones las convierten en dispositivos muy interesantes para aplicaciones espaciales, donde realizar cambios en los diseños no suele ser posible una vez comenzada la misión. La reconfigurabilidad de las FPGA permite corregir en remoto posibles problemas en el diseño, pero también añadir o modificar funcionalidades a los circuitos implementados en el sistema. La eficacia de las técnicas de endurecimiento desarrolladas e implementadas en FPGAs se ha probado mediante experimentos de inyección de fallos y mediante ensayos en instalaciones de aceleradores de partículas preparadas para la irradiación de dispositivos electrónicos. Los ensayos de radiación son el estándar industrial para probar el comportamiento de todos los sistemas electrónicos que se envían a una misión espacial. Con estos ensayos se trata de emular de manera acelerada las condiciones de radiación a las que se verán sometidos los sistemas una vez hayan sido lanzados y determinar su resistencia a TID, DD y/o SEEs. Dependiendo del efecto que se quiera observar, las partículas elegidas para la radiación varían, pudiendo elegirse entre electrones, neutrones, protones, iones pesados, fotones... Particularmente, los ensayos de radiación realizados en este trabajo, tratándose de un estudio de técnicas de endurecimiento para sistemas electrónicos digitales, están destinados a establecer la sensibilidad de los circuitos estudiados frente a un tipo de SEE conocido como Single Event Upset (SEU), en el que la radiación modifica el valor lógico de un elemento de memoria. Para ello, hemos recurrido a experimentos de radiación con protones en el Centro Nacional de Aceleradores (CNA, España), el Paul Scherrer Institut (PSI, Suiza) y experimentos de radiación con neutrones en el laboratorio ISIS Neutron and Muon Source (ChipIR, Reino Unido). La sensibilidad de un circuito suele medirse en términos de su sección eficaz (cross section) con respecto a una partícula determinada, calculada como el cociente entre el número de fallos encontrados y el número de partículas ionizantes por unidad de área utilizadas en la campaña de radiación. Esta métrica sirve para estimar el número de fallos que provocará la radiación a lo largo de la vida útil del sistema, pero también para establecer comparaciones que permitan conocer la eficacia de los sistemas de endurecimiento implementados y ayudar a mejorarlos. El método de inyección de fallos utilizado en esta Tesis como complemento a la radiación se basa en modificar el valor lógico de los datos almacenados en la memoria de configuración de la FPGA. En esta memoria se guarda la descripción del funcionamiento del circuito implementado en la FPGA, por lo que modificar sus valores equivale a modificar el circuito. En FPGAs que utilizan la tecnología SRAM en sus memorias de configuración, como las utilizadas en esta Tesis, este es el componente más sensible a la radiación, por lo que es posible comparar los resultados de la inyección de fallos y de las campañas de radiación. Análogamente a la sección eficaz, en experimentos de inyección de fallos podemos hablar de la tasa de error, calculada como el cociente entre el número de fallos encontrados y la cantidad de bits de memoria inyectados. A lo largo de esta Tesis se han desarrollado diferentes circuitos endurecidos mediante Redundancia Modular Triple y se ha comparado su rendimiento con los de otras técnicas de Redundancia Aproximada, en concreto la Redundancia de Precisión Reducida (RPR), la Redundancia de Resolución Reducida (RRR) y la Redundancia Optimizada para Algoritmos Compuestos (ORCA). Estas dos últimas son contribuciones originales presentadas en esta Tesis. • La Redundancia de Precisión Reducida se basa en la utilización de dos réplicas redundantes que calculan resultados con un menor número de bits que el circuito original. Para cada dato de salida se comparan el resultado del circuito original y los dos resultados de precisión reducida. Si los dos resultados de precisión reducida son idénticos y su diferencia con el resultado de precisión completa es mayor que un determinado valor umbral, se considera que existe un fallo en el circuito original y se utiliza el resultado de precisión reducida para corregirlo. En cualquier otro caso, el resultado original se considera correcto, aunque pueda contener errores tolerables por debajo del umbral de comparación. En comparación con un circuito endurecido con TMR, los diseños RPR utilizan menos recursos, debido a la reducción en la precisión de los cálculos de los circuitos redundantes. No obstante, esto también afecta a la calidad de los resultados obtenidos cuando se corrige un error. En este trabajo exploramos también la RPR Escalada como un método de obtener un balance óptimo entre la precisión y el consumo de recursos. En esta variante de la técnica RPR, los resultados de cada etapa de cálculo en los circuitos redundantes tienen una precisión diferente, incrementándose hacia las últimas etapas, en las