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Abstract
Automated Approaches for Program Verification and Repair

William T. Hallahan
2022

Formal methods techniques, such as verification, analysis, and synthesis, allow

programmers to prove properties of their programs, or automatically derive programs

from specifications. Making such techniques usable requires care: they must provide

useful debugging information, be scalable, and enable automation. This dissertation

presents automated analysis and synthesis techniques to ease the debugging of mod-

ular verification systems and allow easy access to constraint solvers from functional

code. Further, it introduces machine learning based techniques to improve the scal-

ability of off-the-shelf syntax-guided synthesis solvers and techniques to reduce the

burden of network administrators writing and analyzing firewalls.

We describe the design and implementation of a symbolic execution engine, G2,

for non-strict functional languages such as Haskell. We extend G2 to both debug and

automate the process of modular verification, and give Haskell programmers easy

access to constraints solvers via a library named G2Q.

Modular verifiers, such as LiquidHaskell, Dafny, and ESC/Java, allow program-

mers to write and prove specifications of their code. When a modular verifier fails to

verify a program, it is not necessarily because of an actual bug in the program. This

is because when verifying a function f , modular verifiers consider only the specifica-

tion of a called function g, not the actual definition of g. Thus, a modular verifier

may fail to prove a true specification of f if the specification of g is too weak. We

present a technique, counterfactual symbolic execution, to aid in the debugging of



modular verification failures. The approach uses symbolic execution to find concrete

counterexamples, in the case of an actual inconsistency between a program and a spec-

ification; and abstract counterexamples, in the case that a function specification is

too weak. Further, a counterexample-guided inductive synthesis (CEGIS) loop based

technique is introduced to fully automate the process of modular verification, by us-

ing found counterexamples to automatically infer needed function specifications. The

counterfactual symbolic execution and automated specification inference techniques

are implemented in G2, and evaluated on existing LiquidHaskell errors and programs.

We also leveraged G2 to build a library, G2Q, which allows writing constraint

solving problems directly as Haskell code. Users of G2Q can embed specially marked

Haskell constraints (Boolean expressions) into their normal Haskell code, while mark-

ing some of the variables in the constraint as symbolic. Then, at runtime, G2Q au-

tomatically derives values for the symbolic variables that satisfy the constraint, and

returns those values to the outside code. Unlike other constraint solving solutions,

such as directly calling an SMT solver, G2Q uses symbolic execution to unroll recur-

sive function definitions, and guarantees that the use of G2Q constraints will preserve

type correctness.

We further consider the problem of synthesizing functions via a class of tools

known as syntax-guided synthesis (SyGuS) solvers. We introduce a machine learning

based technique to preprocess SyGuS problems, and reduce the space that the solver

must search for a solution in. We demonstrate that the technique speeds up an

existing SyGuS solver, CVC4, on a set of SyGuS solver benchmarks.

Finally, we describe techniques to ease analysis and repair of firewalls. Firewalls



are widely deployed to manage network security. However, firewall systems provide

only a primitive interface, in which the specification is given as an ordered list of

rules. This makes it hard to manually track and maintain the behavior of a firewall.

We introduce a formal semantics for iptables firewall rules via a translation to first-

order logic with uninterpreted functions and linear integer arithmetic, which allows

encoding of firewalls into a decidable logic. We then describe techniques to automate

the analysis and repair of firewalls using SMT solvers, based on user provided spec-

ifications of the desired behavior. We evaluate this approach with real world case

studies collected from StackOverflow users.
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Chapter 1

Introduction

Analysis, verification, and synthesis techniques allow programmers to check and prove
properties of their programs, and automatically derive programs from descriptions of
desired behavior. Integration of verification techniques into development workflows
allows an increased level of confidence in the correctness of software. Unfortunately,
there are significant barriers to widespread use of formal methods techniques, includ-
ing unintuitive and hard to use tools, insufficiently automated tools, and tools that
do not scale to real world problems [62].

Of course, there are some success stories. For example, Microsoft’s Static Device
Verifier (the product based on the SLAM research project) [36] applies formal meth-
ods techniques to fully automatically verify the absence of certain classes of bugs, or
find counterexamples exposing bugs, in Windows device drivers. Perhaps even more
ubiquitously, FlashFill [90], a synthesis tool for string transformations, has been inte-
grated into Excel with an easy-to-use interface. Still, by and large, use of verification
and synthesis tools currently requires a great deal of domain expertise.

To reduce this burden, this dissertation describes techniques to formalize language
semantics- in particular, non-strict semantics and firewall scripting languages- in a
way that allows automated logical reasoning via SMT solvers. Further, we show how
this enables a range of applications to be built to analyze, verify, and repair programs.

1.1 Symbolic Execution

Symbolic execution is a well known technique for running programs with symbolic
variables instead of concrete inputs. A variety of symbolic execution engines have
been developed for both imperative [46, 154] and functional languages [189, 190, 143].
Traditionally, symbolic execution has been widely employed to test programs, by
symbolically searching for values that violate test cases or assertions.

We describe the design of a symbolic execution engine named G2. Unlike existing
symbolic execution engines, G2 specifically targets execution of programs in statically
typed non-strict functional languages, such as Haskell. This requires a reformulation
of the reduction rules used in symbolic execution to reduce to a newly defined Symbolic
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Weak Head Normal Form. G2 benefits from the static types of our language, as
it reduces the number of possible instantiations for symbolic variables. Symbolic
functions are supported via defunctionalization [169], using in scope functions of the
correct type as possible instantiations. We leave implementation of more complete
techniques, such as those used in [189, 143], as future work. We build on G2 to extend
the use cases for symbolic execution beyond testing and bug finding.

1.1.1 Constraint Solving

Constraint solvers, such as SMT solvers, have a wide variety of use cases [68, 196,
197, 195, 149, 178, 75, 164]. A common technique for a program to interact with an
SMT solver is to pass formulas to the solver, as strings in a format called SMT-LIB.
Unfortunately, this approach has downsides: it can require redefining datatypes and
functions that exist in the original program, and, if working in a statically typed
language, it loses type soundness. Further, SMT solvers often struggle with formulas
that include quantifiers or recursive functions.

We use G2 to develop a library, G2Q, which allows constraint problems to be
written directly as Haskell code. This allows Haskell data types to be directly used
in the constraints, and ensures correct typing between the constraints inputs and
outputs and the solver. The use of symbolic execution allows the gradual unrolling of
recursive functions, thus allowing G2Q to solve problems that are out of scope when
directly encoded as SMT formulas. The functionality of G2Q is demonstrated via a
number of case studies.

1.1.2 Modular Verification

As another application of symbolic execution, we explore debugging and automating
the process of modular verification. Modular verifiers, such as Dafny [128], ESC/-
Java [81], and LiquidHaskell [197], allow users to write and prove high-level specifi-
cations for their code. They have been widely used both in academia and industry
to verify properties of the Curiosity rover’s agent-environment interface [49], model-
view-controller web applications [127], encryption libraries [28], SAT solvers [29],
mutable data structure libraries [42], red-black trees [156], and widely used Haskell
libraries [196].

Unfortunately, modular verifiers error messages are not very intuitive. In particu-
lar, error messages may not indicate an actual bug in the code- an error message may
instead just indicate that the verifier failed to prove a true specification correct. This
is because modular verifiers rely on abstracting callee functions with just those func-
tion’s specifications. Consider a function f , which calls a function g. When trying to
verify the function f , the verifier considers only the specification- not the definition-
of g. Such spurious errors do not identify actual bugs in the code- rather, they arise
simply because a callee function has a specification that is too weak. There are good
reasons for designing a verifier with this behavior. From a theoretical perspective,

2



inlining all function calls is impossible in the case of unbounded recursion. From
a practical perspective, even without recursive functions or other loops, inlining all
functions may result in poor scalability from the verifier. Nonetheless, the solution
of abstracting all function calls still leaves users- especially those unfamiliar with or
new to modular verification- in a difficult position.
Debugging We introduce a technique called counterfactual symbolic execution to aid
in the debugging of modular verification errors. Counterfactual symbolic execution
finds two types of counterexamples. Concrete counterexamples show actual inconsis-
tencies between the specifications and the code, by finding inputs which satisfy the
preconditions of a function, but violate the postconditions. Abstract counterexam-
ples help explain spurious errors, by identifying (1) functions which require stronger
specifications and (2) incorrect input/output pairs for those functions, which the cor-
rect specification allows, but which a strong enough specification would rule out. We
evaluated this approach on a corpus of 7550 errors gathered from users of the Liq-
uidHaskell refinement type system. We show that for 97.7% of these errors, G2 is
able to quickly find counterexamples that show how the code or specifications must
be fixed to enable verification.
Automation Counterfactual symbolic execution improves the debugging experience
when working with a modular verifier. Rather than having to reason directly about
imprecise error messages, counterexamples allow flawed or weak specifications to be
easily identified. However, this still takes some amount of effort from the user to
manually correct the error and write specifications. Often, necessary specifications
are non-trivial, making this task quite difficult.

We extend counterfactual symbolic execution to automate the process of modular
verification. A counterexample-guided inductive synthesis (CEGIS) loop based infer-
ence algorithm for modular verification specifications is introduced. The algorithm is
parameterized over a verifier, counterexample generator, and constraint guided syn-
thesizer. We show that if each of these three components is sound and complete
over a finite set of possible specifications, our algorithm is sound and complete as
well. Additionally, we introduce size-bounded synthesis functions, which extends our
completeness result to an infinite set of possible specifications. In particular, we de-
scribe a size-bounded synthesis function for linear integer arithmetic constraints. We
evaluate our inference algorithm on a variety of programs.

1.2 Syntax-Guided Synthesis Grammar Reduction

Syntax-guided synthesis is a synthesis paradigm in which functions satisfying user-
provided constraints are synthesized by searching over a grammar. SyGuS is a widely
used technique in a variety of contexts, including synthesis of functions and loop
invariants [51, 35, 173, 183]. Motivated by the number of use case, a common specfi-
ciation language for SyGuS problems has been developed [24, 167], and a number of
off-the-shelf Syntax-Guided Synthesis solvers have been developed [27, 168, 106, 152].
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We describe an application of machine learning to improve the performance of
off-the-shelf SyGuS solvers. In particular, we focus on improving the performance of
SyGuS tools solving programming-by-example (PBE) problems. In a PBE problem,
all the constraints consist of input/output examples. We show that, by preprocessing
SyGuS PBE problems with a neural network, we can use a data driven approach to
reduce the size of the search space, thus allowing automated reasoning-based solvers
to more quickly find a solution analytically. Our system, the Grammar Reduction
Tool (GRT), is able to run atop existing SyGuS PBE synthesis tools, decreasing the
runtime of the winner of the 2019 SyGuS Competition for the PBE Strings track by
47.65% to outperform all of the competing tools.

1.3 Firewall Analysis and Repair

Firewalls play an important role in networks, as they manage incoming and out-
going network traffic. Ensuring the correctness of a firewall is essential for secu-
rity. Because enterprise-scale firewalls contain hundreds or thousands of rules, en-
suring the correctness of firewalls – that the rules in the firewalls meet the specifi-
cations of their administrators – is an important but challenging problem. Thus,
a large number of tools have been developed to analyze, verify, and debug fire-
walls [136, 192, 131, 142, 200, 207, 142, 136].

We describe FireMason, a tool to analyze and automatically repair firewalls. Un-
like existing work, FireMason implements a repair by example based approach, which
automatically modifies firewalls based on user provided examples. Once an admin-
istrator observes undesired behavior in a firewall, they may provide input/output
examples that comply with the intended behaviors. Based on the examples, FireMa-
son automatically synthesizes new firewall rules for the existing firewall. This new
firewall correctly handles packets specified by the examples, while maintaining the
rest of the behaviors of the original firewall. Through a conversion of the firewalls to
SMT formulas, we offer formal guarantees that the change is correct. Our evaluation
results from real-world case studies show that FireMason can efficiently find repairs.

1.4 Contributions

This dissertation establishes techniques to analyze and repair programs via formalisms
of program semantics that enable the use of SMT solvers.
Symbolic Execution We introduce G2, the first symbolic execution engine for stat-
ically typed non-strict functional programming languages, such as Haskell. Existing
symbolic execution engines for functional languages [189, 190, 143] target strict lan-
guages, and thus, if applied to a non-strict language, may find spurious assertion
violations or miss actual assertion violations. G2’s symbolic execution reduces ex-
pressions to Symbolic Weak Head Normal Form, via classical lazy graph reduction
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semantics [135, 161, 162] augmented with support for symbolic variables. We formal-
ize the reduction strategy via a collection of reduction rules.

We use G2 to construct a library, G2Q, to allow constraints written as (mostly) or-
dinary Haskell code to be solved. Alternatively, one could encode constraint problems
in SMT-LIB and call an SMT solver directly, but G2Q has a number of advantages
over this approach: G2Q allows the reuse of existing Haskell datatypes and func-
tions, ensures type soundness when working with constraints, and enables effective
use of recursive functions (which SMT solvers tend to struggle with.) We outline
the design of the front end, which allows constraints to be specified via a Haskell
language feature called quasiquoters, and the backend, which solves the constraints
using symbolic execution, and translates values between regular Haskell values and
G2’s intermediate representation. We explore use cases for G2Q and evaluate G2Q’s
effectiveness using a number of case studies.
Debugging and Automation of Modular Verifiers We introduce counterfactual
symbolic execution to aid in the debugging of modular verifiers. An error from a
modular verifier may be a true error, indicating that a specification is actually in-
correct, or a spurious error, in which case some other specification in the program
must be strengthened for verification to succeed. Counterfactual symbolic execution
returns two kinds of counterexamples: concrete counterexamples, to explain true er-
rors, and abstract counterexamples to explain spurious errors. To the best of our
knowledge, abstract counterexamples are the first technique to be able to identify
specific functions that require stronger specifications to avoid spurious errors. We de-
fine a translation from refinement types into G2’s language, allowing counterfactual
symbolic execution to be used to debug LiquidHaskell specification. We show that G2
is able to find a counterexample for 97.7% of an existing collection of LiquidHaskell
errors. We further evaluate our explanations of spurious failures and find that in at
least 96.1% of cases, our explanation of how the user can fix the spurious error is
correct.

