85 research outputs found

    BRCA1 as a Therapeutic Target in Sporadic Epithelial Ovarian Cancer

    Get PDF
    In sporadic epithelial ovarian cancer (EOC), the inactivation of BRCA1 through various mechanisms is a relatively common event. BRCA1 protein dysfunction results in the breakdown of various critical pathways in the cell, notably, the DNA damage response and repair pathway. Tumors from patients with BRCA1 germline mutations have an increased sensitivity to DNA damaging chemotherapeutic agents, such as cisplatin, due to defective DNA repair. Thus, inhibiting BRCA1 in sporadic EOC using novel targeted therapies is an attractive strategy for the treatment of advanced or recurrent EOC. Several classes of small molecule inhibitors that affect BRCA1 have now been tested in preclinical and clinical studies suggesting that this is a rational therapeutic approach. The aim of this paper is to provide an understanding of how BRCA1 has evolved into a promising target for the treatment of sporadic disease and to outline the main potential small molecule inhibitors of BRCA1 in EOC

    Interpreting clinical assays for histone deacetylase inhibitors

    Get PDF
    As opposed to genetics, dealing with gene expressions by direct DNA sequence modifications, the term epigenetics applies to all the external influences that target the chromatin structure of cells with impact on gene expression unrelated to the sequence coding of DNA itself. In normal cells, epigenetics modulates gene expression through all development steps. When “imprinted” early by the environment, epigenetic changes influence the organism at an early stage and can be transmitted to the progeny. Together with DNA sequence alterations, DNA aberrant cytosine methylation and microRNA deregulation, epigenetic modifications participate in the malignant transformation of cells. Their reversible nature has led to the emergence of the promising field of epigenetic therapy. The efforts made to inhibit in particular the epigenetic enzyme family called histone deacetylases (HDACs) are described. HDAC inhibitors (HDACi) have been proposed as a viable clinical therapeutic approach for the treatment of leukemia and solid tumors, but also to a lesser degree for noncancerous diseases. Three epigenetic drugs are already arriving at the patient’s bedside, and more than 100 clinical assays for HDACi are registered on the National Cancer Institute website. They explore the eventual additive benefits of combined therapies. In the context of the pleiotropic effects of HDAC isoforms, more specific HDACi and more informative screening tests are being developed for the benefit of the patients

    Histone deacetylase inhibitors valproate and trichostatin A are toxic to neuroblastoma cells and modulate cytochrome P450 1A1, 1B1 and 3A4 expression in these cells

    Get PDF
    Histone deacetylase inhibitors such as valproic acid (VPA) and trichostatin A (TSA) were shown to exert antitumor activity. Here, the toxicity of both drugs to human neuroblastoma cell lines was investigated using MTT test, and IC50 values for both compounds were determined. Another target of this work was to evaluate the effects of both drugs on expression of cytochrome P450 (CYP) 1A1, 1B1 and 3A4 enzymes, which are known to be expressed in neuroblastoma cells. A malignant subset of neuroblastoma cells, so-called N-type cells (UKF-NB-3 cells) and the more benign S-type neuroblastoma cells (UKF-NB-4 and SK-N-AS cell lines) were studied from both two points of view. VPA and TSA inhibited the growth of neuroblastoma cells in a dose-dependent manner. The IC50 values ranging from 1.0 to 2.8 mM and from 69.8 to 129.4 nM were found for VPA and TSA, respectively. Of the neuroblastoma tested here, the N-type UKF-NB-3 cell line was the most sensitive to both drugs. The different effects of VPA and TSA were found on expression of CYP1A1, 1B1 and 3A4 enzymes in individual neuroblastoma cells tested in the study. Protein expression of all these CYP enzymes in the S-type SK-N-AS cell line was not influenced by either of studied drugs. On the contrary, in another S-type cell line, UKF-NB-4, VPA and TSA induced expression of CYP1A1, depressed levels of CYP1B1 and had no effect on expression levels of CYP3A4 enzyme. In the N-type UKF-NB-3 cell line, the expression of CYP1A1 was strongly induced, while that of CYP1B1 depressed by VPA and TSA. VPA also induced the expression of CYP3A4 in this neuroblastoma cell line

    Valproic Acid, a Histone Deacetylase Inhibitor, in Combination with Paclitaxel for Anaplastic Thyroid Cancer: Results of a Multicenter Randomized Controlled Phase II/III Trial

