976 research outputs found

    PIPeR: Impact of power-awareness on social-based opportunistic advertising

    Get PDF
    Interest and social-awareness can be valuable determinants in decisions related to content delivery in mobile environments. Under certain conditions, we can deliver content with less cost and better delivery ratios, while only involving users that are interested in the type of content being delivered. However, the depletion of valuable power resources poses a deterrent to node participation in such interest-aware forwarding systems. No significant research contribution has been identified to collectively maximize the benefits of social, interest, and power awareness. In this work, we propose a new algorithm called PIPeR which integrates power awareness with an interest and socially aware forwarding algorithm called IPeR. Through simulations, we present and evaluate four modes of PIPeR. The results show that PIPeR is more fair and preserves at least 22% of the power IPeR consumes with less delay, while relying significantly on interested forwarders and with comparable cost to maintain similar delivery ratios

    Secured Scheme for Privacy Preserving and Node Authentication Mechanism for a Special Mobile Ad hoc Network

    Get PDF
    Opportunistic networks are a special type of Mobile Ad hoc network which are wirelessly interlinked nodes with the absence of end to end connectivity. All nodes in an opportunistic network are free to move in an environment. Due to the high degree of mobility of nodes, opportunistic networks differ significantly from the existing traditional networks and it works on store, carry &forward mechanism in which, each node has a communication range. Within its proximity, if any node comes, it can send and receive messages. In an opportunistic network, there is no proper infrastructure available for communication and node have limited storage and computational capabilities. The major problem being faced in an opportunistic network is the identification of normal and malicious nodes because due to the open nature of the opportunistic network, malicious nodes also can join the network and perform some malicious activities like Sybil attack. We propose a remedy to address the authentication and privacy issue that can arise in an opportunistic network. According to the findings of the simulation, the proposed research work satisfies the authentication and privacy criteria of an opportunistic network

    On the integration of interest and power awareness in social-aware opportunistic forwarding algorithms

    Get PDF
    Social-aware Opportunistic forwarding algorithms are much needed in environments which lack network infrastructure or in those that are susceptible to frequent disruptions. However, most of these algorithms are oblivious to both the user’s interest in the forwarded content and the limited power resources of the available mobile nodes. This paper proposes PI-SOFA, a framework for integrating the awareness of both interest and power capability of a candidate node within the forwarding decision process. Furthermore, the framework adapts its forwarding decisions to the expected contact duration between message carriers and candidate nodes. The proposed framework is applied to three state-of-the-art social-aware opportunistic forwarding algorithms that target mobile opportunistic message delivery. A simulation-based performance evaluation demonstrates the improved effectiveness, efficiency, reduction of power consumption, and fair utilization of the proposed versions in comparison to those of the original algorithms. The results show more than 500% extra f-measure, mainly by disregarding uninterested nodes while focusing on the potentially interested ones. Moreover, power awareness preserves up to 8% power with 41% less cost to attain higher utilization fairness by focusing on power-capable interested nodes. Finally, this paper analyzes the proposed algorithms’ performance across various environments. These findings can benefit message delivery in opportunistic mobile networks

    Opportunistic mobile social networks: architecture, privacy, security issues and future directions

    Get PDF
    Mobile Social Networks and its related applications have made a very great impact in the society. Many new technologies related to mobile social networking are booming rapidly now-a-days and yet to boom. One such upcoming technology is Opportunistic Mobile Social Networking. This technology allows mobile users to communicate and exchange data with each other without the use of Internet. This paper is about Opportunistic Mobile Social Networks, its architecture, issues and some future research directions. The architecture and issues of Opportunistic Mobile Social Networks are compared with that of traditional Mobile Social Networks. The main contribution of this paper is regarding privacy and security issues in Opportunistic Mobile Social Networks. Finally, some future research directions in Opportunistic Mobile Social Networks have been elaborated regarding the data's privacy and security

    Towards efficacy and efficiency in sparse delay tolerant networks

    Get PDF
    The ubiquitous adoption of portable smart devices has enabled a new way of communication via Delay Tolerant Networks (DTNs), whereby messages are routed by the personal devices carried by ever-moving people. Although a DTN is a type of Mobile Ad Hoc Network (MANET), traditional MANET solutions are ill-equipped to accommodate message delivery in DTNs due to the dynamic and unpredictable nature of people\u27s movements and their spatio-temporal sparsity. More so, such DTNs are susceptible to catastrophic congestion and are inherently chaotic and arduous. This manuscript proposes approaches to handle message delivery in notably sparse DTNs. First, the ChitChat system [69] employs the social interests of individuals participating in a DTN to accurately model multi-hop relationships and to make opportunistic routing decisions for interest-annotated messages. Second, the ChitChat system is hybridized [70] to consider both social context and geographic information for learning the social semantics of locations so as to identify worthwhile routing opportunities to destinations and areas of interest. Network density analyses of five real-world datasets is conducted to identify sparse datasets on which to conduct simulations, finding that commonly-used datasets in past DTN research are notably dense and well connected, and suggests two rarely used datasets are appropriate for research into sparse DTNs. Finally, the Catora system is proposed to address congestive-driven degradation of service in DTNs by accomplishing two simultaneous tasks: (i) expedite the delivery of higher quality messages by uniquely ordering messages for transfer and delivery, and (ii) avoid congestion through strategic buffer management and message removal. Through dataset-driven simulations, these systems are found to outperform the state-of-the-art, with ChitChat facilitating delivery in sparse DTNs and Catora unencumbered by congestive conditions --Abstract, page iv

    From MANET to people-centric networking: Milestones and open research challenges

    Get PDF
    In this paper, we discuss the state of the art of (mobile) multi-hop ad hoc networking with the aim to present the current status of the research activities and identify the consolidated research areas, with limited research opportunities, and the hot and emerging research areas for which further research is required. We start by briefly discussing the MANET paradigm, and why the research on MANET protocols is now a cold research topic. Then we analyze the active research areas. Specifically, after discussing the wireless-network technologies, we analyze four successful ad hoc networking paradigms, mesh networks, opportunistic networks, vehicular networks, and sensor networks that emerged from the MANET world. We also present an emerging research direction in the multi-hop ad hoc networking field: people centric networking, triggered by the increasing penetration of the smartphones in everyday life, which is generating a people-centric revolution in computing and communications
    corecore