1,494 research outputs found

    Single-Event Upset Analysis and Protection in High Speed Circuits

    Get PDF
    The effect of single-event transients (SETs) (at a combinational node of a design) on the system reliability is becoming a big concern for ICs manufactured using advanced technologies. An SET at a node of combinational part may cause a transient pulse at the input of a flip-flop and consequently is latched in the flip-flop and generates a soft-error. When an SET conjoined with a transition at a node along a critical path of the combinational part of a design, a transient delay fault may occur at the input of a flip-flop. On the other hand, increasing pipeline depth and using low power techniques such as multi-level power supply, and multi-threshold transistor convert almost all paths in a circuit to critical ones. Thus, studying the behavior of the SET in these kinds of circuits needs special attention. This paper studies the dynamic behavior of a circuit with massive critical paths in the presence of an SET. We also propose a novel flip-flop architecture to mitigate the effects of such SETs in combinational circuits. Furthermore, the proposed architecture can tolerant a single event upset (SEU) caused by particle strike on the internal nodes of a flip-flo

    Single Event Effect Hardening Designs in 65nm CMOS Bulk Technology

    Get PDF
    Radiation from terrestrial and space environments is a great danger to integrated circuits (ICs). A single particle from a radiation environment strikes semiconductor materials resulting in voltage and current perturbation, where errors are induced. This phenomenon is termed a Single Event Effect (SEE). With the shrinking of transistor size, charge sharing between adjacent devices leads to less effectiveness of current radiation hardening methods. Improving fault-tolerance of storage cells and logic gates in advanced technologies becomes urgent and important. A new Single Event Upset (SEU) tolerant latch is proposed based on a previous hardened Quatro design. Soft error analysis tools are used and results show that the critical charge of the proposed design is approximately 2 times higher than that of the reference design with negligible penalty in area, delay, and power consumption. A test chip containing the proposed flip-flop chains was designed and exposed to alpha particles as well as heavy ions. Radiation experimental results indicate that the soft error rates of the proposed design are greatly reduced when Linear Energy Transfer (LET) is lower than 4, which makes it a suitable candidate for ground-level high reliability applications. To improve radiation tolerance of combinational circuits, two combinational logic gates are proposed. One is a layout-based hardening Cascode Voltage Switch Logic (CVSL) and the other is a fault-tolerant differential dynamic logic. Results from a SEE simulation tool indicate that the proposed CVSL has a higher critical charge, less cross section, and shorter Single Event Transient (SET) pulses when compared with reference designs. Simulation results also reveal that the proposed differential dynamic logic significantly reduces the SEU rate compared to traditional dynamic logic, and has a higher critical charge and shorter SET pulses than reference hardened design

    Design of Asynchronous Circuits for High Soft Error Tolerance in Deep Submicron CMOS Circuits

    Get PDF
    As the devices are scaling down, the combinational logic will become susceptible to soft errors. The conventional soft error tolerant methods for soft errors on combinational logic do not provide enough high soft error tolerant capability with reasonably small performance penalty. This paper investigates the feasibility of designing quasi-delay insensitive (QDI) asynchronous circuits for high soft error tolerance. We analyze the behavior of null convention logic (NCL) circuits in the presence of particle strikes, and propose an asynchronous pipeline for soft-error correction and a novel technique to improve the robustness of threshold gates, which are basic components in NCL, against particle strikes by using Schmitt trigger circuit and resizing the feedback transistor. Experimental results show that the proposed threshold gates do not generate soft errors under the strike of a particle within a certain energy range if a proper transistor size is applied. The penalties, such as delay and power consumption, are also presented

    Single event upset hardened CMOS combinational logic and clock buffer design

    Get PDF
    A radiation strike on semiconductor device may lead to charge collection, which may manifest as a wrong logic level causing failure. Soft errors or Single Event Upsets (SEU) caused by radiation strikes are one of the main failure modes in a VLSI circuit. Previous work predicts that soft error rate may dominate the failure rate in VLSI circuit compared to all other failure modes put together. The issue of single event upsets (SEU) need to be addressed such that the failure rate of the chips dues to SEU is in the acceptable range. Memory circuits are designed to be error free with the help of error correction codes. Technology scaling is driving up the SEU rate of combinational logic and it is predicted that the soft error rate (SER) of combinational logic may dominate the SER of unpro-tected memory by the year 2011. Hence a robust combinational logic methodology must be designed for SEU hardening. Recent studies have also shown that clock distribution network is becoming increasingly vulnerable to radiation strike due to reduced capaci-tance at the clock leaf node. A strike on clock leaf node may propagate to many flip-flops increasing the system SER considerably. In this thesis we propose a novel method to improve the SER of the circuit by filtering single event upsets in the combinational logic and clock distribution network. Our ap-proach results in minimal circuit overhead and also requires minimal effort by the de-signer to implement the proposed method. In this thesis we focus on preventing the propagation of SEU rather than eliminating the SEU on each sensitive gate