    Get PDF
    Anaplastic thyroid cancer (ATC) has a median survival less than 5 months and, to date, no effective therapy exists. Taxanes have recently been stated as the main drug treatment for ATC, and the histone deacetylase inhibitor valproic acid efficiently potentiates the effects of paclitaxel in vitro. Based on these data, this trial assessed the efficacy and safety of the combination of paclitaxel and valproic acid for the treatment of ATC. This was a randomized, controlled phase II/III trial, performed on 25 ATC patients across 5 centers in northwest Italy. The experimental arm received the combination of paclitaxel (80 mg/m2/weekly) and valproic acid (1,000 mg/day); the control arm received paclitaxel alone. Overall survival and disease progression, evaluated in terms of progression-free survival, were the primary outcomes. The secondary outcome was the pharmacokinetics of paclitaxel. The coadministration of valproic acid did not influence the pharmacokinetics of paclitaxel. Neither median survival nor median time to progression was statistically different in the two arms. Median survival of operated-on patients was significantly better than that of patients who were not operated on. The present trial demonstrates that the addition of valproic acid to paclitaxel has no effect on overall survival and disease progression of ATC patients. This trial is registered with EudraCT 2008-005221-11

    Anticancer Therapy with HDAC Inhibitors: Mechanism-Based Combination Strategies and Future Perspectives

    Get PDF
    The increasing knowledge of molecular drivers of tumorigenesis has fueled targeted cancer therapies based on specific inhibitors. Beyond “classic” oncogene inhibitors, epigenetic therapy is an emerging field. Epigenetic alterations can occur at any time during cancer progression, altering the structure of the chromatin, the accessibility for transcription factors and thus the transcription of genes. They rely on post-translational histone modifications, particularly the acetylation of histone lysine residues, and are determined by the inverse action of histone acetyltransferases (HATs) and histone deacetylases (HDACs). Importantly, HDACs are often aberrantly overexpressed, predominantly leading to the transcriptional repression of tumor suppressor genes. Thus, histone deacetylase inhibitors (HDACis) are powerful drugs, with some already approved for certain hematological cancers. Albeit HDACis show activity in solid tumors as well, further refinement and the development of novel drugs are needed. This review describes the capability of HDACis to influence various pathways and, based on this knowledge, gives a comprehensive overview of various preclinical and clinical studies on solid tumors. A particular focus is placed on strategies for achieving higher efficacy by combination therapies, including phosphoinositide 3-kinase (PI3K)-EGFR inhibitors and hormone- or immunotherapy. This also includes new bifunctional inhibitors as well as novel approaches for HDAC degradation via PROteolysis-TArgeting Chimeras (PROTACs)

    The effect of the histone deacetylase inhibitor M344 on BRCA1 expression in breast and ovarian cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The inhibition of Breast Cancer 1 (BRCA1) expression sensitizes breast and ovarian cancer cells to platinum chemotherapy. However, therapeutically relevant agents that target BRCA1 expression have not been identified. Our recent report suggested the potential of the histone deacetylase (HDAC) inhibitor, M344, to inhibit BRCA1 expression. In this study, we further evaluated the effect of M344 on BRCA1 mRNA and protein expression, as well as its effect on cisplatin-induced cytotoxicity in various breast (MCF7, T-47D and HCC1937) and ovarian (A2780s, A2780cp and OVCAR-4) cancer cell lines.</p> <p>Results</p> <p>With the addition of M344, the platinum-sensitive breast and ovarian cancer cell lines that displayed relatively high BRCA1 protein levels demonstrated significant potentiation of cisplatin cytotoxicity in association with a reduction of BRCA1 protein. The cisplatin-resistant cell lines, T-47D and A2780s, elicited increased cytotoxicity of cisplatin with M344 and down regulation of BRCA1 protein levels. A2780s cells subjected to combination platinum and M344 treatment, demonstrated increased DNA damage as assessed by the presence of phosphorylated H2A.X foci in comparison to either treatment alone. Using Chromatin Immunoprecipitation, A2780s and MCF7 cells exposed to M344 alone and in combination with cisplatin, did not demonstrate enhanced acetylated Histone 4 at the <it>BRCA1 </it>promoter, suggesting an indirect effect on this promoter.</p> <p>Conclusions</p> <p>The enhanced sensitivity of HDAC inhibition to platinum may be mediated through a BRCA1-dependent mechanism in breast and ovarian cancer cells. The findings of this study may be important in the future design of clinical trials involving HDAC inhibitors using BRCA1 as a tumour biomarker.</p

    L’inhibition HDAC induite par le valproate améliore la cytotoxicité directe des monocytes contre les cellules de mésothéliome pleural malin

