10 research outputs found

    Toward a Dependability Case Language and Workflow for a Radiation Therapy System

    Get PDF
    We present a near-future research agenda for bringing a suite of modern programming-languages verification tools - specifically interactive theorem proving, solver-aided languages, and formally defined domain-specific languages - to the development of a specific safety-critical system, a radiotherapy medical device. We sketch how we believe recent programming-languages research advances can merge with existing best practices for safety-critical systems to increase system assurance and developer productivity. We motivate hypotheses central to our agenda: That we should start with a single specific system and that we need to integrate a variety of complementary verification and synthesis tools into system development

    Automated Approaches for Program Verification and Repair

    Get PDF
    Formal methods techniques, such as verification, analysis, and synthesis,allow programmers to prove properties of their programs, or automatically derive programs from specifications. Making such techniques usable requires care: they must provide useful debugging information, be scalable, and enable automation. This dissertation presents automated analysis and synthesis techniques to ease the debugging of modular verification systems and allow easy access to constraint solvers from functional code. Further, it introduces machine learning based techniques to improve the scalability of off-the-shelf syntax-guided synthesis solvers and techniques to reduce the burden of network administrators writing and analyzing firewalls. We describe the design and implementationof a symbolic execution engine, G2, for non-strict functional languages such as Haskell. We extend G2 to both debug and automate the process of modular verification, and give Haskell programmers easy access to constraints solvers via a library named G2Q. Modular verifiers, such as LiquidHaskell, Dafny, and ESC/Java,allow programmers to write and prove specifications of their code. When a modular verifier fails to verify a program, it is not necessarily because of an actual bug in the program. This is because when verifying a function f, modular verifiers consider only the specification of a called function g, not the actual definition of g. Thus, a modular verifier may fail to prove a true specification of f if the specification of g is too weak. We present a technique, counterfactual symbolic execution, to aid in the debugging of modular verification failures. The approach uses symbolic execution to find concrete counterexamples, in the case of an actual inconsistency between a program and a specification; and abstract counterexamples, in the case that a function specification is too weak. Further, a counterexample-guided inductive synthesis (CEGIS) loop based technique is introduced to fully automate the process of modular verification, by using found counterexamples to automatically infer needed function specifications. The counterfactual symbolic execution and automated specification inference techniques are implemented in G2, and evaluated on existing LiquidHaskell errors and programs. We also leveraged G2 to build a library, G2Q, which allows writing constraint solving problemsdirectly as Haskell code. Users of G2Q can embed specially marked Haskell constraints (Boolean expressions) into their normal Haskell code, while marking some of the variables in the constraint as symbolic. Then, at runtime, G2Q automatically derives values for the symbolic variables that satisfy the constraint, and returns those values to the outside code. Unlike other constraint solving solutions, such as directly calling an SMT solver, G2Q uses symbolic execution to unroll recursive function definitions, and guarantees that the use of G2Q constraints will preserve type correctness. We further consider the problem of synthesizing functions viaa class of tools known as syntax-guided synthesis (SyGuS) solvers. We introduce a machine learning based technique to preprocess SyGuS problems, and reduce the space that the solver must search for a solution in. We demonstrate that the technique speeds up an existing SyGuS solver, CVC4, on a set of SyGuS solver benchmarks. Finally, we describe techniques to ease analysis and repair of firewalls.Firewalls are widely deployed to manage network security. However, firewall systems provide only a primitive interface, in which the specification is given as an ordered list of rules. This makes it hard to manually track and maintain the behavior of a firewall. We introduce a formal semantics for iptables firewall rules via a translation to first-order logic with uninterpreted functions and linear integer arithmetic, which allows encoding of firewalls into a decidable logic. We then describe techniques to automate the analysis and repair of firewalls using SMT solvers, based on user provided specifications of the desired behavior. We evaluate this approach with real world case studies collected from StackOverflow users