We further extend counterfactual symbolic execution to automatically fix spurious
errors by inferring needed specifications from counterexamples. We prove soundness
and completeness results for our algorithm, in particular showing that if our syn-
thesizer satisfies certain conditions and if there is some assignment of synthesizable
specifications to functions that would allow verification to succeed, we will find that
assignment. We show that these conditions are practical by constructing such a syn-
thesizer for specifications drawn from the infinite set of linear integer arithmetic spec-
ifications. We evaluate the approach on benchmarks based on existing LiquidHaskell
code, as well as translation of existing C loop invariant benchmarks.
SyGuS Grammar Filtering We introduce a new technique to improve the per-
formance of Syntax-Guided Synthesis (SyGuS) solvers via a machine learning based
preprocessor. The technique works by filtering the grammar in the SyGuS problem to
eliminate non-critical functions (functions that do not appear likely to contribute to
a solution.) We identify two key factors to predict per function: criticality (whether a
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given function is critical) and potential time savings (the amount of time that will be
saved by eliminating a given function.) In our evaluation, we empirically show that
our technique effectively speeds up a SyGuS solver on an existing benchmark set, and
that this success relies on both the criticality and potential time savings predictions.
Firewalls Finally, we define a formalism for firewalls (in particular, the iptables spec-
ification language) via a translation to first order logic with linear integer arithmetic
and uninterpreted functions. Existing work formalized certain aspects of firewall
specification languages [136, 192, 131, 142, 200, 207, 142, 136]. However, to the best
of our knowledge, this is the first formalization of rate-limiting (time based) firewall
rules. We then use this formalization to build the first tool to automate the repair of
firewalls, by using SMT solving for template based synthesis. We evaluate on several
real world examples gathered from StackOverflow.

1.5 Remarks

Allowing widespread use of formal methods by programmers who are not formal
methods experts requires that formal methods tools be made accessible and scalable.
This works outlines techniques to analyze and repair programs, aided by formalisms
of the programming language semantics that enables the use of SMT solving.

As part of this goal, we develop backend techniques. For example, we develop
an encoding of firewalls into first-order logic, and G2, a symbolic execution engine
for Haskell. We then extend these techniques to aid in automation and debugging
of verification and repair tasks. Using G2, we develop G2Q, to aid in constraint
solving, and systems for modular verification debugging and automation. Using our
firewall formalism, we implement FireMason a tool to automatically analyze and
repair firewalls. Widespread use of formal methods techniques also requires that they
scale to large problems- GRT explores the route of using machine learning to improve
the performance of synthesizers, allowing applications to larger and more complex
problems.
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Chapter 2

Non-strict Symbolic Execution

This chapter describes work completed in collaboration with Anton Xue, Maxwell
Bland, Ranjit Jhala, and Ruzica Piskac. This work includes material originally pub-
lished in [94].

2.1 Introduction

This chapter outlines the design of a lazy symbolic execution engine for languages with
non-strict semantics. Existing work on symbolic execution [118, 46, 143] uses laziness
as an implementation technique to improve the efficiency of symbolic execution for
languages with strict semantics. On the other hand, our work describes symbolic
execution of Haskell, a language with non-strict semantics. Consequently, as we
show in Section 2.2.2, existing symbolic execution engines can fail to find simple
counterexamples that arise with lazy evaluation. Similarly, they can return spurious
counterexamples that are avoided by lazy evaluation.

We solve this problem by augmenting classical lazy graph reduction semantics [135,
161, 162] with symbolic variables to reduce terms into Symbolic Weak Head Normal
Form, that only computes values as needed, thereby obtaining the first symbolic
execution framework for a non-strict language. Our practical implementation, G2,
targets symbolic execution of Haskell programs.

In this chapter we outline the design of the core G2 symbolic execution engine.
In Chapters 3, 4, and 5, we will explore applications of symbolic execution and G2 to
a variety of problems. In Chapter 3, we will show how symbolic execution can ease
accessing constraint solvers from a traditional programming language. In Chapters 4
and 5, we will describe approaches to use symbolic execution for the debugging and
automating of modular verification.
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2.2 Overview

We start with an overview of our goals and the challenges posed by lazy evaluation
and show how we solve these challenges via lazy symbolic execution.

2.2.1 Goal: Symbolic Execution

Our first goal is to implement a symbolic execution engine for non-strict languages
like Haskell. Such an engine would take as input a program like:

intersect :: (Eq a) => [a] -> [a] -> [a]
intersect xs ys = [x|x <- xs, any (x ==) ys]

any :: (a -> Bool) -> [a] -> Bool
any _ [] = False
any p (x:xs) = p x || any p xs

together with a property, specified as an assertion about the behavior of the program
over some unknown inputs, e.g. that the intersect function above was commutative:

let xs = ?; ys = ? in assert
(xs ‘intersect ‘ ys == ys ‘intersect ‘ xs)

Our engine then symbolically evaluates all executions of the above program (up to
some given number of reduction steps) to find a counterexample, i.e. values for xs
and ys under which the asserted predicate is False:

counterexample: assert fails when
xs = [0, 1], ys = [1, 1, 0]

2.2.2 Challenge: Lazy Evaluation

While there are several symbolic execution engines that can produce the above re-
sult [48], including those for functional languages like F# [188], Scala [122], and
Racket [189, 191], all of these tools assume strict or call-by-value semantics. This
is problematic for a non-strict language (like Haskell.) Strict evaluation can both
miss assertion failures, and report spurious failures that cannot occur under lazy
evaluation.
Strictness Reports Spurious Failures Consider:

let f x = 10; g _ = assert False in f (g 0)

Under strict evaluation, g 0 would be computed first, violating the assertion. How-
ever, under non-strict semantics, f is evaluated first, and immediately returns 10
without evaluating its argument. Thus, as g 0 is never reduced, the assertion is never
evaluated and, hence, does not fail.
Strictness Misses Real Failures Even worse, strict symbolic execution can miss
errors in code that relies explicitly on lazy evaluation. For example, consider the code
in Figure 2.1. The code uses two functions, !, which returns the j-th element of the
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let xs ! j = case xs of
h:t -> case j == 0 of

True -> h
False -> t ! j-1

repl n = n : repl (n + 1)
i = ?; k = ?

in assert (repl i ! k == i)

Figure 2.1: Program with assertion over an infinite list that strict analyzers would
struggle with.

list xs, and repl, which returns an infinite list starting at n. The code asserts that the
k-th element of repl i should be i. Strict symbolic execution will keep unfolding the
infinite list corresponding to the term repl i, and thus, will miss that the assertion
can be violated by lazily evaluating the asserted predicate on a finite prefix.

2.2.3 Solution: Lazy Symbolic Execution

In this paper we solve the problems caused by strictness by developing a novel lazy
symbolic execution algorithm. At a high-level, our algorithm mimics the lazy graph
reduction semantics of non-strict languages like Haskell, where terms are only reduced
by need, up to Weak Head Normal Form (WHNF), i.e. enough to resolve pattern-
match branches. Our key insight is that we can generalize the classical semantics
to account for symbolic values that denote unknown inputs, by developing a notion
of Symbolic WHNF (SWHNF), where terms are reduced up to symbolic variables
whose values are constrained by path constraints that capture the branch information
leading up to that point in the execution.
Symbolic States Symbolic execution evaluates a State, which is a triple (E,H, P )
comprised of an expression E being evaluated, a heap H, mapping variables to other
expressions, and path constraints P , which are logical formulas constraining the values
of symbolic variables in E and H.
Symbolic Execution Tree Figure 2.2 shows the tree of states resulting from sym-
bolic executing the code in Figure 2.1. Each node is a symbolic state, and has children
corresponding to the states that the parent node can transition to.

• Initial State: The initial symbolic state S0 is comprised of E0, the source pro-
gram expression, H0, the initial empty heap, and P0, the trivial path constraint
(True).

• Variable Binding: S0 ↪→ S1 accounts for the let-bindings, which are not evalu-
ated, but are, instead, bound on the heap as shown in S1. The symbolic variables
k and i correspond to the (unknown) input values.
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• Variable Lookup and Application: S1 ↪→ S2 looks up and applies the definition
of the list index operator ! to repl i and k. Due to laziness, we create fresh
bindings on the heap, rather than evaluate the arguments.

• Lazy Evalution to Symbolic WHNF: S2 ↪→ S3 looks up xs2 – namely repl i –
and lazily evaluates it to SWHNF, i.e. precisely enough to determine which of
the patterns to branch on. Under strict semantics, the list would have to be
completely evaluated before picking a case alternative, but since repl generates
an infinite list, this evaluation would never terminate.

• Pattern Matching: S3 ↪→ S4 matches the non-empty list against the cons-
pattern by introducing fresh binders h4 and t4, and binding them to the the
respective terms on the heap H4.

• Symbolic Branching: At S4, the scrutinized expression is j2 = 0 which, after
looking up j2 in the heap, is k = 0. This contains a symbolic value k and hence,
is in SWHNF, so it could evaluate to True or False. Therefore, there are two
possible transitions, to S5 and S7. We strengthen the path constraints P5 and
P7 with k = 0 and ¬k = 0 respectively, to record the condition under which the
transition occured. S5 ↪→ S6 looks up h4 to reduce the asserted predicate to a
tautology i = i, meaning the assertion holds.

• Recursive Unfolding: The symbolic execution continues to explore the other
branch, S4 ↪→ S7. Again, the binders are lazily looked up on the heap. Via a
sequence of transitions we arrive at S10, where the head of the list is bound to
the value h10 = i+ 1.

• Assertion Failure: Again, at S11 we have a symbolic branch on the term k−1 =

0. This time, however, the True branch transitions to S12 where the asserted
predicate has been reduced to h10 = i. S11 ↪→ S12 looks up h10 in the heap
to find that the asserted predicate, i + 1 = i, is not True. Thus, our symbolic
execution reports a counterexample to the assertion in Figure 2.1.

We can obtain a satisfying assignment (i.e. a model) for the path constraints at
the point of violation to obtain concrete values for the symbolic inputs that lead to
the failure. This allows us to determine concrete values that violate the assertion.
For example, here, the SMT solver tells us that the assertion is violated when k = 1

and not, e.g. when k = 0.
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S0 E0 = let . . . in assert(repl i ! k = i)
H0 = ∅ P0 = >

S1 E1 = assert(repl i ! k = i)
H1 = {! 7→ . . . , repl 7→ . . .} ∪H0 P1 = >

S2 E2 = assert((case xs2 of {h:t→ . . .}) = i)
H2 = {xs2 7→ repl i, j2 7→ k} ∪H1 P2 = >

S3 E3 = assert((case (i : repl (i+ 1)) of {h:t→ . . .}) = i)
H3 = H2 P3 = >

S4 E4 = assert((case j2 = 0 of {True→ h4; False→ t4 ! (j2 − 1)}) = i)
H4 = {h4 7→ i, t4 7→ repl (i+ 1)} ∪H3 P4 = >

S5 E5 = assert(h4 = i)
H5 = H4 P5 = k = 0

S6 E6 = assert(i = i)
H6 = H5 P6 = k = 0

S7 E7 = assert((t4 ! (j2 − 1)) = i)
H7 = H4 P7 = k 6= 0

S8 E8 = assert((case xs8 of {h:t→ . . .}) = i)
H8 = {xs8 7→ t4, j8 7→ (j2 − 1)} ∪H7 P8 = k 6= 0

S9 E9 = assert((case ((i+ 1) : repl . . . ) of {. . .}) = i)
H9 = H8 P9 = k 6= 0

S10 E10 = assert((case (j8 = 0) of {True→ h10; False→ t10 : (j8 − 1)}) = i)
H10 = {h10 7→ (i+ 1), t10 7→ repl((i+ 1) + 1)} ∪H9 P10 = k 6= 0

S11 E11 = assert(h10 = i) H11 = H10 P11 = k 6= 0 ∧ k − 1 = 0

S12 E12 = assert(i+ 1 = i) H12 = H11 P12 = k 6= 0 ∧ k − 1 = 0

true

Assertion passed! false

true false

Assertion violated!

Figure 2.2: Symbolic Execution Tree for Example from Figure 2.1.
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2.3 Lazy Symbolic Execution

Here, we describe a core language λG (Section 2.3.1), which draws inspiration from
GHC’s Core language [160]. We formalize lazy symbolic execution as a novel re-
duction semantics (Section 2.3.3). We then show how to extend this language with
counterfactual branching (Section 4.3), and how to use the resulting framework to
localize refinement type errors (Section 4.4).

2.3.1 Syntax

Figure 2.3 summarizes the syntax of our core language λG, a typed lambda calculus
extended with special constructs for symbolic execution.

• Terms include literals, variables, data constructors, function application, lambda
abstraction, let bindings, and case expressions.

• Case expressions case e of {a} operate on algebraic data types. We refer to
e as the scrutinee, and to a as alternatives, each of which maps a pattern D x

– comprising a constructor D and a sequence of (bound) pattern variables x
– to the expression that should be evaluated when the scrutinee matches the
pattern. As is standard, Boolean branches correspond to a case-of over the
patterns True and False.

• Symbolic variables denote some unknown value. We assume that all symbolic
binders are to first order values: higher-order values are orthogonal and can be
handled via the approach of [189].