    Full text link
    Malignant pleural mesothelioma (MPM) is a rare cancer affecting mesothelial cells in the pleura. MPM is incurable and treatments only prolong patient’s survival by a few months. Monocytes are innate immunity cells that constitute the first line of defence against tumor cells. In MPM, monocytes exert immunosuppressive functions through the tumor-associated macrophages (TAMs) and the monocyte myeloid-derived suppressor cells (M-MDSCs). Their presence is associated to a bad prognosis in MPM patients. Despite their immunosuppressive functions, monocytes are also able to exert antitumor functions through phagocytosis, antibody-dependent cell-mediated cytotoxicity, cytokine and reactive substance production. The objectives of the thesis consist, on one side, to study the cytotoxic activity of monocytes against MPM cells and, on the other side, to modulate this activity by means of epigenetic regulators. Results show that monocytes exert a cytotoxic activity against MPM cells. In addition, monocyte treatment with VPA, a histone deacetylase inhibitor, significantly increases monocyte migration, their aggregation to tumor cells and their cytotoxicity against MPM cells. Finally, the molecular mechanisms of VPA involve a downregulation of the membrane receptors associated with the M2 phenotype, including CD163, CD206 and CD209. Monocyte treatment with VPA may thus be explored as a novel approach to improve MPM therapy

    From bedside to bench: Use of patient-derived xenograft models to develop novel therapeutic strategies for triple-negative breast cancer

    Get PDF
    Triple-negative breast cancer (TNBC) is a clinically aggressive disease that is associated with bleak outcomes due to its metastatic propensity, frequent failure to respond to chemotherapy, and lack of alternative treatment options. Despite decades of major translational research efforts, there has been very little success thus far in the development of effective targeted therapies for this disease. It is imperative to develop novel therapeutic strategies to improve patient outcomes, as well as minimize the toxicity associated with standard-of-care chemotherapeutics. Given that metastatic disease accounts for the vast majority of TNBC-related deaths, a better understanding of therapeutic responses within common sites of metastasis is crucial for developing effective treatment strategies. Given the molecular heterogeneity of TNBC, the clinical success of new therapies additionally depends on the identification of reliable drug targets within each TNBC subtype for more effective patient stratification. The studies presented herein sought to address these matters, using clinically relevant patient-derived xenograft (PDX) models to characterize chemotherapeutic efficacy in distinct metastatic sites, to identify promising targeted therapeutic candidates and combination strategies, and to assess the translational potential of these therapeutic strategies, with a focus on both the basal-like and luminal androgen receptor (LAR) subtypes of TNBC. We hypothesized that therapeutic efficacy in the primary tumor setting would be maintained in the metastatic setting, and that PDXs of distinct TNBC subtypes would respond to particular targeted therapies based on the distinct molecular pathways that drive their progression. We therefore expected that therapies targeting the epidermal growth factor receptor (EGFR) and the androgen receptor (AR) would have efficacy in basal-like TNBC and LAR TNBC, respectively, and would be ideal for incorporation into novel combination regimens for these specific disease subtypes. Using a combination of in vitro and in vivo drug response studies, we identified a drug combination, co-targeting EGFR and survivin, that was synergistic across multiple PDX models of basal-like TNBC, despite some of these models responding differently to standard chemotherapies, thus revealing potential pathways that may serve as reliable drug targets in this subset of patients. Furthermore, we identified several potential drug targets and therapeutic candidates for combination with AR-targeted therapies in LAR TNBC. In addition to identifying novel therapeutic strategies that have potential to provide clinical benefit for these subsets of TNBC patients, these studies highlight the utility of PDX models for in vitro and in vivo drug development studies, and demonstrate that the molecular and drug response profiles of primary tumors are maintained in the metastatic setting, indicating that studies employing PDX mammary tumor models can be applicable in advanced disease. Collectively, the data generated in these studies have the potential not only to directly provide clinical benefit for TNBC patients, but also to inspire and inform countless future research endeavors seeking to improve the therapeutic landscape in breast cancer

    The Next Generation of Platinum Drugs: Targeted Pt(II) Agents, Nanoparticle Delivery, and Pt(IV) Prodrugs

    Get PDF
    The platinum drugs, cisplatin, carboplatin, and oxaliplatin, prevail in the treatment of cancer, but new platinum agents have been very slow to enter the clinic. Recently, however, there has been a surge of activity, based on a great deal of mechanistic information, aimed at developing nonclassical platinum complexes that operate via mechanisms of action distinct from those of the approved drugs. The use of nanodelivery devices has also grown, and many different strategies have been explored to incorporate platinum warheads into nanomedicine constructs. In this Review, we discuss these efforts to create the next generation of platinum anticancer drugs. The introduction provides the reader with a brief overview of the use, development, and mechanism of action of the approved platinum drugs to provide the context in which more recent research has flourished. We then describe approaches that explore nonclassical platinum(II) complexes with trans geometry or with a monofunctional coordination mode, polynuclear platinum(II) compounds, platinum(IV) prodrugs, dual-threat agents, and photoactivatable platinum(IV) complexes. Nanoparticles designed to deliver platinum(IV) complexes will also be discussed, including carbon nanotubes, carbon nanoparticles, gold nanoparticles, quantum dots, upconversion nanoparticles, and polymeric micelles. Additional nanoformulations, including supramolecular self-assembled structures, proteins, peptides, metal–organic frameworks, and coordination polymers, will then be described. Finally, the significant clinical progress made by nanoparticle formulations of platinum(II) agents will be reviewed. We anticipate that such a synthesis of disparate research efforts will not only help to generate new drug development ideas and strategies, but also will reflect our optimism that the next generation of approved platinum cancer drugs is about to arrive.National Cancer Institute (U.S.) (CA034992

