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Abstract—Interest and social-awareness can be valuable de-
terminants in decisions related to content delivery in mobile
environments. Under certain conditions, we can deliver content
with less cost and better delivery ratios, while only involving users
that are interested in the type of content being delivered. However,
the depletion of valuable power resources poses a deterrent to
node participation in such interest-aware forwarding systems. No
significant research contribution has been identified to collectively
maximize the benefits of social, interest, and power awareness.
In this work, we propose a new algorithm called PIPeR which
integrates power awareness with an interest and socially aware
forwarding algorithm called IPeR. Through simulations, we
present and evaluate four modes of PIPeR. The results show that
PIPeR is more fair and preserves at least 22% of the power IPeR
consumes with less delay, while relying significantly on interested
forwarders and with comparable cost to maintain similar delivery
ratios.

I. INTRODUCTION

Content delivery in mobile environments is still by far a
very unexploited market. Gartner forecasts an almost doubling
of the global mobile ad revenue to reach around 24 billion
dollars between 2013 to 2016 [1]. With this increase in mobile
data traffic, the network infrastructure becomes overloaded
and users experience occasional network service unavailability
along with the rising service delivery cost [2]. Reliance on
ad-hoc connections among mobile nodes to forward ads in
a local area partially offers a relief from the network infras-
tructure overload. Several popular forwarding algorithms that
are proposed for use in opportunistic networks offer effective
ad delivery within small community places such as shopping
malls or theme parks [3] [4]. These opportunistic forwarding
algorithms exploit the temporal and spacial locality of the
ad and the users in place. In practice, the success of many
forwarding algorithms has typically been at the expense of
power and bandwidth resources paid by participating nodes
whose owners have no interest in being part of a forwarding
process. Interest-aware forwarding algorithms however, are
particularly sensitive to leveraging mobile users who have a
vested interest in this process. The objective is to utlimately
avoid unwelcomed resource utilization, while taking into ac-
count power resource levels of the involved mobile devices.
The overall preservation and fairness of power consumption
can motivate nodes to participate in such systems.

By surveying literature, we find a deficiency in research
work that combines both social awareness and power aware-
ness in opportunistic networks. There are many power-aware

routing protocols that mainly handle static sensor networks
or wireless ad hoc networks [5], but such algorithms are not
socially aware and do not capitalize on the advantages of
opportunistic networking. On the flip side, there are many
socially aware forwarding algorithms [3] [6] that rely on social
awareness without paying attention to power awareness. Some
forwarding algorithms even claim to be both context and power
aware in decision making [7], but stop short of incorporating
social awareness as a very important constituent of context.

We take steps in this work to leverage awareness of the
power resources of nodes and integrate such knowledge with
interest-aware social-based forwarding algorithms to enable
soft real-time opportunistic ad delivery in mobile networks. We
avoid engaging nodes whose owners would not be interested
in a given ad and whose power resources are approaching
exhaustion. More specifically, we build upon previous work
that developed an interest-based socially-aware opportunistic
forwarding algorithm, IPeR [6], and integrate into it awareness
of the power level of mobile nodes. Our new algorithm, PIPeR,
works by magnifying a node’s interest-based social rank if its
remaining power level is above a certain threshold, otherwise
the node is penalized. Our algorithm not only considers interest
and social popularity, but also power capability when making
forwarding decisions. As such, it creates an incentive for
node participation in the forwarding process. We propose four
variations of PIPeR based on comparing the candidate nodes’
power to a fixed/adaptive threshold value accompanied with
an optional opportunistic selection of power-capable interested
forwarders.

We evaluate the algorithm via simulation in mall environ-
ments with a realistic mobility model [8], and then validate
our results using real social-based mobility traces from the
SIGCOMM conference [9]. We also experiment with various
power distributions. We compare PIPeR’s performance to
the benchmark Epidemic Routing algorithm and to IPeR [6]
in terms of delivery ratio, cost, delay, effectiveness, power
awareness and fairness. Our results show how integrating
power awareness in interest-aware social-based opportunistic
forwarding algorithms outperforms the benchmark algorithms
according to the used metrics.

