114,359 research outputs found

    Preservation of Semantic Properties during the Aggregation of Abstract Argumentation Frameworks

    Get PDF
    An abstract argumentation framework can be used to model the argumentative stance of an agent at a high level of abstraction, by indicating for every pair of arguments that is being considered in a debate whether the first attacks the second. When modelling a group of agents engaged in a debate, we may wish to aggregate their individual argumentation frameworks to obtain a single such framework that reflects the consensus of the group. Even when agents disagree on many details, there may well be high-level agreement on important semantic properties, such as the acceptability of a given argument. Using techniques from social choice theory, we analyse under what circumstances such semantic properties agreed upon by the individual agents can be preserved under aggregation.Comment: In Proceedings TARK 2017, arXiv:1707.0825

    Abstract Dialectical Frameworks:Semantics, Discussion Games, and Variations

    Get PDF
    Argumentation is an essential part of our daily life both in our individual and our social activities. The extensive trajectory of research on argumentation from Aristotle to today's computational argumentation in artificial intelligence shows how far research in argumentation has come. Argumentation theory can shed light on the process of decision making, from modeling to evaluating a problem. Models of argumentation reflect how arguments relate to one another, and semantics of models of argumentation reflect how to use argumentation for making a decision under inconsistent, controversial, and incomplete information. In this thesis we consider abstract dialectical frameworks (ADFs for short), one of the powerful formalisms of argumentation. The semantics of ADFs are methods proposed to evaluate the acceptance of the arguments. We begin by focusing on the semantical evaluation of ADFs, presenting two novel semantics, namely the strongly admissible and semi-stable semantics. Next, we introduce the first discussion games for ADFs to provide an explanation of why an argument of interest is to be accepted according to a given semantics. Furthermore, we present subclasses of ADFs and we investigate how the restrictions that we consider influence the semantic evaluation of such ADFs. Next, we combine argumentation with decision theory in the context of ADFs in order to model expected utility problems. With this work, we hope that we have advanced the knowledge on the field of formal argumentation

    Automated Algorithmic Machine-to-Machine Negotiation for Lane Changes Performed by Driverless Vehicles at the Edge of the Internet of Things

    Get PDF
    This dissertation creates and examines algorithmic models for automated machine-to-machine negotiation in localized multi-agent systems at the edge of the Internet of Things. It provides an implementation of two such models for unsupervised resource allocation for the application domain of autonomous vehicle traffic as it pertains to lane changing and speed setting selection. The first part concerns negotiation via abstract argumentation. A general model for the arbitration of conflict based on abstract argumentation is outlined and then applied to a scenario where autonomous vehicles on a multi-lane highway use expert systems in consultation with private objectives to form arguments and use them to compete for lane positions. The conflict resolution component of the resulting argumentation framework is augmented with social voting to achieve a community supported conflict-free outcome. The presented model heralds a step toward independent negotiation through automated argumentation in distributed multi-agent systems. Many other cyber-physical environments embody stages for opposing positions that may benefit from this type of tool for collaboration. The second part deals with game-theoretic negotiation through mechanism design. It outlines a mechanism providing resource allocation for a fee and applies it to autonomous vehicle traffic. Vehicular agents apply for speed and lane assignments with sealed bids containing their private feasible action valuations determined within the context of their governing objective. A truth-inducing mechanism implementing an incentive-compatible strategyproof social choice functions achieves a socially optimal outcome. The model can be adapted to many application fields through the definition of a domain-appropriate operation to be used by the allocation function of the mechanism. Both presented prototypes conduct operations at the edge of the Internet of Things. They can be applied to agent networks in just about any domain where the sharing of resources is required. The social voting argumentation approach is a minimal but powerful tool facilitating the democratic process when a community makes decisions on the sharing or rationing of common-pool assets. The mechanism design model can create social welfare maximizing allocations for multiple or multidimensional resources

    Should mathematics remain invisible?