    The human organic cation transporter OCT1 mediates high affinity uptake of the anticancer drug daunorubicin

    Get PDF
    Les anthracyclines tels que la doxorubicin et la daunorubicin sont une famille de médicaments anticancéreux hydrophiles qui doivent être transportés dans les cellules afin d’exercer leur action par intercalation à l’ADN dans le noyau cellulaire. Ceci mène à la perturbation du métabolisme de l’ADN et entraine la mort cellulaire. Les anthracyclines sont utilisés pour le traitement d’une variété de cancers incluant la leucémie, les lymphomes, le cancer du sein, le cancer des poumons et le cancer des ovaires. Étant donné que le transport actif des anthracyclines dans les cellules a partiellement été démontré, le transporteur spécifique impliqué dans ce processus n’est pas encore connu. En utilisant un modèle de cancer des ovaires, la lignée cellulaire TOV2223G, nous avons démontré que des substrats spécifiques au transporteur de cations organiques 1 (OCT1), notamment la ergothionéine, la thiamine et la phenformin, ont partiellement inhibé l’absorption de la daunorubicin en différence de la carnitine qui est un substrat de haute affinité des transporteurs CT2 et OCTN2. Ces résultats suggèrent que les transporteurs organiques spécifiques au transport de la carnitine ne sont pas impliqués dans le transport des anthracyclines. Ainsi, nos résultats ont démontré que l’absorption de la daunorubicin est orchestrée par le transporteur OCT1 dans les cellules TOV2223G (Km ~ 5 μM) et des concentrations micromolaires de choline ont complètement abolies l’absorption de la drogue. De plus, un ARN sh dirigé contre OCT1 a réprimé son expression protéique, ce qui a été confirmé par la technique d’immuno-buvardage en utilisant un anti-OCT1 anticorps. Les cellules déficientes en OCT1 n’ont pas été capables d’absorber la daunorubicin et ont été plus résistantes à l’action de la drogue par rapport aux cellules contrôle. La transfection des cellules HEK293T avec un plasmide construit de façon à faire exprimer OCT1 comme protéine de fusion avec la protéine fluorescente EYFP a montré que celle-ci est localisée dans la membrane plasmique. Les cellules transfectées ont été capables d’absorber cinq fois plus de daunorubicin comparé aux cellules contrôles. Cette étude est, selon nous, la première à démontrer que OCT1 est un transporteur de haute affinité des anthracyclines. Ainsi, nous avons émis l’hypothèse que des défauts de OCT1 peuvent contribuer à l’efficacité de la réponse des cellules cancéreuses à la chimiothérapie avec les anthracyclines.Anthracyclines such as doxorubicin and daunorubicin are hydrophilic anticancer agents that must be transported into cells. These drugs accumulate in the nucleus where they intercalate with DNA, thereby interfering with DNA replication in turn leading to cell death. Anthracyclines are used for treating a variety of cancers including leukemia, lymphomas, breast, lung, and ovarian. Despite evidence for active uptake of anthracyclines, the specific transporter has not been identified. Using the ovarian cancer cell line TOV2223G, we show that substrates reported for the organic cation transporter OCT1, such as ergothioneine, thiamine and phenformin, partially compete with uptake of daunorubicin, but not of L-carnitine, i.e., a high affinity substrate transported by hCT2 and OCTN2. These findings exclude the involvement of the L-carnitine organic cation family of transporters in anthracycline uptake. Moreover, we show that OCT1 actively mediates high affinity (Km ~ 5 μM) transport of daunorubicin into TOV2223G cells, whereas micromolar amounts of choline completely abolish drug uptake. shRNA-mediated downregulation of OCT1 causes defective uptake of daunorubicin, as well as significant resistance to the drug, as compared to the vector control. Transfection of HEK293T cells with a plasmid expressing OCT1 as a GFP fusion protein revealed that OCT1-EYFP was predominantly localized to the plasma membrane. These transfected cells manifested nearly 5-fold increased uptake of daunorubicin compared to the empty vector control. In summary, we show for the first time that human OCT1 is a high affinity transporter for anthracyclines. As such, we postulate that OCT1 status represents a critical determinant in the response of cancer cells to chemotherapy with anthracycline
    corecore