The remainder of this paper is organized as follows. We
discuss the related work in Section 2. Section 3 illustrates
the concept of integrating power-awareness with interest-aware
forwarding. Section 4 presents simulation-based evaluation of
the new algorithm, followed by a conclusion in Section 5.
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II. RELATED WORK

By surveying research work in the field of power aware-
ness and social awareness, we cannot find similar work
that considers combined social-based power-aware forward-
ing approaches. We can categorize the available work into
social-aware forwarding algorithms, social-oblivious context
and power-aware forwarding algorithms, and social-oblivious
power-aware and energy-efficient routing algorithms for sensor
networks and Wireless Ad hoc networks.

Many social aware forwarding algorithms such as HiBOp
and BubbleRap [3] rely on social awareness and interest but
do not pay attention to power awareness in forwarding. Few
social aware forwarding protocols mention awareness of the
node’s remaining power as a sort of context awareness, such as
SocialCast [10], yet they do not conduct proofs or experiments
for such integration of power and context awareness.

Due to the energy constraints placed on nodes in ad hoc
networks, designing power-aware ad hoc routing protocols
is significant to maximize the lifetime of the nodes and the
network itself. Some of these protocols target the least-power
cost routes to minimize power consumption, yet they may
deplete the battery of some forwarder nodes thus reducing
network lifetime [11]. Other approaches, such as PILOT [12],
use a higher power cost route to avoid using nodes whose bat-
teries are depleting. Such approaches mainly maintain energy
efficiency by combining awareness of the node’s power with
another cost function for the forwarder selection process [13].

To maximize the network lifetime, power-awareness and
lifetime prediction routing protocols seek routes that mini-
mize the variance among the nodes’ remaining power. Such
protocols improve the network lifetime, yet tend to create
additional control traffic [14]. Seeking fairness via minimizing
energy consumed per node, some protocols such as CMMBCR
[15] choose the minimal total transmission power route whose
nodes’ remaining battery levels are above some threshold
value, otherwise, route selection is based on another cost
function. However, the performance of such algorithms varies
based on the selected threshold value [14].

Finally, the majority of the proposed context and power
aware routing protocols do not consider social information in
decision making and mainly operate on static sensor networks
or wireless ad hoc networks [5]. For instance, the context
aware opportunistic routing protocol, SCAR [7], allows ef-
ficient routing of mobile sensor data to sink via best path
selection. SCAR relies on nodes’ history of colocation with
sink nodes, their change degree of connectivity and their
current power in path selection without considering social
awareness. Furthermore, due to the limited power resources
of the sensor nodes in wireless sensor networks, many power-
aware and energy-efficient routing protocols propose solutions
for WSN with rare paid attention to opportunistic networks.

III. INTEGRATING POWER AWARENESS WITH

INTEREST-AWARE PEOPLERANK

In this section we illustrate the concept of introducing
power awareness to interest-aware social-based forwarding
algorithms that identify destination nodes by their interest
profile. We briefly describe IPeR [6] as a representative

interest-based social-based forwarding algorithm in mobile
opportunistic networks. We then introduce the PIPeR algorithm
which integrates power awareness in IPeR.

A. IPeR: Interest-aware PeopleRank

IPeR is an interest-aware social forwarding algorithm [6]
that introduces interest awareness in ranking the mobile nodes
besides the typical social ranking and activeness used in the
social-based ranking PeopleRank algorithm (CA-PeR) [4]. In
specific, IPeR computes the similarity in interest between a
candidate forwarder and the forwarded advertisement message,
and uses this parameter in ad forwarder selection. IPeR also
includes a damping factor (d) to determine the amount of
reliance on opportunistic forwarding versus the interest-aware
social ranking component. The interest-aware social ranking
component rewards/penalizes the social ranking component of
CA-PeR based on interest similarity.