• Symbolic generator expressions ? : τ are used to introduce new symbolic
variables of type τ .

• Assume expressions assumee1ine2 condition the evaluation of e2 upon whether
e1 evaluates to True and cause evaluation to halt otherwise.

• Assert expressions assert e1 in e2 check that e1 evaluates to True and cause
evaluation to CRASH otherwise.

• Counterfactual branch expressions e1 � e2 nondeterministically evaluates to
either e1 or e2.

Types Every expression has a type. We write e : τ to denote that e has type τ . Type
checking λG is standard for polymorphic functional languages, e.g. the rules used in
System F↑C [162], and is omitted for brevity. assume e1 in e2 and assert e1 in e2 require
that e1 have type Bool. In a counterfactual branch, both expressions must have the
same type.
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e ::= Expressions
| x variable
| s symbolic variable
| l literal
| λx . e abstraction
| D data constructor
| e e application
| e⊕ e primitive operation
| let x = e in e let
| case e of {a} case
| ? : τ symbolic generator
| e� e counterfactual branch
| assume e in e assumption
| assert e in e assertion
| CRASH assertion failure

a ::= D x→ e Alternatives

Figure 2.3: λG grammar

S ::= (E,H, P ) State
E ::= e Expression
H ::= {x 7→ e} Heap
P ::= ∧ipi Path Constraint
p ::= Logical Predicate

| x = D x constructor binding
| b boolean expression in SWHNF

Figure 2.4: Symbolic States

2.3.2 Symbolic States

Next, we formalize the notion of lazy symbolic execution by presenting a new symbolic,
non-strict operational semantics for λG formalized via rules that show how a program
transitions between symbolic states. Figure 2.4 summarizes the syntax of symbolic
states, S, which are tuples of the form (E,H, P ). The expression E corresponds to the
term that is being evaluated. The heap H is a map from (bound) variables x to terms
e. As is standard, the heap is used to store unevaluated thunks (i.e. unevaluated
expressions) until the point at which they are needed. The path constraint P is a
conjunction of logical formulas that describes the values that (symbolic) variables
must have in order for computation to have proceeded up to the given state. We
will use P to capture the conditions under which evaluation proceeds along different
case-branches.
Well-formedness Only symbolic variables may occur free in a state, all other vari-
ables are bound, either on the heap, or by a lambda, let, or case expressions. We

13



denote the binding of a variable x to an expression e in the heap H as H{x = e}. We
write lookup(H, x) for the expression to which x is bound in H. If there is no such
binding, lookup(H, x) is not defined.
Symbolic Variables and Primitive Applications Sym(e) checks if an expression
is a symbolic variable, or is a primitive application that cannot be concretely reduced:

Sym(e) =



True e = s

True e = e1 ⊕ e2 ∧ (Sym(e1) ∧ Sym(e2))
True e = e1 ⊕ l ∧ Sym(e1)
True e = l ⊕ e2 ∧ Sym(e2)
False otherwise

Symbolic Weak Head Normal Form The essence of non-strict semantics, e.g.
in Haskell, is to reduce expressions to Weak Head Normal Form (WHNF) [162],
i.e. a literal, lambda abstraction, or data constructor application. Consequently,
the heart of our lazy symbolic execution is a notion of Symbolic Weak Head Normal
Form (SWHNF), that generalizes WHNF to account for (unknown) symbolic values.
Formally, an expression e is in SWHNF if the predicate SWHNF(e) holds:

SWHNF(e) =



True e ≡ l
True e ≡ s
True e ≡ D e

True e ≡ λx . e
True e ≡ e1 ⊕ e2 ∧ Sym(e)
False otherwise

2.3.3 Symbolic Execution Transitions

We formalize lazy symbolic execution via the transition relation S ↪→ S ′ that says that
the state S takes a single step to the state S ′. The transition relation is formalized
via the rules in Figures 2.5 and 2.6. For some states, more than one rule applies,
or there is more than one way to apply a single rule. From the perspective of a
single execution, this requires a nondeterministic decision to apply one of the rules.
However, during symbolic execution, we split the state, by applying each potential
rule, allowing us to explore all possible program runs up to some bounded number of
transitions.

Lazy Transitions

We now describe the reduction rules, shown in Figure 2.5, that formalize lazy execu-
tion.
Bindings and variables are implemented via lazy evaluation facilitated by the heap.
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e = lookup(H, x)
SWHNF(e)

(x,H, P ) ↪→ (e,H, P )
Var

e = lookup(H, x) ¬SWHNF(e)
(e,H, P ) ↪→ (e′, H ′, P ′)

(x,H, P ) ↪→ (e′, H ′{x = e′}, P ′)
Var-Red

x′ fresh
e′1 = e1[x′/x] e′2 = e2[x′/x]
(let x = e1 in e2, H, P ) ↪→

(e′2, H{x′ = e′1}, P )

Let

¬SWHNF(f )
(f,H, P ) ↪→ (f ′, H ′, P ′)

(f e,H, P ) ↪→ (f ′ e,H ′, P ′)
App

x′ fresh e′1 = e1[x′/x] H ′ = H{x′ = e2}
((λx . e1) e2, H, P ) ↪→ (e′1, H ′, P )

App-Lam

(e1, H, P ) ↪→ (e′1, H ′, P ′)

(e1 ⊕ e2, H, P ) ↪→
(e′1 ⊕ e2, H ′, P ′)

Pr-L

SWHNF(e1)
(e2, H, P ) ↪→ (e′2, H ′, P ′)

(e1 ⊕ e2, H, P ) ↪→
(e1 ⊕ e′2, H ′, P ′)

Pr-R

l1 ⊕ l2 = l

(l1 ⊕ l2, H, P ) ↪→
(l, H, P )

Pr
¬SWHNF(e) (e,H, P ) ↪→ (e′, H ′, P ′)

(case e of {a}, H, P ) ↪→
(case e′ of {a}, H ′, P ′)

Case-Ev

x′ = x′1 . . . fresh
(caseD e1 . . . of {D x→ e, . . .}, H, P ) ↪→ (e[x′/x], H{x′1 = e1 . . .}, P )

Case

Sym(e) x′ = x′1 . . . fresh
(case e of {D x→ ea, . . .}, H, P ) ↪→ (ea[x′/x], H, P ∧ e = D x′)

Case-Sym

Figure 2.5: Lazy Transition Rules

Var and Var-Red lookup a concrete variable, x, in the heap, to find the expression it
is mapped to, e. If e is already in SWHNF, it is simply returned by Var. Otherwise,
Var-Red reduces e to an expression, e′, in SWHNF, before both returning e′, and
remapping x to e′ in the heap. Typically, Var-Red is simply an optimization in case
x is reevaluated: since Haskell is pure, evaluating e repeatedly would be semantically
correct, but inefficient [135]. However, in Section 2.3.3, we will see that during sym-
bolic execution with symbolic generators or counterfactual branching, this rule takes
on a new importance.

Let and App-Lam both bind an expression in the heap, without evaluating the
expression. App reduces the function in a function application, without reducing the
arguments.
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(e1 � e2, H, P ) ↪→ (e1, H, P )
Ch-L

(e1 � e2, H, P ) ↪→ (e2, H, P )
Ch-R

s fresh
( ? : τ ,H, P ) ↪→ (s,H, P )

Sym-Gen

(ep, H, P ) ↪→ (e′p, H ′, P ′)
(assume ep in eb, H, P ) ↪→ (assume e′p in eb, H

′, P ′)
Assume-Ev

SWHNF(ep)

(assume ep in eb, H, P ) ↪→ (eb, H, ep ∧ P )
Assume

(ep, H, P ) ↪→ (e′p, H ′, P ′)
(assert ep in eb, H, P ) ↪→ (assert e′p in eb, H

′, P ′)
Assert-Ev

SWHNF(ep)

(assert ep in eb, H, P ) ↪→ (eb, H, ep ∧ P )
Assert

SWHNF(ep) isSMTSat(¬ep ∧ P )

(assert ep in eb, H, P ) ↪→ (CRASH, H,¬ep ∧ P )
Assert-Crash

Figure 2.6: Symbolic Transition Rules

Primitive operations arguments are evaluated to SWHNF by Pr-L and Pr-R. If
both of the arguments of a primitive are concrete literals, Pr evaluates the primitive
concretely.
Case expressions require the scrutinee be evaluated to SWHNF, so that the correct
alternative can be picked. This evaluation is performed by Case-Ev. If the scrutinee
is concrete, Case continues evaluation on the correct alternative expression. If the
scrutinee is a symbolic variable, Case-Sym nondeterministically chooses an alternative
expression.

Symbolic Transitions

We now turn our attention to the reduction rules in Figure 2.6, which shows constructs
particular to symbolic execution.
Counterfactual branches proceed nondeterministically by either Ch-L or Ch-R,
allowing reduction on either e1 or e2.
Symbolic generators are evaluated using Sym-Gen, which introduces a fresh sym-
bolic value s.
Assume expressions are evaluated by first reducing the predicate ep to SWHNF
using Assume-Ev. Then, the rule Assume adds the predicate to the path constraint,
thereby recording that the predicate must hold for computation to proceed.
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let f = λx . x � ? in f 2 * f 2

(a) A program which evaluates f 2 twice.

let f = λx . x � ?; y = f 2 in y * y

(b) A program which evaluates f 2 once.

Figure 2.7: Two impure λG programs.

Assert expressions are handled similarly in that the predicate is first reduced to
SWHNF. Next, we check that the predicate actually evaluates to True– otherwise
execution CRASH-es due to an assertion violation. To this end, Assert-Crash queries
the SMT solver for satisfying assignments of our symbolic variables, that falsify the
predicate, i.e. which cause the predicate to evaluate to False. If the SMT solver
finds such an assignment, we can show the user the inputs that cause the assertion
violation. If no such assignment can be found, Assert proceeds to evaluate the inner
expression eb under a strengthened path constraint.

Impurity of Symbolic Transition Rules

Unlike GHC’s Core Haskell, λG is impure, due to Symbolic Generators and Coun-
terfactual Branching. For instance, consider the λG program in Figure 2.7a. This
program is reducible to four different values in SWHNF: 4, 2 * s, s * 2, or s * s’
(where s and s’ are symbolic variables.) The evaluation of f 2 may vary, even in a
single reduction.

When symbolically executing the program, we explore each of these 4 branches
separately. However, it is often desirable to require two values to match within an
individual state. For example, we might wish to ensure that both calls to f 2 either
result in 2, or result in the same symbolic value.

We can achieve this with the program shown in Figure 2.7b. In a strict, call by
value language, it would be clear why this program achieved the desired result: y
would be computed only once, during the let binding, and before the evaluation of
the multiplication. In a lazy setting, f 2 is stored as a thunk, and only computed
when forced by the multiplication. A natural question then arises: why does this
program work in our lazy setting?

This is a result of us taking advantage of the Var-Red rule. During normal
execution, this rule is just an optimization, but during symbolic execution, it allows
us to control nonpurity. In the modified program, in Figure 2.7b, it means that, even
though the reduction is performed only when needed, the reduction of y (and thus
the reduction of f 2) is still performed only once. Thus, there are only 2 possible
values in SWHNF: 4, and s * s.
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Completeness of Symbolic Execution

We write ↪→c for the concrete transition relation obtained by replacing the rule Sym-
Gen with Conc-Gen, shown below, which replaces a symbolic generator with some
total expression of the suitable type:

∃e′ : τ
( ? : τ ,H, P ) ↪→c (e′, H, P )

Conc-Gen

The concrete transitions correspond exactly to the usual standard non-strict opera-
tional semantics; there are no symbolic values anywhere, and the path constraint is
just True.
Completeness Let ↪→∗ and ↪→∗c respectively denote the reflexive transitive closure
of ↪→ and ↪→c. We can prove by induction on the length of the transition sequences
that if the concrete execution can CRASH then so can the symbolic execution:

Theorem 1. (e, ∅, True) ↪→∗c (CRASH, ·, ·) iff (e, ∅, True) ↪→∗ (CRASH, ·, ·).

2.4 Implementation

We have implemented lazy symbolic execution for the Haskell language in a tool
named G2. It is open source, and available at https://github.com/BillHallahan/
G2. Additionally, G2 is available on Hackage at http://hackage.haskell.org/
package/g2. We use the GHC API to parse Haskell programs, and Z3 [64] and
CVC4 [39] as SMT solving backends. G2 supports a large Haskell98-like subset of
the code compiled by GHC, which also includes features not detailed in Section 2.3.1
such as polymorphism. G2 uses a custom version of Haskell’s Base library and Pre-
lude [158]. For a range of modules, functions, and datatypes, G2 can use this custom
standard library to symbolically execute programs written with the standard Base
and Prelude.

2.5 Related Work

Haskell Libraries, Program Analysis, and Testing Catch [138] and Reach [140]
are static analyses for Haskell that look for specific kinds of errors as opposed to
our general symbolic execution. QuickCheck [58] and SmallCheck [171] and Tar-
get [178] test properties by running Haskell code on large numbers of random or
SMT-generated, concrete inputs.
Symbolic Execution for Functional Languages CutEr [85] is a symbolic exe-
cution engine for Erlang programs. SCV [189, 143] is a static contract verifier for
Racket based on symbolic execution. Racket and Erlang are strict languages, and
thus neither of the above tools considers lazy evaluation, which requires a different
approach as demonstrated in Section 4.2. Further, to our knowledge, neither of the
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above scales to check inductive properties (e.g. size, height) of recursive datatypes
(e.g. lists, trees).
Solver-aided Programming Solver-aided programming is a paradigm that makes it
easier to write code that uses a constraint solver. As opposed to G2, which focuses on
finding assertion violations, solver-aided programming allows directly manipulating
symbolic values in code.