    Get PDF
    Mathematical literacy, broadly understood as the ability to reason in terms of abstract models and the effective use of logical arguments and mathematical calculation, be- came a condition for democratic citizenship. This paper discusses argumentation and proof as two main ingredients in strategies for achieving a higher degree of mathemat- ical fluency in both social and professional life

    Abstract argumentation and dialogues between agents

    Get PDF
    A multiagent system (MAS) is made up of multiple interacting autonomous agents. It can be viewed as a society in which each agent performs its activity, cooperating to achieve common goals, or competing for them. Thus, every agent has the ability to do social interactions with other agents establishing dialogues via some kind of agent-communication language, under some communication protocol [6]. Argumentation is suitable to model several kind of dialogues in multi-agents systems. Some authors are actually using defeasible argumentation to model negotiation processes between agents [3, 7]. Our current research activities are related to the use of argumentation in agent’s interaction, such as negotiation among several participants, persuasion, acquisition of knowledge and other forms of social dialogue. Usually, argumentation appears as a mechanism to deal with disagreement between agents, for example when some conflict of interest is present. Argumentation can be used, not only to argue about something, but to know more about other agents: it is enough powerfull to play an important role in general social interaction in multiagents systems. The kind of arguments used in dialogues, and their relationship, depends on the type of dialogue involved. According to [8], dialogues can be classified in negotiation, where there is a conflict of interests, persuasion where there is a conflict of opinion or beliefs, indagation where there is a need for an explanation or proof of some proposition, deliberation or coordination where there is a need to coordinate goals and actions, and one special kind of dialogue called eristic based on personal conflicts. Except the last one, all these dialogues may exist in multi-agents systems as part of social activities among agents. Our aim is to define an abstract argumentation framework to capture the behaviour of these different dialogues, and we present here the main ideas behind this task and the new formal definitions. We are not interested in the logic used to construct arguments, nor the comparison method used. Our formulation completely abstracts from the internal structure of the arguments, considering them as moves made in a dialogue. We also consider multiagent systems as a set of multiple interacting autonomous agents.Eje: Inteligencia artificialRed de Universidades con Carreras en Informática (RedUNCI

    Polarization and opinion analysis in an online argumentation system for collaborative decision support

    Get PDF
    Argumentation is an important process in a collaborative decision making environment. Argumentation from a large number of stakeholders often produces a large argumentation tree. It is challenging to comprehend such an argumentation tree without intelligent analysis tools. Also, limited decision support is provided for its analysis by the existing argumentation systems. In an argumentation process, stakeholders tend to polarize on their opinions, and form polarization groups. Each group is usually led by a group leader. Polarization groups often overlap and a stakeholder is a member of multiple polarization groups. Identifying polarization groups and quantifying a stakeholder\u27s degree of membership in multiple polarization groups helps the decision maker understand both the social dynamics and the post-decision effects on each group. Frameworks are developed in this dissertation to identify both polarization groups and quantify a stakeholder\u27s degree of membership in multiple polarization groups. These tasks are performed by quantifying opinions of stakeholders using argumentation reduction fuzzy inference system and further clustering opinions based on K-means and Fuzzy c-means algorithms. Assessing the collective opinion of the group on individual arguments is also important. This helps stakeholders understand individual arguments from the collective perspective of the group. A framework is developed to derive the collective assessment score of individual arguments in a tree using the argumentation reduction inference system. Further, these arguments are clustered using argument strength and collective assessment score to identify clusters of arguments with collective support and collective attack. Identifying outlier opinions in an argumentation tree helps in understanding opinions that are further away from the mean group opinion in the opinion space. Outlier opinions may exist from two perspectives in argumentation: individual viewpoint and collective viewpoint of the group. A framework is developed in this dissertation to address this challenge from both perspectives. Evaluation of the methods is also presented and it shows that the proposed methods are effective in identifying polarization groups and outlier opinions. The information produced by these methods help decision makers and stakeholders in making more informed decisions --Abstract, pages iii-iv

    An Ontological-based Knowledge-Representation Formalism for Case-Based Argumentation