Similarity between the interest vectors of each candidate
user and of the ad message SInt(j, Ad) is computed by the
Jaccard set similarity [16]; if it is above a certain threshold, the
rank of candidate node for forwarding is rewarded (by adding
a reward value), and penalized otherwise. A candidate mobile
node is highly ranked if its owner is linked to popular friends
and also if the user and their friends are interested in the ad.
Then this node more likely becomes a candidate for forwarding
the ad. The node’s IPeR rank is computed as follows.

IPeR(i) = OpportunisticForward+

(DampingFactor ∗ SocialRank(i) ∗ Activeness(i)∗
(SInt(i, Ad) ± reward +

∑

j∈F (i)

SInt(j, Ad) ± reward)) (1)

Thus, IPeR magnifies the mobile user’s social rank if the
user and his friends F (i) are interested in the ad above a certain
interest threshold, else it is penalized.

B. PIPeR: Power-aware IPeR

We explore the effect of integrating power-awareness with
the interest-based social forwarding process of the IPeR
algorithm. Accordingly, we introduce another parameter in
ranking the nodes besides the interest-aware social ranking and
activeness used in IPeR. In specific, to consider a mobile node
for forwarding an ad, we elicit the candidate node’s available
battery level, and use this information as a means of indicating
the node’s willingness to forward.

We emphasize the power-awareness by rewarding the node
whose battery level is above a certain battery threshold, and
penalize it otherwise. Accordingly a candidate node is highly
ranked if its battery is above a certain threshold, if its owner
is linked to popular friends and also if she and her friends are
interested in the advertisement. Thus the higher the rank of a
mobile node and its contacts, the more likely a node becomes
a candidate for forwarding the ad. The node’s power-aware
rank PIPeR is formalized by this equation.

PIPeR(i) = (Bat(i) ± reward) ∗ IPeR(i) (2)

According to the logic of the PIPeR Algorithm, first, the
advertiser node ranks the users in proximity using the PIPeR
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function based on their candidacy to forward the ad. The
advertiser then sends the ad to the ”power-capable interested
forwarders” whose Similarity Interest SInt(j,Ad) is beyond a
certain threshold and whose PIPeR value is rewarded by its
current battery level for exceeding the battery threshold batThr.
As these forwarders encounter other nodes, they check their
interest, social rank, battery level, and whether they have
already received this ad or not. In case of a match, they forward
the ad to the new candidates. This process is repeated until the
target time duration t expires or the target number of recipients
is achieved. Any ad carrier node whose battery level goes
below the preset battery threshold ceases to scan or forward
ads in order not to exhaust the remaining battery level.

As shown in Algorithm 1, initially, all the nodes’ PIPeR
values favor opportunistic forwarder selection i.e. PIPeR =
(1-d). Whenever two nodes come in contact and if their
owners are friends, the nodes exchange their PIPeR values, the
count of each one’s friends |F(i)|, their interest feature vectors
IntFV(i) and the nodes’ current battery levels to update their
PIPeR ranks as per equation 2 (lines 3-8). Whenever an ad
holder i comes in contact with another node j, they exchange
their current PIPeR ranks, and node i sends the ad interest
vector IntFV(Ad) to node j to receive the computed SInt(j,Ad)
(lines 9-11). If node j belongs to the destination set of this ad
(line 12), node i delivers a copy of the ad to node j. If node
j is not a destination node but its PIPeR rank and similarity
interest exceed those of node i, then node i forwards a copy
of the ad to node j (lines 12-13).