ROSETTE [190, 191] is a general purpose framework that enables solver-aided pro-
gramming in Racket. This makes it easy to use Racket to formulate search problems
over a symbolic domain. Programs can be written with traditional Racket code, but
ROSETTE introduces symbolic integer and Boolean values. Unlike G2, ROSETTE
does not attempt to find assertion violations in code. Rather, it gives programmers
a higher level interface to constraint solvers, simplifying the writing of tools that
manipulate symbolic values.

SmtEn [194] is a plugin for GHC that allows for high level constraint solving. A
user can call SmtEn’s API to manipulate symbolic values. Similarly to ROSETTE,
SmtEn gives a higher level interface to the capabilities of constraint solvers. It is
therefore better suited than G2 for programmers who want to make use of constraint
solving in their programs. However, SmtEn does not symbolically execute general
purpose Haskell code, which makes G2 more usable as an off-the-shelf debugging aid.

G2Q, an application of G2 which will be discussed in Chapter 3, implements
a solver-aided programming system using G2. A discussion of G2Q compared to
ROSETTE and SmtEn is presented in Section 3.6.
Symbolic Execution for Imperative Languages There are many symbolic ex-
ecution engines for imperative languages, including Dart [86] and Cute [179] for C,
Symbolic Pathfinder [155] for Java, Pex [188] for .NET, Sage [87] for x86 Windows ap-
plications, and EXE [47] and its sequel Klee [46] for LLVM. The execution semantics
of imperative programs are quite different from ours. However, certain techniques,
such as path explosion mitigation strategies [43, 107, 101, 84, 193, 50] and constraint
solving strategies [77, 153, 109, 157, 54], are likely to be applicable to symbolic exe-
cution of functional languages.
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Chapter 3

G2Q: Haskell Constraint Solving

This chapter describes work completed in collaboration with Anton Xue and Ruzica
Piskac. This work includes material originally published in [95].

3.1 Introduction

The advancements in constraint solvers, such as integer linear programming and SMT
solvers, have enabled a range of new programming language tools. Such solvers have
brought tackling previously intractable NP-hard problems into the realm of practi-
cality. In particular, SMT solvers have been applied to a wide variety of challenges,
including tools that strengthen the Haskell type system [68, 196, 197, 195, 149], test
Haskell functions [178], verify DSL programs [75], and synthesize code [164].

Unfortunately, using Haskell to interact with a SMT solver requires a significant
amount of engineering effort. When applying SMT solvers on some formula, it is
frequently the case that variables, predicates and functions appearing in that formula
require two representations: one in a traditional programming language, and one in
the language of SMT solvers via the SMT-LIB format [40]. Additionally, one also
needs to develop a parser which translates from each representation to the other.
Furthermore, one of the most ubiquitous means of communication is via textual
representation, which offers no type safety. These issues are compounded by the
fact that, often, a direct translation of a problem is not enough. SMT solvers are
sensitive to the encoding scheme [15], and it often requires several iterations to arrive
at the best translation of a problem to a formula or formulas. In the process of this
iteration it is – naturally – easy to introduce bugs and mistranslations [146, 17].

To make this more concrete, consider the following scenario: our goal is to write
a function, sumToN, which takes as input two variables: n, an Int, and xs, a list of
Ints. The function sumToN needs to return a non-empty list of Ints ys such that the
sum of all elements of ys is n, and every element in ys also appears in xs.

One way to approach this problem would be to make use of a SMT solver. Fig-
ure 3.1 contains an encoding of this problem in the SMT-LIB format. The encoding
can be seen as a template describing the above: we first represent a list datatype in

20



(declare-datatypes (T)
((list nil (cons (head T) (tail list )))))

(define-fun-rec sum ((zs (list Int))) Int
(ite (is-nil zs)

0 (+ (head zs) (sum (tail zs)))))

(define-fun-rec length ((zs (list Int))) Int
(ite (is-nil zs)

0 (+ 1 (length (tail zs)))))

(define-fun-rec elem
((z Int) (zs (list Int))) Bool
(ite (is-nil zs) false

(ite (= z (head zs)) true
(elem z (tail zs)))))

(declare-const xs (list Int))
(declare-const ys (list Int))
(declare-const n Int)

(assert (= (sum ys) n))
(assert (forall ((y Int))

(implies (elem y ys) (elem y xs))))
(assert (>= (length ys) 1))
(assert (= xs XS))
(assert (= n N))

(check-sat)
(get-model)

Out: Unknown

Figure 3.1: Finding the solution to sumToN using a direct encoding to a SMT solver.

the SMT-LIB format, next we define functions to sum the elements of the list, we
then check if an element is in a list, and finally we calculate the length of the list (to
check if the list is non-empty). Finally, a SMT solver is invoked at runtime when the
values of n and xs are known. We therefore have two more assertions, containing the
variables XS and N, which are instantiated with concrete values at runtime.

Analyzing the code in Figure 3.1 we see that we had to duplicate much of what
already exists in Haskell: the list datatype, and three functions to manipulate and
examine it. Furthermore, in order to call this code with lists from a Haskell program,
we still need to write code to translate a Haskell list to a SMT list. After completing
all these tasks, unfortunately our efforts were fruitless: even for very simple values
of xs and n (for example xs = [-5, 5] and n = 0), when the formula is passed to a
state-of-the-art SMT solver, Z3 [64], Unknown is returned, meaning it could neither
find a value for ys nor determine if such a value exists. Our experimental evaluations
found that Z3 cannot find a solution as soon as xs has two or more elements due
to difficulties that SMT solvers have with handling quantified formulas and recursive
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sumToN :: Int -> [Int] -> IO (Maybe [Int])
sumToN = [g2| \(n :: Int) (xs :: [Int]) ->

?(ys :: [Int])
| sum ys == n
&& all (\e -> e ‘elem ‘ xs) ys
&& length ys >= 1 |]

main :: IO ()
main = do

print =<< sumToN 0 [-5, 10, -15 , 20, 25]

Out: Just [20,-15,-5]

Figure 3.2: Encoding the sumToN problem in the g2 quasiquoter.

definitions [100].
To address all these problems, we introduce G2Q, a new library that defines

the g2 quasiquoter to simultaneously empower and simplify the solving of complex
constraints. A quasiquoter [133] is a way of using metaprogramming to embed a
domain specific language (DSL) into Haskell. At compile time, the code encapsulated
in the quasiquoter is automatically translated into traditional Haskell code using
Template Haskell metaprogramming [180].

The g2 quasiquoter, [g2|...|], allows Haskell programmers to write constraints
in a flexible, type-safe language: Haskell itself. Programmers do not need to concern
themselves at all with the low level details of external constraint solvers. Rather,
the library’s quasiquoter allows a programmer to write a predicate using traditional
Haskell syntax and Haskell functions while making use of concrete (runtime deter-
mined) variables, and symbolic (unknown) variables. The quasiquoter generates code
that will at runtime accept the concrete arguments and return either (1) Nothing if
no values for the symbolic variables that will satisfy the predicate are found or (2)
Just values for the symbolic variables.

Figure 3.2 contains the aforementioned sumToN problem, written using our quasi-
quoter. The quasiquoter takes two concrete arguments, xs and n, and returns an
IO (Maybe [Int]) – a value for ys, if one exists. The function returns in the IO
monad because G2Q’s constraint solving may be non-deterministic.

Obviously, the quasiquoter code is significantly shorter and also allows us to reuse
the existing Haskell datatypes and functions. There is another key advantage to us-
ing our library: G2Q is not simply bindings to a SMT solver. Rather, under the
hood, G2Q makes use of the Haskell symbolic execution engine G2, as described
in Chapter 2. By using symbolic execution, we can reduce the Haskell predicates
to constraints over the symbolic inputs, and then solve those constraints with a
SMT solver. Function unrolling allows G2Q to solve predicates making use of re-
cursive functions and datatypes. As a result, the g2 quasiquoter can actually solve
many problems that are not solvable with more direct SMT encodings. For instance,
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G2Q is capable of handling inputs to sumToN that challenge SMT solvers. Running
sumToN 0 [-5, 10, -15, 20, 25] outputs a valid solution: Just [20,-15,-5].

At compile time, the g2 quasiquoter converts constraints from Haskell code into
G2’s intermediate representation. Furthermore, it instruments the code with func-
tions to translate input-output between their actual values and value representations
in G2’s intermediate language. As functions to perform these conversions are defined
in a derivable typeclass, the details of this translation is hidden from users of the
G2Q library.

To evaluate G2Q, we wrote four programs using it. These programs demonstrate
a range of use cases ranging from an n-queens problem solver to a program analyzer.
They also demonstrate a spectrum of complexity, suggesting possible ways G2 could
be improved and optimized in the future.

In short, we make the following contributions:

1. We describe our library, which provides a quasiquoter to give programmers
access to the capabilites of constraint solving via writing Haskell predicates.
In addition, we describe the quasiquoter’s strictness and fairness properties,
which govern how the quasiquoter handles infinitely large data structures, and
searches over infinitely large sets of values.

2. Behind the scenes, the quasiquoter is using a Haskell symbolic execution engine,
G2, to reduce the user-written Haskell code to constraints that are solvable by
SMT solvers. We describe how we compile a quasiquoter to a form that is
runnable in G2.

3. We show code for a number of case studies, demonstrating a variety of use cases
of our library. In the next section, we will describe a technique to easily convert
a program executor to a program analyzer. In Section 7.5, we will present three
additional use cases.

3.2 G2Q for Program Analysis

Haskell is frequently used to implement programming languages and DSLs [75, 73, 32].
Here, we consider a simple imperative language with support for basic arithmetics as
shown in Figure 3.3.

The language supports assertion statements, a common technique for performing
sanity checks and error detection during software development. The evalStmts func-
tion is responsible for running a program. It accepts an Env – which maps variables
to values, as an input – and also allows the caller to specify initial values. evalStmts
and its subfunctions either return Just some type if they succeed, or Nothing if an
assertion is violated.

Although this language and its interpreter are rather small, it suffices to repre-
sent many large imperative programs. Without specialized tooling and engineering
overhead, it can be difficult to tell if and how an assertion will fail.
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Consider, for instance, the program in Figure 3.4. This program contains an
assertion that claims that upon completing execution, the assertion

(Lt (Mul (Var "n") (I 2)) (Var "z")

will hold. From just manually examining the program, it is not immediately clear
whether inputs exists that violate this assertion. Of course, one could rely on testing,
but such approaches still require picking the correct values to violate an assertion.

G2Q provides an easy way for the language developer to find assertion violations
through a symbolic search over the space of inputs by leveraging the existing evalStmts
function. The developer can simply write the following function:

badEnvSearch :: Stmts -> IO (Maybe Env)
badEnvSearch = [g2|\( stmts :: Stmts) -> ?(env :: Env) |

evalStmts env stmts == Nothing |]

badEnvSearch takes a concrete Stmts as an arguments, and searches for an Env that
causes evalStmts to evaluate to Nothing, thereby indicating an assertion violation.

We can run this on the program, to see if it can find an assertion violation. The
call:

env <- badEnvSearch prog
putStrLn $ show env

returns Just [("j",-18)], revealing that an assignment of j = −18 will lead to
an assertion violation. Notably, no random testing occurred to land on the value
−18. Rather, constraints were generated from evalStmts and solved to determine
that j = −18 would violate an assertion.
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type Ident = String
type Env = [(Ident , Int)]
type Stmts = [Stmt]

data AExpr = I Int | Var Ident
| Add AExpr AExpr | Mul AExpr AExpr

deriving (Show , Eq, Data)
$( derivingG2Rep ’’AExpr)

data BExpr = Not BExpr
| And BExpr BExpr | Or BExpr BExpr
| Lt AExpr AExpr | Eq AExpr AExpr

deriving (Show , Eq, Data)
$( derivingG2Rep ’’BExpr)

data Stmt = Assign Ident AExpr | Assert BExpr
| If BExpr Stmts Stmts | While BExpr Stmts

deriving (Show , Eq, Data)
$( derivingG2Rep ’’Stmt)

evalA :: Env -> AExpr -> Int
evalA = ...

evalB :: Env -> BExpr -> Bool
evalB = ...

evalStmt :: Env -> Stmt -> Maybe Env
evalStmt e (Assign ident aexpr) =

Just $ (ident , evalA e aexpr) : e
evalStmt e (If bexpr lhs rhs) =

if evalB e bexpr
then evalStmts e lhs
else evalStmts e rhs

evalStmt e (While bexpr loop) =
if evalB e bexpr

then evalStmts e (loop ++ [While bexpr loop])
else Just e

evalStmt e (Assert bexpr) =
if evalB e bexpr then Just e else Nothing

evalStmts :: Env -> Stmts -> Maybe Env
evalStmts = foldM evalStmt

Figure 3.3: Simple arithmetics language
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prog :: Stmts
prog =

[ Assign "k" (I 1),
Assign "i" (I 0),
Assign "n" (I 5),
While (Or (Lt (Var "i") (Var "n"))

(Eq (Var "i") (Var "n")))
[ Assign "i" (Add (Var "i") (I 1))],

Assign "z" (Add (Var "k")
(Add (Var "i") (Var "j"))),

Assert (Lt (Mul (Var "n") (I 2)) (Var "z"))
]

Figure 3.4: A program inspired from [69] written with the simple arithmetic language
shown in Figure 3.3. It accepts a variable "j" as input, and checks an assertion at its end.
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3.3 Solver-Aided Interface

In this section, we present the exposed API of G2Q, which enables Haskell solver-
aided programming. We begin with a description of the core of G2Q: the g2 quasiquoter.
Using this quasiquoter, programmers can write Haskell predicates over symbolic (un-
known) variables and automatically find concrete values that satisfy the predicate.
We then briefly discuss the G2Rep typeclass, which is required to lift values to and from
the quasiquoter. Finally, we discuss the strictness and fairness guarantees offered by
our library.