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s10796-014-9524-3[EN] In open multi-agent systems, agents can enter or leave the system, interact, form societies, and have dependency relations with each other. In these systems, when agents have to collaborate or coordinate their activities to achieve their objectives, their different interests and preferences can come into conflict. Argumentation is a powerful technique to harmonise these conflicts. However, in many situations the social context of agents determines the way in which agents can argue to reach agreements. In this paper, we advance research in the computational representation of argumentation frameworks by proposing a new ontologicalbased, knowledge-representation formalism for the design of open MAS in which the participating software agents are able to manage and exchange arguments with each other taking into account the agents’ social context. This formalism is the core of a case-based argumentation framework for agent societies. In addition, we present an example of the performance of the formalism in a real domain that manages the requests received by the technicians of a call centre.This work is supported by the Spanish government grants [CONSOLIDER-INGENIO 2010 CSD2007-00022, TIN2011-27652-C03-01, and TIN2012-36586-C03-01] and by the GVA project [PROMETEO II/2013/019].Heras Barberá, SM.; Botti, V.; Julian Inglada, VJ. (2014). An Ontological-based Knowledge-Representation Formalism for Case-Based Argumentation. Information Systems Frontiers. 1-20. https://doi.org/10.1007/s10796-014-9524-3S120Amgoud, L. (2005). An argumentation-based model for reasoning about coalition structures. In 2nd international workshop on argumentation in multi-agent systems, argmas-05(pp. 1–12). Springer.Amgoud, L., Dimopolous, Y., Moraitis, P. (2007). A unified and general framework for argumentation-based negotiation. In 6th international joint conference on autonomous agents and multiagent systems, AAMAS-07. IFAAMAS.Atkinson, K., & Bench-Capon, T. (2008). Abstract argumentation scheme frameworks. In Proceedings of the 13th international conference on artificial intelligence: methodology, systems and applications, AIMSA-08, lecture notes in artificial intelligence (Vol. 5253, pp. 220–234). Springer.Aulinas, M., Tolchinsky, P., Turon, C., Poch, M., Cortés, U. (2012). Argumentation-based framework for industrial wastewater discharges management. Engineering Applications of Artificial Intelligence, 25(2), 317–325.Bench-Capon, T., & Atkinson, K. (2009). Argumentation in artificial intelligence, chap. abstract argumentation and values (pp. 45–64). Springer.Bench-Capon, T., & Sartor, G. (2003). A model of legal reasoning with cases incorporating theories and values. Artificial Intelligence, 150(1-2), 97–143.Bulling, N., Dix, J., Chesñevar, C.I. (2008). Modelling coalitions: ATL + argumentation. In Proceedings of the 7th international joint conference on autonomous agents and multiagent systems, AAMAS-08 (Vol. 2, pp. 681–688). ACM Press.Chesñevar, C., McGinnis, J., Modgil, S., Rahwan, I., Reed, C., Simari, G., South, M., Vreeswijk, G., Willmott, S. (2006). Towards an argument interchange format. The Knowledge Engineering Review, 21(4), 293–316.Diaz-Agudo, B., & Gonzalez-Calero, P.A. (2007). Ontologies: A handbook of principles, concepts and applications in information systems, integrated series in information systems, chap. an ontological approach to develop knowledge intensive cbr systems (Vol. 14, pp. 173–214). Springer.Dung, P.M. (1995). On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming, and N -person games. Artificial Intelligence, 77, 321–357.Ferber, J., Gutknecht, O., Michel, F. (2004). From agents to organizations: An organizational view of multi-agent systems. In Agent-oriented software engineering VI, LNCS (Vol. 2935, pp. 214–230.) Springer-Verlag.Hadidi, N., Dimopolous, Y., Moraitis, P. (2010). Argumentative alternating offers. In 9th international conference on autonomous agents and multiagent systems, AAMAS-10 (pp. 441–448). IFAAMAS.Heras, S., Atkinson, K., Botti, V., Grasso, F., Julián, V., McBurney, P. (2010). How argumentation can enhance dialogues in social networks. In