We present several variations of the PIPeR algorithm that
meet various metrics. The variations are:

Adaptive Battery Threshold version (PAd): The logic
behind this approach is to utilize the nodes whose ’wealth’ is
above the current average ’wealth’ of the battery community.
This PIPeR version continuously adapts the battery threshold
used in selecting candidates based on the obsAvgBat values
noted from the battery levels of the encountered nodes. Ac-
cordingly, the candidates who maintain a battery level above
the current observed average battery level are selected to be
the next ad carriers. The obsAvgBat is computed as follows:

Algorithm 1 Distributed PIPeR Algorithm

Require: |F (i)| ≥ 0, SInt(source,Ad) = 0.3
{i: node i, F(i): Friend list, IntFV(i): Interest Feature Vector,
bat(i): current battery level, batThr: battery level threshold, PIPeR(i): PIPeR value,
SInt(i,Ad): Similarity Interest between IntFV(i) and IntFV(Ad), buffer(i): buffer of
the to-be-forwarded ads}

1: PIPeR(i) ← 1 − d
2: ∀ time t every n seconds
3: while i is in contact with j do
4: if j ∈ F (i) {if j is a friend of i} then
5: send(PIPeR(i), |F (i)|, IntFV (i), bat(i), batThr)
6: receive(PIPeR(j), |F (j)|, IntFV (j), bat(j), batThr)
7: update(PIPeR(i)) (Eq. 2)
8: end if

{for all encountered nodes whether they are friends or not}
9: while ∃Ad ∈ buffer(i) and Scanning-Condition = true do

10: send(IntFV (Ad), batThr)
11: receive(SInt(j, Ad), batThr)
12: if Opportunistic-Interest-Condition or SInt(j,Ad) ≥ Destination-Interest-

Threshold or (SInt(j,Ad) ≥ SInt(i,Ad) and PIPeR(j) ≥ PIPeR(i)) then
13: Forward(Ad, j)
14: end if
15: end while
16: end while

obsAvgBat(i) =
Bat(i) +

∑
j∈contact(i)

obsAvgBat(j)

1 + |j| (3)

Then Scanning-Condition in code line 9 is set to bat(j)
≥ obsAvgBat(i) to pick the next forwarders. Also, the nodes
exchange their observations of obsAvgBat instead of a fixed
battery threshold batThr in code lines 5, 6, 10 and 11.

Fixed Battery Threshold version(Px): This PIPeR version
compares the candidate’s battery level to a fixed battery
threshold batThr instead of an adaptive battery threshold. The
application fixes a battery threshold above which the ’wealthy’
members of the community become suitable candidates to for-
ward the ad. The fixed battery threshold version sets Scanning-
Condition to bat(j) ≥ batThr in code line 9.

Interest-aware Opportunistic version (Opp): This ap-
proach of PIPeR adds an extra opportunistic portion to the
candidate selection process. This is achieved by forwarding the
ad to any interested forwarder whose battery level is above the
fixed threshold batThr. These favored forwarders need not be
socially popular users, but rather be power-capable interested
forwarders. Thus, Opportunistic-Interest-Condition is set to
the condition bat(j) ≥ batThr and SInt(j,Ad) ≥ Interested-
Forwarder-Threshold in code line 12.

These variations can be combined together to achieve col-
lective benefits. We present four combinations in the evaluation
section; namely Px for a fixed threshold x%, PxOpp for Op-
portunistic fixed threshold x%, PAd for adaptive threshold and
PAdOpp for adaptive Opportunistic combination, and depict
their achieved benefits.

C. System Realization Assumptions

For our algorithm to operate effectively, it has to attain
interest-related assumptions such that direct interest is ex-
tracted from the social profile of the candidates which is cached
on the mobile nodes. To maintain soft real-time opportunistic
ad delivery in mobile networks, PIPeR forwards short-duration
ads to target users located in a place within a short period of
time. Also, the algorithm does not assume the existence of a
fully connected social graph among the users in place. Finally,
to achieve power-awareness, each node is assumed to provide
its current power level when requested.

IV. EVALUATION

In this section, we evaluate our proposed algorithm via
simulation, and validate our results using real social-based
mobility traces and a real power-consumption dataset. We
briefly describe our setup, and present a subset of our results.