3.3.1 The g2 Quasiquoter

The principal feature of G2Q is the g2 quasiquoter which, as shown in the grammar
in Figure 3.5, uses a slightly edited version of standard Haskell syntax: concrete
arguments x1 :: τ1 . . . xm :: τm are bound by a lambda expression; symbolic variables
s1 :: τ s1 . . . sn :: τ sn are then specified. Finally, a predicate e is written over the full
set of variables.

The quasiquoter generates a function of type:

τ1 → . . . → τm → IO (Maybe (τ s1 . . . τ
s
n))

At runtime, this function sets the concrete arguments in the predicate e to the
values passed by the user. Next, the backend attempts to find satisfying instantiations
of s1 . . . sn. If it succeeds, Just a tuple of the found values is returned. Otherwise,
Nothing is returned. Note that there is no guarantee that the backend is deterministic,
and as such, the value is returned in the IO Monad.

3.3.2 The G2Rep Typeclass

The types of all concrete arguments and symbolic inputs in a g2 quasiquoter are re-
quired to be instances of the G2Rep typeclass which we further describe in Section 3.4.1.
This G2Rep typeclass is defined by G2Q, to allow lifting instances to and from the
representation required by the g2 quasiquoter. Defining an instance of G2Rep manu-
ally requires knowledge of the internals of G2Q. To allow programmers to easily use
their own first-order datatypes with the g2 quasiquoter, we provide derivingG2Rep,
a TemplateHaskell function to automatically derive instances of G2Rep with a single
line of code. derivingG2Rep requires only an instance of the Data typeclass (which
is also derivable, using the DeriveDataTypeable language extension), and for the
ScopedTypeVariables language extension [111] to be turned on (for reasons discussed
in Section 3.4.1).

3.3.3 Strictness and Fairness

Here, we discuss the strictness and fairness properties of the g2 quasiquoter.
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QQ ::= λ x1 . . . xm → s1 . . . sn | e
x ::= (y :: τ) concrete argument
s ::= ?(y :: τ) symbolic variable

Figure 3.5: The grammar accepted by G2Q. y and τ represent standard Haskell variables
and types, respectively. e represents a standard Haskell expression, which must be of type
Bool.

(a) [g2| \(xs :: [Int]) ->
?(x :: Int) | x == head xs |] [1..]

Out: Just 1

(b) [g2| \(xs :: [Int]) (t :: Int) ->
?(ys :: [Int])
| ys == take t xs |] [1..] 4

Out: Just [1, 2, 3, 4]

(c) [g2| \(xs :: [Int]) -> ?(y :: Int)
| head xs > y && y > 0 |] [0..]

Out: Nothing

Figure 3.6: Here, we show several examples of G2Q’s behavior on infinite lists, for which
the quasiquoter will give output. The key requirement is that the predicate require evalua-
tion of only a finite amount of the infinite input.

Strictness

Strictness refers to the reduction order of an expression during program execution.
The g2 quasiquoter preserves Haskell’s lazy evaluation semantics [161].

Infinite Data Structures As may be expected, lazy evaluation allows the g2
quasiquoter to both consume and produce infinite data structures. When consuming
infinite data structures, the quasiquoter must be able to fully evaluate the predicate
after evaluating only a finite portion of the structure. Figure 3.6 shows several exam-
ples where a quasiquoter can terminate on infinite input, because finding a correct
output requires only a finite portion of the input. Figure 3.7 shows two examples
that will not terminate because there is no bound on the amount of the input that
must be evaluated.

Finally, Figure 3.8 shows a quasiquoter that produces an infinite data structure.
Similarly to the input, such quasiquotes return if and only if checking the correctness
of the predicate requires evaluating only a finite amount of the output.
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(a) [g2| \(xs :: [Int]) ->
?(ys :: [Int]) | xs == ys |] [0..]

Out: ⊥

(b) [g2| \(xs :: [Int]) -> ?(y :: Int)
| all (\x -> y > x) xs |] [0..]

Out: ⊥

Figure 3.7: Here, we show two examples of G2Q’s behavior on infinite lists, that will
result in non-termination.

data InfList a = InfCons a (InfList a)
deriving Data

headInf :: InfList a -> a
headInf (InfCons x _) = x

(a) [g2| \(t :: Int) -> ?(ys :: InfList Int)
| headInf ys == t |] 1

Out: Just (InfCons 1 (InfCons 1 (InfCons 2 (...))))

(b) [g2| \(x :: Int) -> ?(ys :: InfList Int)
| allInf (> x) ys |] 0

Out: ⊥

Figure 3.8: Here, we show two examples of g2 quasiquoter’s, with an output type that is
an infinite data structure. When only a finite amount of the output has to be evaluated to
check the predicate, the quasiquoter can return such an infinite data structure. However,
trying to satisfy a predicate that requires evaluating an infinite amount of the infinite data
structure results in non-termination.

Recursive Functions G2Q allows arbitrary Haskell code, including the use of
recursive functions. While this can be quite powerful, it also means care must be
exercised if the input to a recursive function is symbolic. When executed in a g2
quasiquoter on symbolic values, recursive unrollings of functions can lead to non-
termination even if the function is guaranteed to terminate when normally executed.

To see why, consider the code in Figure 3.9. mult is simply an implementation of
multiplication based on repeated addition, and will always terminate. However, the
g2 quasiquoter is searching for an integer n such that mult n 3 == 10. Of course no
such integer exists, so the predicate is unsatisfiable. However, the recursive search
over the symbolic variable will result in a deeper and deeper search to find such an
n, resulting in non-termination.

It follows from the halting problem that any automatic approach to prevent this
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mult :: Int -> Int -> Int
mult n x

| n == 0 = 0
| n >= 0 = x + mult (n - 1) x
| otherwise = mult (n + 1) x - x

[g2| \(x :: Int) ->
?(n :: Int) | mult n x == 10 |] 3

Out: ⊥
Figure 3.9: A quasiquoter that will fail to terminate, because of an unsatisfiable predicate
involving a recursive function.

kind of error would, unfortunately, rule out at least some good programs. Given that
Haskell itself does not prove termination, we therefore leave it up to programmers to
ensure their g2 quasiquoters terminate. To prevent non-termination, it is sufficient to
ensure that either (1) no recursive function call’s termination depends on a symbolic
variable, or (2) whenever a recursive function call depends on a symbolic variable,
the predicate is satisfiable.

Fairness

We offer two fairness guarantees to users of G2Q. Here, we present the minimal
information needed for users of G2Q. In Section 3.4.3, we will revist these guarantees,
and provide justifications. Both are relative to the completeness of the underlying
SMT solver. That is, they are true to the extent that G2’s underlying SMT solver is
able to answer every query correctly:

1. In a predicate with no recursive function calls or let bindings, if the predicate
is unsatisfiable we will eventually return Nothing.

2. If the g2 quasiquoter’s predicate will evaluate to True given some instantiation
of the symbolic variables, G2Q will eventually return a solution.

In Section 3.4.3, we will return to and justify these fairness guarantees.

3.4 Solver-Aided Backend

The backend of G2Q relies on an existing Haskell symbolic execution engine, as de-
scribed in Chapter 2. Here, we elaborate on the design of of G2Q’s other components.
Then, we state some limitations of our approach and how they may be alleviated in
the future.
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class G2Rep g where
g2Rep :: g -> G2Expr
g2UnRep :: G2Expr -> g
g2Type :: g -> G2Type

Figure 3.10: The G2Rep typeclass, which converts values to and from G2’s representation.

class G2Rep a => G2Rep [a] where
g2Rep [] = g2Nil (g2Type (undefined :: a))
g2Rep (x:xs) =

g2Cons (g2Type (undefined :: a))
(g2Rep x) (g2Rep xs)

...

Figure 3.11: The g2Rep definition for lists. We denote the standard Haskell list construc-
tors as : and [], and G2’s representation of a list as g2Cons and g2Nil, respectively.

3.4.1 The G2Rep Typeclass

A slightly simplified version of the G2Rep typeclass is shown in Figure 3.10 (some types
from G2 that do mundane mapping have been hidden, to simplify the presentation.)
It includes three functions: g2Rep, g2UnRep, and g2Type. The g2Rep and g2UnRep
functions map from real Haskell values to G2’s representations of those values and
back. g2Type is a helper function for g2Rep and g2UnRep: polymorphic type arguments
are explicitly represented in G2’s core language, and so we require g2Type to give us
access to the G2 representation of the type of polymorphic arguments.

Figure 3.11 shows part of the definition of G2Rep for lists. For the most part, the
mapping is very routine – the sole point of interest is the use of g2Type. Sometimes (as
in the expression for a nil list constructor) we require calling the instance of g2Type
for a type of which we do not have a value. Fortunately, we can insist that undefined
is a value of any type and use it to call the appropriate g2Type. This does require the
ScopedTypeVariables language extension to be enabled, so that the type variable in
the instance declaration and the type variable in the function body are bound to the
same type. If a programmer tries to deriving G2Rep without enabling the extension,
we show a error message, reminding them to turn it on.

3.4.2 g2 Quasiquoter Compilation

We now describe the translation of a g2 quasiquoter into a Template Haskell expres-
sion.

Imported Modules G2Q allows making use of functions from imported modules,
as long as the source code is available for G2 to compile into its internal representation.
We use Template Haskell to pull the list of imported modules from the current file
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and use a cabal file [110] to search for them. We also utilize a custom version of the
standard Haskell Base and Prelude [158], which supports many of the commonly used
types and functions (and which we are working on expanding).

Parsing G2Q accepts a lightly modified version of traditional Haskell syntax. The
only differences are:

1. We require type annotations to be given in the concrete variable lambda binding.

2. We introduce a new notation to specify symbolic variables.

Our parser extracts the concrete variables along with their types x1 :: t1 . . .
xm :: tm, the symbolic variables and types s1 :: ts1 . . . sn :: tsn, and the pred-
icate expression e from the g2 quasiquote. Then, it rewrites the user’s query as a
Haskell predicate function with both the concrete and symbolic variables bound by
lambda expressions, in addition to an explicit type signature:

pred :: t1 -> ... tm -> ... -> ts1 -> ... tsn -> Bool
pred x1 ... xm s1 ... sn = e

We then use G2’s existing parser (which itself makes use of GHC’s parser) to
translate this traditional Haskell code into G2’s internal representation.

State Construction We construct a state s = (E,H, P ). H is a heap containing
functions from imported modules, and P is initialized to empty. We initalize E to:

let r = pred x1 ... xm s1 ... sn
in assume r (s1, ..., sn)

x1 to xm are placeholders for the concrete arguments (which will be replaced in the
next step), assume p e assumes the predicate p holds and then returns e. Thus, the
code in E will force the quasiquoter’s predicate to hold, and if it does, return a tuple
of the values of the symbolic variables.

Argument Bindings For each concrete argument x1 . . . xm we construct a Template
Haskell expression that will bind g2_xi to g2Rep xi at runtime. Then, we construct a
runtime call to a function named floodConsts, which receives the state s = (e, h, p)
and a list of the g2_xi as arguments. floodConsts lazily (so as to not force too much
of the input values) replaces each concrete argument in the states expression e with
the g_xi from the list.

Solving Symbolic Variables Given a state with the concrete arguments filled in
via floodConsts, G2 is able to symbolically execute the state at runtime. Assuming
it terminates (as discussed in Section 3.3.3), G2’s constraint solving finds concrete
values for the symbolic variables and returns a tuple of the found solutions. We then
use g2UnRep to lazily translate the tuple from G2’s representation into regular Haskell
values. g2UnRep’s laziness allows returning infinite data structures when needed, as
discussed in Section 3.3.3.
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Type Safety We use Template Haskell to, at compile time, wrap each input to
g2Rep and call to g2UnRep with an explicit type annotation. These annotations provide
programmers with type errors if they try to mistype an argument or the returned
value.

3.4.3 Fairness and Heuristic Search

As discussed in Section 3.3.3, G2Q offers two fairness guarantees. We justify theses
fairness guarantees here and then discuss some heuristics we implement as well as
how those heuristics preserve the fairness guarantees.

Fairness Guarantees

We begin by presenting and justifying our fairness guarantees. Both guarantees are
relative to the completeness of the underlying constraint solver.

Guarantee 1 First, we guarantee that, if the predicate in the quasiquoter con-
tains no recursive function calls or recursive let bindings, and is unsatisfiable, the
quasiquoter will eventually terminate by returning Nothing. This can be trivially
seen from an examination of the reduction rules used by G2, as shown in Chapter 2.
The only possible source of an infinite loop is a recursive call, since all other reduction
rules reduce the size of the expression being evaluated and thus will lead to termina-
tion. Therefore, in the absence of a recursive function call or recursive let binding we
can fully explore the set of possible states and return Nothing if all are unsatisfiable.

Guarantee 2 The second guarantee is that, if there is some instantiation of the
symbolic variables such that the predicate in the quasiquoter q will evaluate to true,
some solution will eventually be returned.

To ensure this, it is sufficient to show that:

1. Whenever we hit a branch in the code, we create states to explore along each
possible branch.

2. If some state exists, and it has not yet fully executed to True or False, either
the state will eventually be executed, or some other state will be executed that
returns a solution.

(1) can be seen from an examination of the reduction rules, in Chapter 2. The
sources of branching are limited, all case expression branches are initialized as separate
states.

(2) is trickier, as it requires us to fairly evaluate all states. Otherwise, we might
only evaluate some subset of states where the predicate is false and miss some state
where the predicate is true. To ensure that (2) holds, we fix a predicate p that we
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know any state we execute will eventually violate (an example of such a guarantee is
given below, in Section 3.4.3.) We then store the states in a queue.

