5,204 research outputs found

    A generic model of dyadic social relationships

    Full text link
    We introduce a model of dyadic social interactions and establish its correspondence with relational models theory (RMT), a theory of human social relationships. RMT posits four elementary models of relationships governing human interactions, singly or in combination: Communal Sharing, Authority Ranking, Equality Matching, and Market Pricing. To these are added the limiting cases of asocial and null interactions, whereby people do not coordinate with reference to any shared principle. Our model is rooted in the observation that each individual in a dyadic interaction can do either the same thing as the other individual, a different thing or nothing at all. To represent these three possibilities, we consider two individuals that can each act in one out of three ways toward the other: perform a social action X or Y, or alternatively do nothing. We demonstrate that the relationships generated by this model aggregate into six exhaustive and disjoint categories. We propose that four of these categories match the four relational models, while the remaining two correspond to the asocial and null interactions defined in RMT. We generalize our results to the presence of N social actions. We infer that the four relational models form an exhaustive set of all possible dyadic relationships based on social coordination. Hence, we contribute to RMT by offering an answer to the question of why there could exist just four relational models. In addition, we discuss how to use our representation to analyze data sets of dyadic social interactions, and how social actions may be valued and matched by the agents

    User-driven design of decision support systems for polycentric environmental resources management

    Get PDF
    Open and decentralized technologies such as the Internet provide increasing opportunities to create knowledge and deliver computer-based decision support for multiple types of users across scales. However, environmental decision support systems/tools (henceforth EDSS) are often strongly science-driven and assuming single types of decision makers, and hence poorly suited for more decentralized and polycentric decision making contexts. In such contexts, EDSS need to be tailored to meet diverse user requirements to ensure that it provides useful (relevant), usable (intuitive), and exchangeable (institutionally unobstructed) information for decision support for different types of actors. To address these issues, we present a participatory framework for designing EDSS that emphasizes a more complete understanding of the decision making structures and iterative design of the user interface. We illustrate the application of the framework through a case study within the context of water-stressed upstream/downstream communities in Lima, Peru

    A survey of statistical network models

    Full text link
    Networks are ubiquitous in science and have become a focal point for discussion in everyday life. Formal statistical models for the analysis of network data have emerged as a major topic of interest in diverse areas of study, and most of these involve a form of graphical representation. Probability models on graphs date back to 1959. Along with empirical studies in social psychology and sociology from the 1960s, these early works generated an active network community and a substantial literature in the 1970s. This effort moved into the statistical literature in the late 1970s and 1980s, and the past decade has seen a burgeoning network literature in statistical physics and computer science. The growth of the World Wide Web and the emergence of online networking communities such as Facebook, MySpace, and LinkedIn, and a host of more specialized professional network communities has intensified interest in the study of networks and network data. Our goal in this review is to provide the reader with an entry point to this burgeoning literature. We begin with an overview of the historical development of statistical network modeling and then we introduce a number of examples that have been studied in the network literature. Our subsequent discussion focuses on a number of prominent static and dynamic network models and their interconnections. We emphasize formal model descriptions, and pay special attention to the interpretation of parameters and their estimation. We end with a description of some open problems and challenges for machine learning and statistics.Comment: 96 pages, 14 figures, 333 reference

    A transaction-oriented architecture for structuring unstructured information in enterprise applications

    Get PDF
    As 80-85% of all corporate information remains unstructured, outside of the processing scope of enterprise systems, many enterprises rely on Information Systems that cause them to risk transactions that are based on lack of information (errors of omission) or misleading information (errors of commission). To address this concern, the fundamental business concept of monetary transactions is extended to include qualitative business concepts. A Transaction Concept (TC) is accordingly identified that provides a structure for these unstructured but vital aspects of business transactions. Based on REA (Resources, Events, Agents) and modelled using Conceptual Graphs (CGs) and Formal Concept Analysis (FCA), the TC provides businesses with a more balanced view of the transactions they engage in and a means of discovering new transactions that they might have otherwise missed. A simple example is provided that illustrates this integration and reveals a key missing element. This example is supported by reference to a wide range of case studies and application areas that demonstrate the added value of the TC. The TC is then advanced into a Transaction-Oriented Architecture (TOA). The TOA provides the framework by which an enterprise’s business processes are orchestrated according to the TC. TOA thus brings Service-Oriented Architecture (SOA) and the productivity of enterprise applications to the height of the real, transactional world that enterprises actually operate in.</jats:p

    Peer-to-Peer Energy Trading in Smart Residential Environment with User Behavioral Modeling

    Get PDF
    Electric power systems are transforming from a centralized unidirectional market to a decentralized open market. With this shift, the end-users have the possibility to actively participate in local energy exchanges, with or without the involvement of the main grid. Rapidly reducing prices for Renewable Energy Technologies (RETs), supported by their ease of installation and operation, with the facilitation of Electric Vehicles (EV) and Smart Grid (SG) technologies to make bidirectional flow of energy possible, has contributed to this changing landscape in the distribution side of the traditional power grid. Trading energy among users in a decentralized fashion has been referred to as Peer- to-Peer (P2P) Energy Trading, which has attracted significant attention from the research and industry communities in recent times. However, previous research has mostly focused on engineering aspects of P2P energy trading systems, often neglecting the central role of users in such systems. P2P trading mechanisms require active participation from users to decide factors such as selling prices, storing versus trading energy, and selection of energy sources among others. The complexity of these tasks, paired with the limited cognitive and time capabilities of human users, can result sub-optimal decisions or even abandonment of such systems if performance is not satisfactory. Therefore, it is of paramount importance for P2P energy trading systems to incorporate user behavioral modeling that captures users’ individual trading behaviors, preferences, and perceived utility in a realistic and accurate manner. Often, such user behavioral models are not known a priori in real-world settings, and therefore need to be learned online as the P2P system is operating. In this thesis, we design novel algorithms for P2P energy trading. By exploiting a variety of statistical, algorithmic, machine learning, and behavioral economics tools, we propose solutions that are able to jointly optimize the system performance while taking into account and learning realistic model of user behavior. The results in this dissertation has been published in IEEE Transactions on Green Communications and Networking 2021, Proceedings of IEEE Global Communication Conference 2022, Proceedings of IEEE Conference on Pervasive Computing and Communications 2023 and ACM Transactions on Evolutionary Learning and Optimization 2023
    corecore