91,492 research outputs found

    Front Matter - Soft Computing for Data Mining Applications

    Get PDF
    Efficient tools and algorithms for knowledge discovery in large data sets have been devised during the recent years. These methods exploit the capability of computers to search huge amounts of data in a fast and effective manner. However, the data to be analyzed is imprecise and afflicted with uncertainty. In the case of heterogeneous data sources such as text, audio and video, the data might moreover be ambiguous and partly conflicting. Besides, patterns and relationships of interest are usually vague and approximate. Thus, in order to make the information mining process more robust or say, human-like methods for searching and learning it requires tolerance towards imprecision, uncertainty and exceptions. Thus, they have approximate reasoning capabilities and are capable of handling partial truth. Properties of the aforementioned kind are typical soft computing. Soft computing techniques like Genetic

    Situation recognition using soft computing techniques

    Get PDF
    Includes bibliographical references.The last decades have witnessed the emergence of a large number of devices pervasively launched into our daily lives as systems producing and collecting data from a variety of information sources to provide different services to different users via a variety of applications. These include infrastructure management, business process monitoring, crisis management and many other system-monitoring activities. Being processed in real-time, these information production/collection activities raise an interest for live performance monitoring, analysis and reporting, and call for data-mining methods in the recognition, prediction, reasoning and controlling of the performance of these systems by controlling changes in the system and/or deviations from normal operation. In recent years, soft computing methods and algorithms have been applied to data mining to identify patterns and provide new insight into data. This thesis revisits the issue of situation recognition for systems producing massive datasets by assessing the relevance of using soft computing techniques for finding hidden pattern in these systems

    Real-valued feature selection for process approximation and prediction

    Get PDF
    The selection of features for classification, clustering and approximation is an important task in pattern recognition, data mining and soft computing. For real-valued features, this contribution shows how feature selection for a high number of features can be implemented using mutual in-formation. Especially, the common problem for mutual information computation of computing joint probabilities for many dimensions using only a few samples is treated by using the RĂšnyi mutual information of order two as computational base. For this, the Grassberger-Takens corre-lation integral is used which was developed for estimating probability densities in chaos theory. Additionally, an adaptive procedure for computing the hypercube size is introduced and for real world applications, the treatment of missing values is included. The computation procedure is accelerated by exploiting the ranking of the set of real feature values especially for the example of time series. As example, a small blackbox-glassbox example shows how the relevant features and their time lags are determined in the time series even if the input feature time series determine nonlinearly the output. A more realistic example from chemical industry shows that this enables a better ap-proximation of the input-output mapping than the best neural network approach developed for an international contest. By the computationally efficient implementation, mutual information becomes an attractive tool for feature selection even for a high number of real-valued features

    10th International Conference, Burgos, Spain, September 23-26, 2009. Proceedings

    Get PDF
    This book constitutes the refereed proceedings of the 10th International Conference on Intelligent Data Engineering and Automated Learning, IDEAL 2009, held in Burgos, Sapin, in September 2009. The 100 revised full papers presented were carefully reviewed and selected from over 200 submissions for inclusion in the book. The papers are organized in topical sections on learning and information processing; data mining and information management; neuro-informatics, bio-informatics, and bio-inspired models; agents and hybrid systems; soft computing techniques in data mining; recent advances on swarm-based computing; intelligent computational techniques in medical image processing; advances on ensemble learning and information fursion; financial and business engineering (modeling and applications); MIR day 2009 - Burgos; and nature inspired models for industrial applications

    DAME: A distributed data mining and exploration framework within the virtual observatory