During symbolic execution, we pop the state at the head of the queue. We sym-
bolically execute this state either until we discover that it satisfies the quasiquoter’s
predicate q or until it has violated the predicate p. If the state is not yet fully evalu-
ated but p becomes false, we re-insert the state at the end of the queue. If the state
splits at a branch, we arbitrarily choose one of the states to continue executing. The
others get inserted at the end of the queue.

With this scheme we can see via a classic argument that all states not yet fully
evaluated will eventually be executed (unless another state that satisfies q is found
first). At any point such a state s is in the queue. Suppose there are s# states
ahead of the s in the queue. Since we (at least temporarily) halt execution of every
state eventually, either one of those s# states will turn out to be a solution or s will
eventually be executed.

Symbolic Execution Heuristics

A challenge in making symbolic execution effective for finding solutions are the heuris-
tics employed. In particular, because symbolic execution tracks multiple states at
once, yet (outside of parallelization) only one state is executed at a time, the order
in which states are chosen for reduction is crucial. A bad ordering causes an increase
in the time required to find a satisfying solution to the predicate.

G2Q employs a heuristic that prioritizes states with fewer symbolic variables. The
intuition is that such states will (often) lead to fewer new path constraints – resulting
in cheaper calls to the SMT solver, and reduced future state splitting.

Preserving Fairness As described in the previous section, our fairness guarantee
depends on a queue, with some predicate p that will eventually be violated. To ensure
that we violate the p with this heuristic, we choose p to be that the state (1) contains
fewer symbolic variables than the state at the head of the queue, and (2) has increased
its symbolic variable count in the last k steps (for some fixed k).

If condition (2) is consistently met, then eventually condition (1) will be violated,
and the state will be sent to the back of the queue. Otherwise, condition (2) will
send the state to the back of the queue. Thus our predicate is sufficient to guarantee
fairness.

3.4.4 Limitations

Scoping and Module Imports A g2 quasiquoter requires that all functions and
datatypes used in it are defined in an imported module, and cannot use functions or
datatypes declared in the same module. This is because in order to perform symbolic
execution, G2 has to be able to compile the code in the quasiquoter – and the code’s
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dependencies – to G2’s internal representation. Trying to compile the module the
quasiquoter is in would result in an infinite loop.

Argument Types Within a quasiquoter, G2Q requires that type signatures be
provided (rather than inferred) for the concrete and symbolic arguments to the g2
quasiquoter. In addition, we require that such types be monomorphic and are also
first-order. It should be stressed that these restrictions apply only to the quasiquoters
arguments. Within the rest of the predicate’s code, polymorphic and higher order
functions may be used.

The source of each of these limitations is in fact the same. Currently, G2Q relies
on having access to all the code used in g2 quasiquoter available at compile time, so
that it can compile the code into G2’s intermediate representation. If a programmer
tries to use some library that G2Q cannot access the code for, an error is given at
compile time. Allowing passing arbitrary higher order functions would require G2Q to
have some way of dynamically converting the passed function to G2’s representation
at runtime. Typeclasses are, in the internals of both GHC and G2, just a dictionary
of higher order functions [93] and thus present the same issue.

To simplify for end users and hopefully prevent confusion, we disallow polymor-
phism entirely since we cannot support typeclasses. It is possible that this decision
is overly conservative, and if that proves to be the case, we could relax the restric-
tion to allow limited polymorphism in the future. However, we want to get further
experience using G2Q before making this decision.

Base Support In order to make use of datatypes and functions from Base, G2Q
requires them to be compiled into our intermediate language. As compiling Base is a
complicated process which relies closely on GHC, G2 currently make use of a custom
Base library. As such, G2, and by extension G2Q, currently supports only a subset
of functions and datatypes.

In the future, we plan on expanding this subset. In addition, we plan to investigate
means by which we could compile the whole of Base (such as instrumenting GHC to
write out our intermediate language, for example).

3.5 Evaluation and Case Studies

We have made G2Q available on Hackage at http://hackage.haskell.org/package/
g2q. Here, we present case studies and an evaluation, showing how G2Q can be used
to solve a variety of problems.

3.5.1 Programming by Example in Lambda Calculus

Programming by example is a paradigm that allows code to be synthesized from
input-output examples.
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Consider a lambda calculus language and evaluator based on De Bruijn index-
ing [63] as shown in Figure 3.12. De Bruijn indexing eliminates variable names, by
writing bound variables as an integer that indicates the number of lambdas between
the variable and its binder.

The evaluator function eval for the lambda calculus is standard: it simplifies a
lambda expression as much as possible and then outputs it to the user.

Inspired by the programming by example paradigm [130, 117], one can use G2Q
to not only execute lambda calculus expressions but to also synthesize expressions
based on input-output examples.

To do this, we may write a function as follows:
solveDeBruijn :: [([ Expr], Expr)] -> IO (Maybe Expr)
solveDeBruijn =

[g2| \(es :: [([ Expr], Expr )]) -> ?(func :: Expr) |
all (\e -> (eval (app (func : fst e))) == snd e) es |]

The solveDeBruijn function takes an input list of pairs of the form (arguments, result).
The goal is to then synthesize a new function func such that when all the arguments
are applied to func, the result yielded is result.

As a simple example consider the Haskell const function, which takes two argu-
ments and returns the first unmodified. By writing the function call:

solveDeBruijn [ ([num 1, num 2], num 1)
, ([num 2, num 3], num 2)]

we can synthesize a lambda expression with this effect:
Lam (Lam (Var 2))

Somewhat less trivially, we can use the Church encoding of Booleans [38] to syn-
thesize Boolean functions. In Church encoding we denote True as Lam (Lam (Var 2))
and False as Lam (Lam (Var 1)).

Using these definitions, we can write examples for Boolean functions, such as or:
solveDeBruijn [ ([trueLam , trueLam], trueLam)

, ([falseLam , falseLam], falseLam)
, ([falseLam , trueLam], trueLam)
, ([trueLam , falseLam], trueLam) ]

and synthesize correct definitions for those functions:
Lam (App (Var 1) (Var 1))

3.5.2 n-Queens

A mathematical puzzle called the n-queens problem asks how n queen pieces may be
placed on an n × n chess board such that no two queens threaten each other [170].
That is, no two queens may be in the same row, column, or diagonal. We demonstrate
how this problem may be solved with G2Q via an encoding in Figure 3.13.

Since no two queens may be in the same row and we have n queens to be placed
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in n rows, there is clearly a queen in every row. Thus, we represent the set of queens
by a list of Int’s, where the Int j in the ith position in the list, indicates there is a
queen at (i, j). allQueensSafe checks if the given list of Queens is a valid solution to
the n-queens problem. Specifically, it checks if the list is the correct length, that all
the queens on in legal positions, and that none of the queens can attack each other.

A classic version of this problem is for a traditional chessboard with n = 8. The
solution that G2Q produces for the 8-queens problem is shown in Figure 3.14.

3.5.3 Regular Expressions

Borrowing an example from SmtEn [194], suppose a user has written a regular ex-
pression implementation as a domain specific language. The implementation includes
a match function which, given a regular expression and a string, returns whether the
string matches the regular expression.

Provided a regular expression written in such a DSL, it may be helpful to search
for examples of strings that are accepted by this regular expression. Such a problem
is examined in SmtEn, but requires the user to also implement several functions to
assist the search. We demonstrate how G2Q and match can be used to solve this
problem, with very little additional code required from the user. We defer further
discussion of SmtEn to Section 3.6.

First, we augment the RegEx algebraic data type with a Data derivation, as well
as a derivingG2Rep. Other parts of the code may be left untouched.

data RegEx =
Empty -- The empty language

| Epsilon -- The empty string
| Atom Char | Star RegEx
| Concat RegEx RegEx | Or RegEx RegEx
deriving (Show , Eq, Data)

$( derivingG2Rep ’’RegEx)

match :: RegEx -> String -> Bool
match = ...

SmtEn’s implementation of regular expressions includes both Epsilon to denote
the empty string, as well as Empty for the empty language. Next, we encode a query
into the g2 quasiquoter

stringSearch :: RegEx -> IO (Maybe String)
stringSearch =

[g2| \(r :: RegEx) -> ?(str :: String) |
match r str |]

Finally, we can call this search function with a regular expression:
-- (a + b)* c (d + (e f)*)
stringSearch $

Concat (Star (Or (Atom ’a’) (Atom ’b’)))
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(Concat (Atom ’c’)
(Or (Atom ’d’)

(Concat (Atom ’e’) (Atom ’f’))))

G2Q is able to successfully find a string – Just "cd" – matched by this regular
expression.

3.5.4 Evaluation

While writing the case studies we discovered two key factors that affect performance:
predicate order in the quasiquoter and state explosion. Here we discuss both these
factors and then address the runtimes of our case studies.

Predicate Order Simple changes to the predicate can have a dramatic affect on
runtime. For example, consider
allQueensSafe’ in Figure 3.16. This function is the same as allQueensSafe from
Figure 3.13, except that the constraint on the length of the list has been moved from
being the first conjoined constraint to the last. However, solving the 8-queens prob-
lem with allQueensSafe takes only 2.30 seconds while solving it with allQueensSafe’
takes 36.42 seconds. This is because constraining the length of the list allows quickly
filtering out many states where the list is either too long or too short. In future
work it would be valuable to explore ways of automatically reordering predicates to
optimize performance.

State Explosion Programs with large amount of branch can cause symbolic ex-
ecution to suffer from state explosion, in which the number of states the symbolic
execution engine generates and must evaluate grows exponentially. In particular,
G2’s current handling of symbolic algebraic datatypes can cause it to branch into
many states. In future work we hope to implement state merging in order to reduce
the number of states that must be individually evaluated.

Evaluation Results Figure 3.15 shows evaluation results from our case studies and
some other associated benchmarks. We ran all tests with a timeout of two minutes.
Two of the tests did not terminate in this time. These timeouts are largely due to
state explosion from G2’s handling of algebraic datatypes. In future work we hope to
improve there performance by implementing state merging.

Despite the timeouts, we view these results as very positive. All our benchmarks
involve programs with recursion and yet G2Q manages to solve eight of the bench-
marks in under a second. In contrast, unassisted SMT solvers are known to struggle
with recursion or loops [100]. Thus, even with the timeouts, our results indicate an
improvement over direct encoding of SMT formulas.
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type Ident = Int

data Expr = Var Ident
| Lam Expr
| App Expr Expr
deriving (Show , Read , Eq, Data)

$( derivingG2Rep ’’Expr)

type Stack = [Expr]

eval :: Expr -> Expr
eval = eval ’ []

eval ’ :: Stack -> Expr -> Expr
eval ’ (e:stck) (Lam e’) =

eval ’ stck (rep 1 e e’)
eval ’ stck (App e1 e2) = eval ’ (e2:stck) e1
eval ’ stck e = app $ e:stck

rep :: Int -> Expr -> Expr -> Expr
rep i e v@(Var j)

| i == j = e
| otherwise = v

rep i e (Lam e’) = Lam (rep (i + 1) e e’)
rep i e (App e1 e2) =

App (rep i e e1) (rep i e e2)

app :: [Expr] -> Expr
app = foldl1 App

num :: Int -> Expr
num n = Lam $ Lam $

foldr1 App (replicate n (Var 2) ++ [Var 1])

Figure 3.12: De Bruijn index based lambda calculus and evaluator.
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type Queen = Int

indexPairs :: Int -> [(Int ,Int)]
indexPairs n =

[(i, j) | i <- [0.. n-1], j <- [i+1..n-1 ]]

legal :: Int -> Queen -> Bool
legal n qs = 1 <= qs && qs <= n

queenPairSafe :: Int -> [Queen]
-> (Int , Int) -> Bool

queenPairSafe n qs (i, j) =
let qs_i = qs !! i

qs_j = qs !! j
in (qs_i /= qs_j)

&& qs_j - qs_i /= j - i
&& qs_j - qs_i /= i - j

allQueensSafe :: Int -> [Queen] -> Bool
allQueensSafe n qs =

(n == length qs)
&& all (legal n) qs
&& (all (queenPairSafe n qs) (indexPairs n))

Figure 3.13: N-Queens

8 0Z0l0Z0Z
7 Z0Z0ZqZ0
6 qZ0Z0Z0Z
5 Z0Z0l0Z0
4 0l0Z0Z0Z
3 Z0Z0Z0Zq
2 0ZqZ0Z0Z
1 Z0Z0Z0l0

a b c d e f g h

Figure 3.14: A solution to 8-queens produced by G2Q
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Task Time (secs)
badEnvSearch prog 59.32
Search for non-zero Mul x y == Add x y 0.56
solveDeBruijn for id 0.04
solveDeBruijn for const 1.06
solveDeBruijn for NOT Timeout
solveDeBruijn for OR 86.22
solveDeBruijn for AND Timeout
solveQueens 4 0.36
solveQueens 5 0.55
solveQueens 6 0.90
solveQueens 7 1.47
solveQueens 8 2.30
stringSearch for (a+ b)∗c(d+ (ef)∗) 0.26
stringSearch for abcdef 4.23
stringSearch for a+ b+ c+ d+ e+ f 0.05
stringSearch for a∗b∗c∗d∗e∗f ∗ 0.02

Figure 3.15: Case study running times.

allQueensSafe ’ :: Int -> [Queen] -> Bool
allQueensSafe ’ n qs =

all (legal n) qs
&& (all (queenPairSafe n qs) (indexPairs n))
&& (n == length qs)

Figure 3.16: allQueensSafe’ is the same as allQueensSafe, from Figure 3.13, except the
constraint on the list length is moved to the end of the function. This change has a dramatic
affect on running time. Solving 8-queens with allQueensSafe takes only 2.30 seconds, while
using allQueensSafe’ requires 36.42 seconds.
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3.6 Related Work

Here we give an overview of related work, with a particular focus on work that aims
to simplify the use of SMT solving in high level languages.