A. Simulation Setup and Parameters

We build our own simulator for a mall environment with 20
shops randomly distributed over an area of 1000m x 1000m.
For accurate mobility patterns, we import user traces from
the Self-similar Least Action Walk (SLAW) mobility model
[8] which implements social contexts present among people
sharing common interests in small scale communities such as
malls, or theme parks. To experiment with various conditions,
we vary user density and ad hoc wireless range as shown
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TABLE I: Simulation Environment Parameters

Parameter Nominal Value Range
No. of users 100 20 - 300

No. of shops 5 1 - 20

Set of Interests 10 5, 10

Similarity interest discrete uniform discrete normal,
distribution discrete uniform

Destination set 18% of the users 10% - 50%

damping factor 0.87 d = 1 - div [4]

SInt(source,Ad) 0.3 0 - 1

Initial Battery Full Battery Discrete Normal, Full
Distribution Distribution Battery, Real dataset [17]

Fixed Battery 50% for full 20% - 80%
Threshold 20% for normal

Power Samsung i900 Omnia phone, idle=2, forward message=1600,
Consumption receive message=1496, Wifi(TCP mode) Scan=664,
(in mW) [18] Bluetooth(RFCOMM mode) Scan=173, discovered node=29

in Table I. Since our focus is on relatively short-time ads
that target users during a single visit, we are interested in
the system’s performance during the first hour of simulations.
We assume all ads have the same size for simplicity of cost
calculations. Our results are based on ads generated by 5
shops and are shown as an average of 20 runs changing the
random distribution of the users’ mobility, profiles, friends
list and initial battery levels. Our simulator generates random
social profiles including interest for each user. Furthermore,
the constructed friendship graph includes up to 20% of the
available users in the friend list per user. Table I lists the most
prominent parameters of our simulation environment.

In reality, not all users are interested in the same ads. To
simulate this, we set the similarity interest of a certain per-
centage of the users with SInt(InterestedNode,Ad) ≥ 0.5
for interested forwarders and SInt(DestinationNode,Ad) ≥
0.9 for destination nodes. While we test various user in-
terest distributions, we only show results for the discrete
uniform distribution; users are equally distributed between 11
categories with varying interest rates ranging from 0 to 1.
Accordingly, the destination set constitutes 18% of the mobile
users population while the interested forwarders cover 36%.

The SInt(source,Ad) acts as a knob controlling the
acceptable set of contacted uninterested users since it acts
as a starting cutoff point for forwarder selection. As per
the experiments we conducted in previous work [6], we set
SInt(source,Ad) to 0.3 in this paper’s simulation runs.

The simulation runs are based on realistic power consump-
tion values and various battery level dstributions. We imported
the power consumption values of a popular phone brand as
studied by [18] - listed in Table I - which are comparable to
other popular mobile brands. Also, we experiment with various
battery distributions for different purposes. For instance, one
set of simulation runs starts with full battery levels for all nodes
to extract the pure effect of each algorithm on consuming
the nodes’ power. Another simulation set uses discrete normal
battery distribution to resemble the battery communities in real
life. A third used distribution is based on a real dataset of
the remaining battery capacity recorded by [17] for 10 mobile
nodes in 24 hours. By examining various battery thresholds,
we found that for each battery distribution there is a suitable
threshold towards an optimum power-aware performance; the
results presented in this paper rely on threshold value 50% for
the full battery distribution.

B. Validation with Real Traces

We validate the performance of our algorithm using real
datasets as we import the mobility traces, interests and friend-
ship graphs gathered during the SIGCOMM 2009 conference
[9]. In this conference, 76 participants were given smartphones
with the MobiClique application installed for mobile social
networking use during the conference. This dataset provides
real friendship and interest graphs from the participants’ Face-
book social profile. We pick any of the users to be the source
of the ads and show the results within a 1-hour time frame.

C. Simulation Metrics

The metrics we choose aim to assess two goals in our
work. First, evaluating the effectiveness and efficiency with
which we can opportunistically reach users interested in the
ads. Second, determining the fairness in the amount of power
consumed by different nodes in the network. We particularly
use the following metrics:

Cost: Cost is measured by forwarded ad replicas and time
spent to accomplish this process. We measure the total number
of ad replicas that have been generated at any given time, and
also measure the cost per unit delivery ratio.