que el resultado tiene la misma precisión que el circuito original. Con este método se logra incrementar la calidad de los datos corregidos a la vez que se reducen los recursos utilizados por el endurecimiento. Los resultados de las campañas de radiación y de inyección de fallos realizadas sobre los diseños endurecidos con RPR sugieren que la reducción de recursos no sólo es beneficiosa por sí misma en términos de recursos y energía utilizados por el sistema, sino que también conlleva una reducción de la sensibilidad de los circuitos, medida tanto en cross section como en tasa de error. • La Redundancia de Resolución Reducida es una técnica propuesta originalmente en esta tesis. Está indicada para algoritmos que trabajan con información en forma de paquetes cuyos datos individuales guardan alguna relación entre sí, como puede ser un algoritmo de procesamiento de imágenes. En la técnica RRR, se añaden dos circuitos redundantes que calculan los resultados con una fracción de los datos de entrada originales. Tras el cálculo, los resultados diezmados pueden interpolarse para obtener un resultado aproximado del mismo tamaño que el resultado del circuito original. Una vez interpolados, los resultados de los tres circuitos pueden ser comparados para detectar y corregir fallos de una manera similar a la que se utiliza en la técnica RPR. Aprovechando las características del diseño hardware, la disminución de la cantidad de datos que procesan los circuitos de Resolución Reducida puede traducirse en una disminución de recursos, en lugar de una disminución de tiempo de cálculo. De esta manera, la técnica RRR es capaz de reducir el consumo de recursos en comparación a los que se necesitarían si se utilizase un endurecimiento TMR. Los resultados de los experimentos realizados en diseños endurecidos mediante Redundancia de Resolución Reducida sugieren que la técnica es eficaz en reducir los recursos utilizados y, al igual que pasaba en el caso de la Redundancia de Precisión Reducida, también su sensibilidad se ve reducida, comparada con la sensibilidad del mismo circuito endurecido con Redundancia Modular Triple. Además, se observa una reducción notable de la sensibilidad de los circuitos frente a errores no corregibles, comparado con el mismo resultado en TMR y RPR. Este tipo de error engloba aquellos producidos por fallos en la lógica de comparación y votación o aquellos en los que un único SEU produce fallos en los resultados de dos o más de los circuitos redundantes al mismo tiempo, lo que se conoce como Fallo en Modo Común (CMF). No obstante, también se observa que la calidad de las correcciones realizadas utilizando este método empeora ligeramente. • La Redundancia Optimizada para Algoritmos Compuestos es también una aportación original de esta tesis. Está indicada para algoritmos cuyo resultado final puede expresarse como la composición de resultados intermedios calculados en etapas anteriores. Para endurecer un circuito usando esta técnica, se añaden dos circuitos redundantes diferentes entre sí y que procesan cada uno una parte diferente del conjunto de datos de entrada. Cada uno de estos circuitos aproximados calcula un resultado intermedio. La composición de los dos resultados intermedios da un resultado idéntico al del circuito original en ausencia de fallos. La detección de fallos se realiza comparando el resultado del circuito original con el de la composición de los circuitos aproximados. En caso de ser diferentes, se puede determinar el origen del fallo comparando los resultados aproximados intermedios frente a un umbral. Si la diferencia entre los resultados intermedios supera el umbral, significa que el fallo se ha producido en uno de los circuitos aproximados y que el resultado de la composición no debe ser utilizado en la salida. Al igual que ocurre en la Redundancia de Precisión Reducida y la Redundancia de Resolución Reducida, utilizar un umbral de comparación implica la existencia de errores tolerables. No obstante, esta técnica de endurecimiento permite realizar correcciones exactas, en lugar de aproximadas, en la mayor parte de los casos, lo que mejora la calidad de los resultados con respecto a otras técnicas de endurecimiento aproximadas, al tiempo que reduce los recursos utilizados por el sistema endurecido en comparación con las técnicas tradicionales. Los resultados de los experimentos realizados con diseños endurecidos mediante Redundancia Optimizada para Algoritmos Compuestos confirman que esta técnica de endurecimiento es capaz de producir correcciones exactas en un alto porcentaje de los eventos. Su sensibilidad frente a todo tipo de errores y frente a errores no corregibles también se ve disminuida, comparada con la obtenida con Redundancia Modular Triple. Los resultados presentados en esta Tesis respaldan la idea de que las técnicas de Redundancia Aproximada son alternativas viables a las técnicas de endurecimiento frente a la radiación habituales, siempre que