Solver-Aided Languages Like G2Q, SmtEn [194] is designed to ease using SMT
solvers in Haskell. However, the interfaces provided by the two tools are quite dif-
ferent. SmtEn provides users with functions to build up a Space (that is, a set) and
then use a SMT solver to search through the Space, for a value that satisfies some
condition. In contrast, with our tool, the quasiquoter can be called directly, with no
need to provide a set of possible instantiations.

In fact, both SmtEn and G2Q’s APIs have advantages. SmtEn’s treatment of
Spaces as first class values allows them to be passed around and manipulated in code
before being queried. On the other hand, as treated in SmtEn, a Space either has
to be built from other Spaces, or constructed from scratch as a singleton. As such,
constructing a Space results in a great deal of often tedious code, which can be avoided
by our approach.

We see great potential in combining the approach of Spaces, (or some close equiv-
alent) and our quasiquoter approach. For example, one could imagine a hybrid ap-
proach that uses a g2-like quasiquoter to construct Space-like values. We leave such
considerations to future work.

Curry [99] is a logic driven functional programming language. Curry may be
seen as an approach to design a functional language around logic programming. In
contrast, G2Q is an attempt to fit constraint solving into an existing functional
language. As such, G2Q’s semantics (that is, really Haskell’s semantics) are likely
more comfortable for existing Haskell programmers.

Rosette [190, 191] is an extension of Racket, which allows for constraint based
programming. Unlike G2Q, Rosette requires that all constraint generation be self-
finitizing; that is, all constraint generation must terminating. The trade-off here is
that, Rosette, unlike G2Q, offers guaranteed termination. However, this also means
that Rosette rules out some valid programs. Rosette supports only symbolic integers
and booleans, while G2Q supports lifting any first-order value to a symbolic value
(given an instance of G2Rep).

Like Rosette, Kaplan [122] allows for constraint based programming, although in
Scala rather than in Racket. Like G2Q, Kaplan supports a variety of types, including
algebraic datatypes. Due to Racket and Scala both being strict languages, however,
neither Rosette nor Kaplan account for non-strict execution.

Compile-time Theorem Proving HALO [198] and [204] aim to translate Haskell
programs into first-order logic in order to apply contract verification to Haskell pro-
grams. G2Q, on the other hand, is aimed at supporting runtime constraint solving
in Haskell while these tools instead focus on ensuring that Haskell programs satisfy
contract specifications.
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Constraint-Based Synthesis Complete Functional Synthesis [123] also describes
a technique to write programs by writing constraints. Unlike the other discussed
work, it relies on synthesis of code at compile time, rather than constraint solving
at runtime. This presents a trade-off: the code it synthesizes is more efficient, but
the logic it can reason about is more restricted. For example, Complete Functional
Synthesis does not support recursive functions or algebraic datatypes.

SMT APIs A number of SMT solvers, including Z3 [64], CVC4 [39], and Yices [71],
have API interface for a variety of languages. Depending on the language the API is
intended for, some of these offer strong type guarantees. Relatedly, there are Haskell
packages [78, 18] and packages for other languages [20, 121] that expose strongly typed
bindings to SMT solvers. However, these sorts of API interfaces are all very close to
the abstraction level of the SMT solver, as they directly expose SMT constructs. In
addition, these strongly typed API interfaces still require a great deal of manual work
related to duplicating and copying data.

3.7 Conclusion

We present G2Q, a quasiquoter for Haskell to ease access to constraint solving. By
leveraging the G2 symbolic execution engine, G2Q allows users to easily encode
constraints with minimal engineering overhead, and a higher level of abstraction than
with tools like SMT solvers.
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Chapter 4

Counterfactual Symbolic Execution

This chapter describes work completed in collaboration with Anton Xue, Maxwell
Bland, Ranjit Jhala, and Ruzica Piskac. This work includes material originally pub-
lished in [94].

4.1 Introduction

Modular verifiers allow programmers to specify correctness properties of their code
using function contracts, such as pre- and post-conditions (e.g.ESC/Java [81], Daf-
ny [128]), or refinement types (e.g.DML [202], F* [186]). Unfortunately, modular
verifiers can be very difficult to use: when verification fails, the hapless programmer
is given no feedback about why their code was rejected, let alone how they can fix it.

There are two ways in which modular verification can fail when checking if a
function f satisfies a contract given by a pre-condition P and a post-condition Q.
First, the code may be wrong. That is, the precondition P may be too weak and
the postcondition may only hold on a smaller set of inputs than those described by
the precondition. Alternatively, the postcondition Q may be too strong i.e. the
function’s code is incorrect and establishes a weaker property than stipulated by the
postcondition.

Second, more perniciously, the code of f may be correct, but verification may still
fail as the library functions’ contracts may be wrong: the post-condition for some
callee (library) function g may not capture enough information about the values re-
turned by that function in order to allow the desired property to be established at the
caller (client) f . For example, consider the Dafny [128] code shown in Figure 5.1. The
Dafny verifier rejects this code, complaining that it cannot prove the postcondition
for main. The problem here is not the code, which is clearly correct, but that the
contract for incr is too weak : the post-condition that it returns a non-negative value
is not enough to prove the post-condition that main returns x + 2.

One might be tempted to use bounded model checking [41] or symbolic execu-
tion [119] to enumerate paths through the code in order to find execution traces that
witnesses the failure i.e. to find set of inputs that satisfy the precondition but which
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method incr(x : int) returns (r : int)
requires 0 ≤ x
ensures 0 ≤ r
{ r := x + 1; }

method main(x : int) returns (r : int)
requires 0 ≤ x
ensures r = x + 2
{ var tmp := incr(x);

r := incr(tmp); }

Figure 4.1: A Dafny program where main fails to verify due to a weak specification for
incr.

produce an output which violates the postcondition [48]. However, this approach will
be fruitless in the case where the code actually satisfies the contract but verification
fails due to imprecise specifications for callee functions.

We introduce the novel concept of abstract counterexamples to help programmers
debug errors due to imprecise specifications. An abstract counterexample for a func-
tion f and its callee g is a partial definition of g that satisfies g’s contract, but creates
a violation of f ’s contract. For the code in Fig. 5.1 we aim to find an abstract
counterexample:

main (0) = 0
violating the contract of ’main ’ if

incr (0) = 0
Strengthen contract of ’incr ’
to eliminate this possibility

The counterexample is a partial definition of the callee incr where incr(0) = 0. This
definition satisfies incr’s contract but causes a violation of the caller main’s contract.
The user can use the above to strengthen incr’s contract to r == x + 1 to verify main.

In this chapter, we develop and evaluate lazy counterfactual symbolic execution,
a new technique to generate concrete and abstract counterexamples that localize the
causes of failure of static modular verification for non-strict languages like Haskell.
We do so via the following concrete contributions.
1. Counterfactual Branching Our first contribution is the notion of counterfac-
tual branching that allows us to simultaneously conduct a symbolic search for both
concrete and abstract counterexamples (Section 4.3). A counterfactual branch de-
notes a choice between two alternative implementations of some function, e.g. the
function’s concrete implementation or an abstract one derived from the function’s
specification. Our key insight is that we can find abstract counterexamples by finding
a counterfactual branch from which all concrete executions are safe, but from which
some abstract execution leads to an error.
2. Refinement Types as Contracts Our second contribution is to show how to
use counterfactual symbolic execution to localize the cause of refinement type errors
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(Section 4.4). We show how to translate refinement types into value-level assertions
and where refinement type specifications for functions are translated into the abstract
implementations to be used at counterfactual branches.
3. Implementation and Evaluation Our last contribution is an implementation
of our approach as a tool, G2. We evaluate G2 on a corpus of 7550 refinement type
errors from users of LiquidHaskell, a verification tool that has been used to verify
various properties of the Haskell standard libraries [196] (Section 4.5). G2 is able
to quickly find counterexamples 97.7% of the time. 57.6% of the time, G2 finds
concrete counterexamples showing how the code fails the specification, and 40.1%
of the time it finds abstract counterexamples caused by an imprecise specification.
By comparing the “error”-ing programs with their “fixed” versions we find that the
abstract counterexamples correctly pinpoint the library function whose specification
was too weak in 96.1% of the cases, demonstrating the importance, effectiveness and
practicality of counterfactual symbolic execution in making modular verification more
usable.

4.2 Overview

4.2.1 Refinement Type Counterexamples

A refinement type constrains classical types with predicates in decidable first-order
logics. For example, we can specify that the function die should never be called at
run-time by assigning it the type:

die :: {x : String | false} -> a
die x = error x

The refinement type checker will verify that at each call-site, the function die is called
with values satisfying the condition false. As no such value exists, the code will only
typecheck if all calls to die are, in fact, provably unreachable.

A restricted class of functions may be lifted into refinement types to specify prop-
erties of algebraic data types. For example, the following function computes the size
of a list:

size :: [a] -> Int
size [] = 0
size (x:xs) = 1 + size xs

Using size, one can write a safe head function as:
head :: {xs:[a] | size xs > 0} -> a
head (x:xs) = x
head [] = die "Bad call to head"

The input refinement type of head states that it is only called with positively-sized
lists. As in the second equation the size is equal to 0, the second pattern is inconsistent
with the input refinement, and hence, provably never reachable.
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Concrete Counterexamples It is often not obvious why a refinement type fails.
Consider zip, defined below:

zip :: xs:[a]
-> {ys:[b] | size xs > 0 => size ys > 0}
-> [(a, b)]

zip [] [] = []
zip (x:xs) (y:ys) = (x, y):zip xs ys
zip _ _ = die "Bad call to zip"

The function iterates over two lists and produces a new list of corresponding pairs. It
is rejected by the refinement type checker LiquidHaskell [197] with the vexing error:

zip (x:xs) (y:ys) = (x, y):zip xs ys
^^^^^^^^^

Inferred type
VV : {v : [a] | size v >= 0 && len v >= 0

&& v == ys}
not a subtype of Required type
VV : {VV : [a] |size xs > 0 => size VV > 0}

This error can be more confusing than helpful. Instead, a counterexample that illus-
trates an instance where program execution violates the refinement types may provide
better insight. Running our tool yields the following:

zip [] [0] = error
makes a call to
die "Bad call to zip" = error
violating die ’s refinement type

The counterexample ([] [0]) illustrates an input that satisfies zip’s precondition,
but causes zip to invoke the die function. With this information in hand, the user
can see how to improve the refinement type (namely it is not enough that the second
list be non-empty when the first is - we require that the lists have the same size.)

4.2.2 Localizing Imprecise Refinement Types

Next, consider concat, which concatenates a list of lists into a single list, with the
goal of verifying that the size of the returned list is the sum of the sizes of the lists
in the input:

sumsize :: [[a]] -> Int
sumsize [] = 0
sumsize (x:xs) = size x + sumsize xs

concat :: x:[[a]] -> {v:[a] | size v = sumsize x}
concat [] = []
concat (xs:[]) = xs
concat (xs:(ys:xss )) = concat (( append xs ys):xss)
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append :: [a] -> [a] -> [a]
append xs [] = xs
append [] ys = ys
append (x:xs) ys = x:append xs ys

This concat implementation is correct, but is rejected by LiquidHaskell. To make
verification modular, and hence, scalable, at each function call, LiquidHaskell is only
aware of the refinement type of the callee, and not the actual definition. Thus, when
trying to verify concat, LiquidHaskell knows nothing about the value returned by
append.

Thus, the above example illustrates a common, and confusing, situation where
the verifier rejects a program, not because the property being checked does not hold
(as in zip), but because the specifications for called functions are too weak. Worse,
as the code is correct, we cannot report counterexamples, since they do not exist.
Abstract Counterexamples In this situation, ideally we would point the user to
the function whose type needs to be tightened. We do so by introducing the notion of
an abstract counterexample, where we show how the overall property can be violated
by using an abstract implementation of the callee that is derived solely from the
(refinement type) specification for the callee.

For example, an abstract counterexample for concat is:
concat [[0], []] = [0, 0]

violating its refinement type , if
append [0] [] = [0, 0]

Strengthen the refinement type of append
to eliminate this possibility

The abstract counterexample tells the user that the existing specification for append
permits the call append [0] [] to return [0, 0], which causes the evaluation of
concat [[0], []] to return a value that violates its specification.

Crucially, the abstract counterexample points the user to the fact that the error
only arises due to the (trivial) refinement type specification for append and not due
to the actual implementation of the function. Inspired by this message, a user could
improve the type refinement on append to:

append :: x:[a] -> y:[a]
-> {z:[a] | size x + size y = size z}

which then lets LiquidHaskell verify concat.
Counterfactual Symbolic Execution We can find both concrete and abstract
counterexamples with a new technique called counterfactual symbolic execution. We
introduce a counterfactual branching operator, essentially a non-deterministic choice
operator that can evaluate either of its two arguments. Each function definition is
replaced with a counterfactual branch that non-deterministically chooses either the
concrete implementation, or an abstract version derived solely from the function’s
refinement type.

We can then run symbolic execution as before, and report an abstract coun-
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terexample at those counterfactual branches where the concrete choice produces no
counterexamples, but the abstract one does. In this case, as illustrated above, we can
also report exactly how the abstract implementation leads to a property violation.

4.3 Counterfactual Symbolic Execution

Modular verifiers allow users to write and automatically check specifications describ-
ing preconditions or postconditions for functions. Unfortunately, verification errors
can be difficult for users, as error messages typically involve logical formulas, which
may not be obviously linked to the written specifications.