    Evaluation of String Constraint Solvers Using Dynamic Symbolic Execution

    Get PDF
    Symbolic execution is a path sensitive program analysis technique used for error detection and test case generation. Symbolic execution tools rely on constraint solvers to determine the feasibility of program paths and generate concrete inputs for feasible paths. Therefore, the effectiveness of such tools depends on their constraint solvers. Most modern constraint solvers for primitive data types, such as integers, are both efficient and accurate. However, the research on constraint solvers for complex data types, such as strings, is ongoing and less converged. For example, there are several types of string constraint solvers provided by researchers. However, a potential user of a string constraint solver likely has no comprehensive means to identify which solver would work best for a particular problem. In order to help the user with selecting a solver, in addition to the commonly used performance criterion, we introduce two criteria: modeling cost and accuracy. Using these selection criteria, we evaluate four string constraint solvers in the context of symbolic execution. Our results show that, depending on the needs of the user, one solver might be more appropriate than another, yet no solver exhibits the best overall results. Hence, we suggest that the preferred approach to solving constraints for complex types is to execute all solvers in parallel and enable communication between solvers

    Computer Aided Verification

    Get PDF
    The open access two-volume set LNCS 11561 and 11562 constitutes the refereed proceedings of the 31st International Conference on Computer Aided Verification, CAV 2019, held in New York City, USA, in July 2019. The 52 full papers presented together with 13 tool papers and 2 case studies, were carefully reviewed and selected from 258 submissions. The papers were organized in the following topical sections: Part I: automata and timed systems; security and hyperproperties; synthesis; model checking; cyber-physical systems and machine learning; probabilistic systems, runtime techniques; dynamical, hybrid, and reactive systems; Part II: logics, decision procedures; and solvers; numerical programs; verification; distributed systems and networks; verification and invariants; and concurrency

    Computer Aided Verification

    Get PDF
    The open access two-volume set LNCS 11561 and 11562 constitutes the refereed proceedings of the 31st International Conference on Computer Aided Verification, CAV 2019, held in New York City, USA, in July 2019. The 52 full papers presented together with 13 tool papers and 2 case studies, were carefully reviewed and selected from 258 submissions. The papers were organized in the following topical sections: Part I: automata and timed systems; security and hyperproperties; synthesis; model checking; cyber-physical systems and machine learning; probabilistic systems, runtime techniques; dynamical, hybrid, and reactive systems; Part II: logics, decision procedures; and solvers; numerical programs; verification; distributed systems and networks; verification and invariants; and concurrency

    Assertion-based integrated testing system

    Get PDF
    Trabajo de Fin de Grado en Ingeniería Informática, Facultad de Informática UCM, Departamento de Sistemas Informáticos y Computación, Curso 2019/2020.La plataforma CAVI-ART para la verificación automática de programas ofrece numerosas herramientas para el análisis de los mismos entre las que encontramos dos generadores de casos de prueba. Ninguno de ellos permite la generación de estos automáticamente, teniendo que interactuar manualmente para obtenerlos. El objetivo de este trabajo es mejorar las herramientas anteriores, automatizando este proceso gracias al uso de la API de Z3, Z3Py, que es la que nos permitirá poder interactuar con los casos obtenidos. Además, otro de los objetivos establecidos será ampliar estas herramientas, añadiendo una adicional que será la encargada de validar los programas a partir de los casos de prueba generados con las anteriores.The CAVI-ART platform for assisted program validation offers a set of tools for analyzing them, including two test case generators. None of them allow the generation of these cases automatically, having to interact manually to get them. The aim of this work is to improve the previous tool, automating this process thanks to te use of the Z3 API, Z3Py, which is what will allow us to interact with the obtained cases. In addition, another stablished objective is to expand these tools, adding an additional one for validating the programs, based on the test cases generated with the previous ones.Depto. de Sistemas Informáticos y ComputaciónFac. de InformáticaTRUEunpu

    Smten with satisfiability-based search

    No full text

    Smten with satisfiability-based search

    No full text
    corecore