    Radiation Hardened by Design Methodologies for Soft-Error Mitigated Digital Architectures

    Get PDF
    abstract: Digital architectures for data encryption, processing, clock synthesis, data transfer, etc. are susceptible to radiation induced soft errors due to charge collection in complementary metal oxide semiconductor (CMOS) integrated circuits (ICs). Radiation hardening by design (RHBD) techniques such as double modular redundancy (DMR) and triple modular redundancy (TMR) are used for error detection and correction respectively in such architectures. Multiple node charge collection (MNCC) causes domain crossing errors (DCE) which can render the redundancy ineffectual. This dissertation describes techniques to ensure DCE mitigation with statistical confidence for various designs. Both sequential and combinatorial logic are separated using these custom and computer aided design (CAD) methodologies. Radiation vulnerability and design overhead are studied on VLSI sub-systems including an advanced encryption standard (AES) which is DCE mitigated using module level coarse separation on a 90-nm process with 99.999% DCE mitigation. A radiation hardened microprocessor (HERMES2) is implemented in both 90-nm and 55-nm technologies with an interleaved separation methodology with 99.99% DCE mitigation while achieving 4.9% increased cell density, 28.5 % reduced routing and 5.6% reduced power dissipation over the module fences implementation. A DMR register-file (RF) is implemented in 55 nm process and used in the HERMES2 microprocessor. The RF array custom design and the decoders APR designed are explored with a focus on design cycle time. Quality of results (QOR) is studied from power, performance, area and reliability (PPAR) perspective to ascertain the improvement over other design techniques. A radiation hardened all-digital multiplying pulsed digital delay line (DDL) is designed for double data rate (DDR2/3) applications for data eye centering during high speed off-chip data transfer. The effect of noise, radiation particle strikes and statistical variation on the designed DDL are studied in detail. The design achieves the best in class 22.4 ps peak-to-peak jitter, 100-850 MHz range at 14 pJ/cycle energy consumption. Vulnerability of the non-hardened design is characterized and portions of the redundant DDL are separated in custom and auto-place and route (APR). Thus, a range of designs for mission critical applications are implemented using methodologies proposed in this work and their potential PPAR benefits explored in detail.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Nanoelectronic Design Based on a CNT Nano-Architecture

    Get PDF

    Ultra-Low Power and Radiation Hardened Asynchronous Circuit Design

    Get PDF
    This dissertation proposes an ultra-low power design methodology called bit-wise MTNCL for bit-wise pipelined asynchronous circuits, which combines multi-threshold CMOS (MTCMOS) with bit-wise pipelined NULL Convention Logic (NCL) systems. It provides the leakage power advantages of an all high-Vt implementation with a reasonable speed penalty compared to the all low-Vt implementation, and has negligible area overhead. It was enhanced to handle indeterminate standby states. The original MTNCL concept was enhanced significantly by sleeping Registers and Completion Logic as well as Combinational circuits to reduce area, leakage power, and energy per operation. This dissertation also develops an architecture that allows NCL circuits to recover from a Single Event Upset (SEU) or Single Event Latchup (SEL) fault without any data loss. Finally, an accurate throughput derivation formula for pipelined NCL circuits was developed, which can be used for static timing analysis

    Mathematical Estimation of Logical Masking Capability of Majority/Minority Gates Used in Nanoelectronic Circuits

    Full text link
    In nanoelectronic circuit synthesis, the majority gate and the inverter form the basic combinational logic primitives. This paper deduces the mathematical formulae to estimate the logical masking capability of majority gates, which are used extensively in nanoelectronic digital circuit synthesis. The mathematical formulae derived to evaluate the logical masking capability of majority gates holds well for minority gates, and a comparison with the logical masking capability of conventional gates such as NOT, AND/NAND, OR/NOR, and XOR/XNOR is provided. It is inferred from this research work that the logical masking capability of majority/minority gates is similar to that of XOR/XNOR gates, and with an increase of fan-in the logical masking capability of majority/minority gates also increases
    • …
    corecore