    Get PDF
    Nowadays, many scientific areas share the same broad requirements of being able to deal with massive and distributed datasets while, when possible, being integrated with services and applications. In order to solve the growing gap between the incremental generation of data and our understanding of it, it is required to know how to access, retrieve, analyze, mine and integrate data from disparate sources. One of the fundamental aspects of any new generation of data mining software tool or package which really wants to become a service for the community is the possibility to use it within complex workflows which each user can fine tune in order to match the specific demands of his scientific goal. These workflows need often to access different resources (data, providers, computing facilities and packages) and require a strict interoperability on (at least) the client side. The project DAME (DAta Mining & Exploration) arises from these requirements by providing a distributed WEB-based data mining infrastructure specialized on Massive Data Sets exploration with Soft Computing methods. Originally designed to deal with astrophysical use cases, where first scientific application examples have demonstrated its effectiveness, the DAME Suite results as a multi-disciplinary platformindependent tool perfectly compliant with modern KDD (Knowledge Discovery in Databases) requirements and Information & Communication Technology trends

    Data Mining based Soft Computing Skills towards Prevention of Cyber Crimes on the Web

    Get PDF
    Internet is the vital resource of Information technology through which the source of Information can be transfer from one machine to anther machine ,information can be receive from one machine and it can be processed and send to another one in this sense it become a great hub distribution of information resources. Now that information can be utilized for educational, for commercial, for personal, by means of that has a various shapes and structure of its necessity. And this results into the traffic over the Internet. Therefore a robust and ideal methodology need to produced for tracing and detecting terror based activities by using traffic content as the auditing of information is being shown These methodologies read and detect the Abnormal and typical behavior of terrorist by using and applying various algorithms of Data Mining and the textual content of terror related web sites and finally profile is give and used by the system to take a real action in the form of tracing and detecting of such suspected person which are evolves in terror activities. As a modern term of computer science its combines with neural networks, artificial intelligence and advanced information technology in the terms of Web or Internet, no doubt Data mining also has a wide scope and verities of large range of web based Applications, with reference to the soft computing Technology which combines with Fuzzy Logic, Artificial Intelligence, Neural networks, and genetic Algorithm in the proposed computing. In this paper the various approaches of soft computing is discussed. DOI: 10.17762/ijritcc2321-8169.15037

    Proceedings of the International Workshop on Computational Intelligence in Security for Information Systems CISIS’08

    Get PDF
    The International Workshop on Computational Intelligence for Security in Information Systems (CISIS) proposes a meeting ground to the various communities involved in building intelligent systems for security, namely: information security, data mining, adaptive learning methods and soft computing among others. The main goal is to allow experts and researchers to assess the benefits of learning methods in the data-mining area for information-security applications. The Workshop offers the opportunity to interact with the leading industries actively involved in the critical area of security, and have a picture of the current solutions adopted in practical domains. This volume of Advances in Soft Computing contains accepted papers presented at CISIS’08, which was held in Genova, Italy, on October 23rd-24th, 2008. The selection process to set up the Workshop program yielded a collection of about 40 papers. This allowed the Scientific Committee to verify the vital and crucial nature of the topics involved in the event, and resulted in an acceptance rate of about 60% of the originally submitted manuscripts

    Soft Computing, Artificial Intelligence, Fuzzy Logic & Genetic Algorithm in Bioinformatics

    Get PDF
    Abstract Soft computing is creating several possibilities in bioinformatics, especially by generating low-cost, low precision (approximate), good solutions. Bioinformatics is an interdisciplinary research area that is the interface between the biological and computational sciences. Bioinformatics deals with algorithms, databases and information systems, web technologies, artificial intelligence and soft computing, information and computation theory, structural biology, software engineering, data mining, image processing, modeling and simulation, discrete mathematics, control and system theory, circuit theory, and statistics. Despite of a high number of techniques specifically dedicated to bioinformatics problems as well as many successful applications, we are in the beginning of a process to massively integrate the aspects and experiences in the different core subjects such as biology, medicine, computer science, engineering, and mathematics. Recently the use of soft computing tools for solving bioinformatics problems have been gaining the attention of researchers because of their ability to handle imprecision, uncertainty in large and complex search spaces. The paper will focus on soft computing paradigm in bioinformatics with particular emphasis on integrative research
    • 

    corecore