Delivery Ratio: We measure the portion of successfully
reached destination nodes over time to reflect efficiency.

Delay: Each ad sent to one of the destination nodes
reflects a degree of user satisfaction. User satisfaction may
be measured by the average delay consumed until an ad is
delivered to any destination node.

Effectiveness: An algorithm is effective if it contacts a high
portion of the interested users while simultaneously avoiding
the uninterested ones. We measure it by the ratio of contacted
users classified by their interest; users are either interested
forwarders, destination nodes, or uninterested forwarders.

Power Consumption: Algorithm power-efficiency is re-
flected by its ability to conserve the overall power consump-
tion. We measure this metric by computing the total consumed
power from all the nodes’ batteries over time as well as the
total consumed power per unit delivery ratio.

Fairness: A fair algorithm would not exhaust some nodes’
batteries in ad forwarding while preserving other nodes’ power.
That is, it seeks reducing variance among the nodes’ battery
levels. We measure fairness via 3 measures:

The final mean and standard deviation of the nodes’ power
community as they present the effect of each algorithm in
shaping the final battery distribution.

The variance among the nodes’ battery levels over time.
The ability of an algorithm to reduce/increase the variations
among the nodes’ battery levels along the forwarding process is
a measure of fairness; fairness indicates community closeness
which is inversely proportional to variance.

Monitoring the battery distribution over time clustered in
four categories ranging from category 1 for battery levels less
than 25% till category 4 for 75% and above. Figures 3a and
3b are samples of battery clustering over time as per IPeR and
P50Opp respectively. It is an auxiliary mean to the above two
measures towards measuring an algorithm’s fairness.
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(a) Cost over time (b) Cost vs. Delivery Ratio

Fig. 1: Cost

(a) Delivery Ratio over time (b) Effectiveness

Fig. 2

D. Results

We examine the effectiveness of our PIPeR algorithm, by
comparing the performance of its 4 variations to IPeR and
the benchmark power-oblivious Epidemic algorithm. We only
share the SLAW-based full battery distribution experiment
results as a representative set for space limitation and for simi-
larity to the results of the other battery distribution experiments
and the SIGCOMM experiments.

Cost, Delay and Delivery Ratio: From the cost time
analysis illustrated in Figure 1a, we observe that all PIPeR
versions - except P50Opp - reduce cost, in comparison to
IPeR, to percents ranging from 87% to 30% to reach 94%
of the destination nodes IPeR contacted. The cost to delivery
ratio shown in Figure 1b proves that PIPeR costs less ad
messages per unit delivery ratio than IPeR, mainly because
PIPeR avoids forwarding ads to forwarders with low power.
We also highlight the PIPeR achievement in reducing delivery
delay in Figure 2a and in Figure 6; all PIPeR versions gain
savings in delay over IPeR ranging from 54.4% to 0.3%. For
instance, P50Opp costs more to reach more destination nodes
with a reduction in delay to the half.

Effectiveness: Figure 2b shows how PIPeR significantly
reduces the percent of contacted uninterested forwarders by at
least 26% compared to IPeR; P50Opp successfully contacts
90% of the interested forwarders and reduces its uninterested
forwarders contact to 26% to deliver ads to an extra 6.7% desti-
nation nodes. Noteworthy, PAd does not contact any forwarders
to reach 70% of the destination nodes contacted by IPeR. This
is attributed to its adaptive selection based on interest and
power capabilities which may lead to avoiding some of the
interested forwarders for their low power resources.

Power Consumption: The main improvement of PIPeR
over IPeR and Epidemic is conserving consumed power to

(a) IPeR (b) Opp. fixed threshold PIPeR

Fig. 3: 4-category Battery Consumption over time

(a) Power Consumption vs. Time (b) Consumed Power vs. Delivery Ratio

Fig. 4: Power Consumption

reach a comparable portion of the destination set. Figure 4a
shows how PIPeR succeeds to conserve 22% of the power
consumed by IPeR while the adaptive PIPeR versions conserve
up to 48.8%. From another viewpoint, Figure 4b depicts how
PIPeR consumes 0.5 power per unit delivery ratio in compar-
ison to 0.6 by IPeR when the adaptive versions consume 0.4.