    INVESTIGATING THE EFFECTS OF SINGLE-EVENT UPSETS IN STATIC AND DYNAMIC REGISTERS

    Get PDF
    Radiation-induced single-event upsets (SEUs) pose a serious threat to the reliability of registers. The existing SEU analyses for static CMOS registers focus on the circuit-level impact and may underestimate the pertinent SEU information provided through node analysis. This thesis proposes SEU node analysis to evaluate the sensitivity of static registers and apply the obtained node information to improve the robustness of the register through selective node hardening (SNH) technique. Unlike previous hardening techniques such as the Triple Modular Redundancy (TMR) and the Dual Interlocked Cell (DICE) latch, the SNH method does not introduce larger area overhead. Moreover, this thesis also explores the impact of SEUs in dynamic flip-flops, which are appealing for the design of high-performance microprocessors. Previous work either uses the approaches for static flip-flops to evaluate SEU effects in dynamic flip-flops or overlook the SEU injected during the precharge phase. In this thesis, possible SEU sensitive nodes in dynamic flip-flops are re-examined and their window of vulnerability (WOV) is extended. Simulation results for SEU analysis in non-hardened dynamic flip-flops reveal that the last 55.3 % of the precharge time and a 100% evaluation time are affected by SEUs

    Fine-grain circuit hardening through VHDL datatype substitution

    Get PDF
    Radiation effects can induce, amongst other phenomena, logic errors in digital circuits and systems. These logic errors corrupt the states of the internal memory elements of the circuits and can propagate to the primary outputs, affecting other onboard systems. In order to avoid this, Triple Modular Redundancy is typically used when full robustness against these phenomena is needed. When full triplication of the complete design is not required, selective hardening can be applied to the elements in which a radiation-induced upset is more likely to propagate to the main outputs of the circuit. The present paper describes a new approach for selectively hardening digital electronic circuits by design, which can be applied to digital designs described in the VHDL Hardware Description Language. When the designer changes the datatype of a signal or port to a hardened type, the necessary redundancy is automatically inserted. The automatically hardening features have been compiled into a VHDL package, and have been validated both in simulation and by means of fault injection.Ministerio de Economía y Competitividad ESP2015-68245-C4-2-PComisión Europea ID 687220

    Radiation Hardened by Design Methodologies for Soft-Error Mitigated Digital Architectures

    Get PDF
    abstract: Digital architectures for data encryption, processing, clock synthesis, data transfer, etc. are susceptible to radiation induced soft errors due to charge collection in complementary metal oxide semiconductor (CMOS) integrated circuits (ICs). Radiation hardening by design (RHBD) techniques such as double modular redundancy (DMR) and triple modular redundancy (TMR) are used for error detection and correction respectively in such architectures. Multiple node charge collection (MNCC) causes domain crossing errors (DCE) which can render the redundancy ineffectual. This dissertation describes techniques to ensure DCE mitigation with statistical confidence for various designs. Both sequential and combinatorial logic are separated using these custom and computer aided design (CAD) methodologies. Radiation vulnerability and design overhead are studied on VLSI sub-systems including an advanced encryption standard (AES) which is DCE mitigated using module level coarse separation on a 90-nm process with 99.999% DCE mitigation. A radiation hardened microprocessor (HERMES2) is implemented in both 90-nm and 55-nm technologies with an interleaved separation methodology with 99.99% DCE mitigation while achieving 4.9% increased cell density, 28.5 % reduced routing and 5.6% reduced power dissipation over the module fences implementation. A DMR register-file (RF) is implemented in 55 nm process and used in the HERMES2 microprocessor. The RF array custom design and the decoders APR designed are explored with a focus on design cycle time. Quality of results (QOR) is studied from power, performance, area and reliability (PPAR) perspective to ascertain the improvement over other design techniques. A radiation hardened all-digital multiplying pulsed digital delay line (DDL) is designed for double data rate (DDR2/3) applications for data eye centering during high speed off-chip data transfer. The effect of noise, radiation particle strikes and statistical variation on the designed DDL are studied in detail. The design achieves the best in class 22.4 ps peak-to-peak jitter, 100-850 MHz range at 14 pJ/cycle energy consumption. Vulnerability of the non-hardened design is characterized and portions of the redundant DDL are separated in custom and auto-place and route (APR). Thus, a range of designs for mission critical applications are implemented using methodologies proposed in this work and their potential PPAR benefits explored in detail.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Design of Asynchronous Circuits for High Soft Error Tolerance in Deep Submicron CMOS Circuits

    Get PDF
    As the devices are scaling down, the combinational logic will become susceptible to soft errors. The conventional soft error tolerant methods for soft errors on combinational logic do not provide enough high soft error tolerant capability with reasonably small performance penalty. This paper investigates the feasibility of designing quasi-delay insensitive (QDI) asynchronous circuits for high soft error tolerance. We analyze the behavior of null convention logic (NCL) circuits in the presence of particle strikes, and propose an asynchronous pipeline for soft-error correction and a novel technique to improve the robustness of threshold gates, which are basic components in NCL, against particle strikes by using Schmitt trigger circuit and resizing the feedback transistor. Experimental results show that the proposed threshold gates do not generate soft errors under the strike of a particle within a certain energy range if a proper transistor size is applied. The penalties, such as delay and power consumption, are also presented
    corecore