Proceedings of the 3rd international conference on computational models of argument, COMMA-10, frontiers in artificial intelligence and applications (Vol. 216, pp. 267–274). IOS Press.Heras, S., Botti, V., Julián, V. (2011). On a computational argumentation framework for agent societies. In Argumentation in multi-agent systems (pp. 123–140). Springer.Heras, S., Botti, V., Julián, V. (2012). Argument-based agreements in agent societies. Neurocomputing, 75(1), 156–162.Heras, S., Jordán, J., Botti, V., Julián, V. (2013). Argue to agree: A case-based argumentation approach. International Journal of Approximate Reasoning, 54(1), 82–108.Jordán, J., Heras, S., Julián, V. (2011). A customer support application using argumentation in multi-agent systems. In 14th international conference on information fusion (FUSION-11) (pp. 772– 778).Karunatillake, N.C. (2006). Argumentation-based negotiation in a social context. Ph.D. thesis, School of Electronics and Computer Science, University of Southampton, UK.Karunatillake, N.C., Jennings, N.R., Rahwan, I., McBurney, P. (2009). Dialogue games that agents play within a society. Artificial Intelligence, 173(9-10), 935–981.Kraus, S., Sycara, K., Evenchik, A. (1998). Reaching agreements through argumentation: a logical model and implementation. Artificial Intelligence, 104, 1–69.López de Mántaras, R., McSherry, D., Bridge, D., Leake, D., Smyth, B., Craw, S., Faltings, B., Maher, M.L., Cox, M., Forbus, K., Keane, M., Watson, I. (2006). Retrieval, reuse, revision, and retention in CBR. The Knowledge Engineering Review, 20(3), 215–240.Luck, M., & McBurney, P. (2008). Computing as interaction: Agent and agreement technologies. In IEEE international conference on distributed human-machine systems. IEEE Press.Oliva, E., McBurney, P., Omicini, A. (2008). Co-argumentation artifact for agent societies. In 5th international workshop on argumentation in multi-agent systems, Argmas-08 (pp. 31–46). Springer.Ontañón, S., & Plaza, E. (2007). Learning and joint deliberation through argumentation in multi-agent systems. In 7th international conference on agents and multi-agent systems, AAMAS-07. ACM Press.Ontañón, S., & Plaza, E. (2009). Argumentation-based information exchange in prediction markets. In Argumentation in multi-agent systems, LNAI (vol. 5384, pp. 181–196). Springer.Parsons, S., Sierra, C., Jennings, N.R. (1998). Agents that reason and negotiate by arguing. Journal of Logic and Computation, 8(3), 261–292.Prakken, H. (2010). An abstract framework for argumentation with structured arguments. Argument and Computation, 1, 93–124.Prakken, H., Reed, C., Walton, D. (2005). Dialogues about the burden of proof. In Proceedings of the 10th international conference on artificial intelligence and law, ICAIL-05 (pp. 115–124). ACM Press.Sierra, C., Botti, V., Ossowski, S. (2011). Agreement computing. KI - Künstliche Intelligenz 10.1007/s13218-010-0070-y .Soh, L.K., & Tsatsoulis, C. (2005). A real-time negotiation model and a multi-agent sensor network implementation. Autonomous Agents and Multi-Agent Systems, 11(3), 215–271.Walton, D., Reed, C., Macagno, F. (2008). Argumentation schemes. Cambridge University Press.Wardeh, M., Bench-Capon, T., Coenen, F.P. (2008). PISA - pooling information from several agents: Multiplayer argumentation from experience. In Proceedings of the 28th SGAI international conference on artificial intelligence, AI-2008 (pp. 133–146). Springer.Wardeh, M., Bench-Capon, T., Coenen, F.P. (2009). PADUA: A protocol for argumentation dialogue using association rules. AI and Law, 17(3), 183–215.Wardeh, M., Coenen, F., Bench-Capon, T. (2010). Arguing in groups. In 3rd international conference on computational models of argument, COMMA-10 (pp. 475–486). IOS Press.Willmott, S., Vreeswijk, G., Chesñevar, C., South, M., McGinnis, J., Modgil, S., Rahwan, I., Reed, C., Simari, G. (2006). Towards an argument interchange format for multi-agent systems. In 3rd international workshop on argumentation in multi-agent systems, ArgMAS-06 (pp. 17–34). Springer.Wyner, A., & Schneider, J. (2012). Arguing from a point of view. In Proceedings of the first international conference on agreement technologies
    • …
    corecore