Fairness: As per mean and standard deviation measures
in subfigure 5a, compared to IPeR, PIPeR preserves a higher
mean battery level while preserving a smaller STD indicating
a closer community. Moreover, PAd preserves the highest
mean with 23% STD maintaining a battery community with
moderate closeness and preserving significant overall power.

From the perspective of variance over time as a measure
of progress in fairness, Figure 5b shows that as time passes,
PIPeR versions tend to be more fair by decreasing variance
while IPeR increases it. Figure 3 shows that over time, IPeR
clusters the majority of the nodes in the border categories
causing high level of variance, thus poor fairness, while PIPeR
clusters the greater portion of the battery members in the mid-
dle categories thus encouraging less variance and maintaining a
high degree of fairness. It is noteworthy that P50Opp maintains
the highest level of fairness by seeking opportunistic selection
and maintaining the 50% battery threshold. From Figures 5a
and 5b, interestingly we notice how Epidemic satisfies the rule
of ”equality in injustice amended” by exhausting the majority
of the community members’ power to attain fairness.

The 7-metrics Analysis: Towards analyzing the perfor-
mance of the compared algorithms in terms of the above men-
tioned 7 metrics, a radar graph of these metrics is presented
in Figure 6. Epidemic achieves the highest delivery ratio in
the least delay by consuming the highest cost and power to
maintain a high level of fairness by exhausting the batteries of
the majority of the members and by annoying a high portion
of uninterested forwarders. IPeR is the least fair algorithm as it
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(a) Final Mean Battery and STD (b) Fairness Over Time

Fig. 5: Fairness Metric

Fig. 6: The 7 Metrics Space

is not aware of utilizing the members’ batteries with equal or
close portions while P50Opp outperforms IPeR in all metrics
except the extra cost required to reach more interested users.

On the other hand, the adaptive PIPeR versions are the
most effective versions in cost, power consumption and un-
interested forwarders contact despite the small delivery ratio
they achieve. In addition, these versions avoid relying on any
forwarders, so they succeed to avoid uninterested forwarders
but they miss the chance to inform/utilize the interested
forwarders. Notice that these versions are moderate in fairness
as they do not exhaust the majority of the members’ batteries
leading to small difference in the community battery levels.

From another perspective, the opportunistic versions attain
higher delivery ratio than non-opportunistic ones as they
seek opportunities to contact more power-capable interested
forwarders and avoid uninterested nodes. Actually they achieve
higher delivery ratio in a comparable delay, power consump-
tion and some extra cost to maintain a higher level of fairness.

To sum up, PIPeR offers several versions for advertisers
to utilize in forwarding ads; P50Opp maintains high fairness
to reach a higher delivery ratio and contacts a higher portion
of interested forwarders than what IPeR contacts. On another
front, adaptive PIPeR minimizes cost and overall consumed
power with some delay by adapting to the average available
power capabilities of the nodes in place.

V. CONCLUSION

In this paper, we have taken the first steps towards
showing the impact of incorporating power awareness with

interest-based socially-aware opportunistic forwarding algo-
rithms. We have demonstrated this impact by enabling soft
real-time advertisement dissemination to disconnected mobile
users while maintaining fair power consumption among nodes.
We have introduced the PIPeR algorithm, which integrates
power awareness into a representative interest-based socially-
aware forwarding algorithm called IPeR. Our simulation-based
evaluation demonstrates the promising gain in fairness and
the reduction in power consumption, cost, as well as delay,
while maintaining the benefit of creating an interest-aware
social-based algorithm. Future investigations will include more
parameters of power awareness such as battery depletion rate,
device usage profiles and patterns, and the expected contact
duration between the message holder and candidate forwarder
nodes. From there we will formulate a framework for any
interest and power-aware social forwarding algorithm that
mainly capitalizes on opportunistic mobile networks.
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