As discussed in Section 4.2.1 and Section 4.2.2 we use symbolic execution to find
two types of counterexamples. Ideally, we find concrete counterexamples, i.e. actual
function inputs that lead to a specification violation. However, we also introduce
abstract counterexamples, found via counterfactual symbolic execution, to help de-
bug spurious errors. As shown in Section 4.2.2, counterfactual symbolic execution
finds partial function definitions for directly called functions that obey their function
specifications, but demonstrate why the caller’s specification is not verified.

Our goal, then, is to find a minimally abstract or least abstracted counterexample-
either a concrete counterexample, or a counterexample with a minimal number of
abstracted functions. Such states are likely to be the most understandable to a user,
as they most closely resembly an actual execution of the program, and (in the case
of an abstract counterexample) most precisely identify which functions might need
stronger specifications.
Specifications To this end, we introduce three functions that we require on the
original specifications: pre returns just the preconditions, post returns just the post-
conditions, and toExp converts a specification to a λG expression. Here, we assume
these functions can be implemented for some arbitrary set of specifications. In Sec-
tion 4.4, we show these functions over LiquidHaskell refinement types.
Counterfactual Function Definitions To find abstract counterexamples, we cre-
ate assertion functions and counterfactual functions. Given a function f ≡ λx.e with
a specification c, we define its assertion function as:

fa ≡ λx.let r = f x in assert (toExp(c) x r) in r

We define the counterfactual function of f as:

f̂ ≡ λx. fa x� (let s = ? : τ in assume (toExp(post(c)) x s) in s)

When symbolic execution reduces f̂ , it binds the arguments to lambdas as usual.
Then, due to the counterfactual branch, it splits into two symbolic states. We will
refer to these as the left and right states, corresponding to the left and right of the
counterfactual choice. The left state corresponds to normal execution, with an as-
sertion that both ensures that the function’s preconditions are met, and that the
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function returns values that satisfy its postcondition. In the right state, we introduce
a new symbolic variable, s, that is assumed to satisfy the function’s postcondition (as
defined by the specification c), but which otherwise makes no use of f ’s definition.
Therefore, s can take on any value that f would be allowed to return by its postcon-
dition. This allows us to find abstract counterexamples when f ’s implementation is
correct, but its specification does not describe its behavior precisely enough to verify
a caller. The right state does not check that its arguments satisfy its preconditions,
because if there is a violation of a precondition, it will also occur in the left case.

We can find (abstract) counterexamples for a function f of arity n, with speci-
fication c. To do so, we define another special copy of f , called fdet. The function
fdet is f , but with each occurence of a callee function g replaced by ĝ. This matches
how modular verifiers use the implementation of their client functions, by using the
definition of f , but only the specifications for library functions when verifying that f
meets its specification.

Then we perform symbolic execution starting from an initial state defined as
follows:

assume (toExp(pre(c) s)) in ((fdet)
a s)

s are symbolic inputs that ensure that any counterexample we find use inputs
satisfying f ’s precondition.

In order to find minimally abstract counterexamples, we maintain a counter of the
number of right paths selected for each states. Then, we filter the found states, and
present only those which require the fewest abstracted functions.

4.3.1 Search Strategy

Symbolic execution, as used for counterfactual symbolic execution, is an unbounded
and therefore incomplete search technique. When searching for counterexamples, we
aim to minimize the number of abstracted functions, but we can almost never actually
prove we succeeded (and an incompletely minimized counterexample may still be
useful to a user.) Here, we describe two strategies we employ to try to minimize time
spent searching, while still finding useful, and close to minimal, counterexamples.
Abstract Counterexample Filtering Presenting only minimally abstract coun-
terexamples allows us to prune during symbolic execution. If we find an assertion
violation with n abstracted functions, we can drop any state- including states which
have not finished execution- in which we abstracted n+ 1 or more functions.
Search Deepening The reductions rules in Section 2.3.3 implicity create a (often
infinite) tree of states. The order we search the branches of this tree, and how deep
we search, is an important consideration to find counterexamples efficiently.

We search in a depth first manner, to some maximal depth. If we have explored
all branches, and not found a counterexample, we increase the maximal depth and
continue searching. Every time we find a counterexample that is better (has less
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abstracted functions) than our current best counterexample, but that is deeper in the
tree, we also increase the maximal depth.

Thus, this strategy allows searching to continue if better counterexamples are
being found by searching deeper in the tree. However, we avoid fruitlessly searching
too many states, if they are not producing promising results.

The gradual increase in the maximal depth ensures we are evaluating a variety
of states and branches, preventing us from spending too much time on branches
that will not yield a counterexample. It often enables us to find a close-to-minimal
counterexample fairly quickly, allowing us to prune all states with a greater number
of abstracted functions.

4.4 Refinement Type Counterexamples

Now that we have described a general technique for counterfactual symbolic execution,
we turn our attention to leveraging it to generate counterexamples to refinement types,
as shown in Section 4.2.1 and Section 4.2.2.
Refinement Types We support the language of refinement types shown in Fig-
ure 4.2. This subset includes operations on numeric types, measures (e.g. size from
Section 4.2.2), and refinements on polymorphic arguments. In the refinement lan-
guage, {v : b [τ1 . . . τk] | r} represents the base type b refined by the predicate r. The
[τ1 . . . τk] are type arguments to the base type, which may themselves be further re-
fined. The v is an inner bound name, allowing reference to the value of the type in
r and τ1 . . . τk. The x : τ1 → τ2 is a function of type τ1 to τ2. The x is a outer bound
name to refer to the value of τ1, allowing it to be referenced in refinements in τ2.

To use counterfactual symbolic execution for refinement types, we need only con-
vert refinement type specifications to assume and assert expressions. That is, we need
only implement the three functions, pre, post, and toExp, described in Section 4.3,
that describe the contracts of each function.
Pre and Post Figure 4.3 shows pre and post. pre walks over the function and drops
the return type. post keeps the argument bindings, but sets all refinements, except
the return type’s refinement, to True. Keeping the bindings is important, as they
may be used in the return type’s refinement.
Converting Refinements to Contracts Refinement types are converted to con-
tracts, i.e. asserts and assumes, on the inputs and output of a function. toExp, shown
in Figure 4.4, translates LiquidHaskell refinement types into predicates in λG. This
function has many subparts:

• toExpλ creates lambda bindings, giving us names to refer to both the inputs
and outputs of the funciton.

• toExpb and toExpr translate each individual refinement on a type into a λG
predicate on a value.
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τ ::= Types
| {v : b [τ ] | r} refinement
| x : τ → τ function

b ::= Basic Types
| Int integer
| Bool boolean
| A algebraic data type

r ::= Refinements
| r == r equality
| r < r inequality
| r ∧ r conjunction
| ¬r negation
| x variable
| m r measure application
| n integer value
| r ⊕ r integer operation
| true true
| false false

m ::= m Measures

Figure 4.2: λD types

• toExpτ walks over the spine of a LiquidHaskell function type, to apply toExpb
to each argument.

Polymorphic Data Types LiquidHaskell allows checking refinements on polymor-
phic type variables. For example, we may refine a polymorphic list [a] to contain only
positive integers, by writing [{x : Int | 0 < x}]. Thus, we require a way to translate
LiquidHaskell polymorphic type refinements, into predicates on expressions in λG. To
do this for a type constructor τ , with type variable a, a higher order function pτ is
automatically created. The function takes an expression of type τ a, and a predicate
of function type a → Bool. It walks over the structure of the type, conjoining the
application of the predicate to each occurence of a. We can then apply pτ to a predi-
cate expression and an expression of type τ , to assume or assert that those predicate
expressions hold on all type variables in p. For example, on a list, we have:

pList p [] = True

pList p (x : xs) = (p x) ∧ (pList p xs)

and we translate [{x : Int | 0 < x}] to pList (λx . 0 < x).
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pre(τ) =


x1 : τ1 → τ = x1 : τ1 → (x2 : τ2 → τ3)

pre(x2 : τ2 → τ3)
τ1 τ = x : τ1 → τ2

post(τ) =

{
x1 : bt(τ1)→ post(τ2) τ = x : τ1 → τ2

{v : b [τ1 . . . τk] | r} τ = {v : b [τ1 . . . τk] | r}

bt(τ) =


{v : b [bt(τ1) . . . τ = {v : b [τ1 . . . τk] | r}
bt(τk)] | true}

τ otherwise

Figure 4.3: λD precondition and postcondition

toExp(τ ) = toExpλ(τ, τ )

toExpλ(τ, τa) =

{
λx . toExpλ(τ2, τa) τ = x : τ1 → τ2

λxF . toExpτ (x
F , τa) for fresh xF τ = {v1 : b [. . .] | r}

toExpτ (x
F , τ ) =

{
toExpb(x, τ1) ∧ toExpτ (x

F , τ2) τ = x : τ1 → τ2

toExpb(x
F , τ ) τ = {v : b [τ1 . . . τk] | r}

toExpb(x, τ ) =



(
λv . pb (v, toExpτ (x1, τ1), . . . , τ = {v : b [τ1 . . . τk] | r}

toExpτ (xk, τk))

∧toExpr(r)
)
x

for fresh x1 . . . xk
True τ = x : τ1 → τ2

toExpr(r) =


toExpr(r1) == toExpr(r2) r = r1 == r2

toExpr(r1) < toExpr(r2) r = r1 < r2

toExpr(r1) ∧ toExpr(r2) r = r1 ∧ r2
. . . . . .

Figure 4.4: λD to λG translation
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4.5 Implementation and Evaluation

We next present an evaluation that demonstrates the effectiveness of our method for
localizing refinement type errors.

4.5.1 Quantitative Evaluation

The goal of our evaluation is twofold. Q1 Does symbolic execution find counterex-
amples that explain refinement type errors? Q2 Do the abstract counterexamples
accurately pinpoint the functions whose specifications are too weak to permit type
checking?

Our empirical evaluation answers these questions positively. We use G2 to gen-
erate counterexamples for refinement type errors on a corpus of programs written
by students using LiquidHaskell for a homework assignment in CSE 230, a graduate
level programming languages class, at the University of California, San Diego (IRB
#140608). The assignment contained a variety of exercises. For some, the students
had to write code that implemented a function, and matched a given refinement type.
For others, the students were asked to write refinement types for prewritten functions.
In total, each students assignment was roughly 150 to 200 lines of code.
Corpus The corpus contains, in total, 10,349 incorrect refinement types. The data
was collected by logging the student’s work every time a student typechecked their
code with LiquidHaskell. Consequently, the data set comprises traces of files, giving
us access to the code at different stages of progression — both the incorrect programs
and the correct one that finally type checked.
Preprocessing The corpus was collected from a class run in 2015. LiquidHaskell’s
syntax has changed since then, rendering some of the files non-parsable. Altogether,
on the student written data set G2 can be applied to 93.6% of the files. From those,
we excluded 2136 functions because they were only stubs, which immediately called
error. Finding counterexamples for these functions is trivial, because any input would
be a counterexample. This left us with a total of 7550 functions to evaluate G2 on.
Search Strategy Our search deepening strategy (Section 4.3.1) takes two parame-
ters: an amount s to increase the search depth, if no counterexample is found, and
an amount c to increase the search depth, when a better counterexample is found.
Based on our experience with G2 we selected s = 300 and c = 500 as values that
appeared to give reasonable results. G2 was given a maximum of 2 minutes to find
counterexamples for each function.
Results Figure 5.5 summarizes the results of our evaluation on the 7550 functions,
drawn from actual code written by students. It demonstrates that G2 finds coun-
terexamples for the vast majority of the LiquidHaskell errors. In total, we found
counterexamples for 7379, or 97.7%, of the errors. We found concrete counterexam-
ples for 4354, or 57.6%, of the errors, and found abstract counterexamples for 3025,
or 40.1%, of the errors. While G2 has an average runtime of only 17.6 seconds, the
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median running time is even lower – 7.9 seconds. This shows that G2 is a practical
and efficient tool to help debug LiquidHaskell refinement type errors, giving a very
positive answer to Q1 .

G2 failed to find a counterexample only 2.3% of the time. 1.5% of our failures
come from timeouts, while the remaining 0.7% is accounted for by errors in G2, which
mostly relate to unimplemented edge cases in LiquidHaskell specifications.
Correctness of Abstract Counterexamples Our benchmarks come from traces
of programmers iteratively invoking LiquidHaskell to verify some properties. Thus,
we determine whether G2’s abstract counterexamples correctly localize the imprecise
specification by comparing each “bad” file – that was rejected by LiquidHaskell, for
which G2 found an abstract counterexample – with the first “fixed” file along the user’s
trace that was accepted by LiquidHaskell. We say that an abstract counterexample
correctly localizes the error if the counterexample blames a call to some function f

such that in the “fixed” version (a) the user specifies a different type for f , or (b) the
user replaces f with a different function with a stronger type, or (c) LiquidHaskell
infers a different type for f e.g. because it is used differently in the code. We say an
abstract counterexample is spurious otherwise.
Evaluating Correctness Of the 3025 counterexamples, after discarding 1041 “bad”
files that had no “fixed” version (as some students did not finish the assignments) we
were left with 1984 abstract counterexamples. We categorized these counterexamples
via a combination of scripts and manual inspection as one of (a), (b), (c) or spurious.
We find that in 1747 (88.1%) cases the user ends up specifying a different type (a),
in 9 (0.4%) cases the user ends up replacing the function (b), and in 151 (7.6%)
cases the user ends up changing other code to allow LiquidHaskell to infer the right
type needed for verification (c). Thus, we conclude that in 96.1% of the cases, G2’s
abstract counterexamples correctly identified the function whose specification was too
weak.
Replicate Function One particularly interesting abstract counterexample stood out
to us. This counterexample was actually counted as spurious, as it does not fit any of
our classifiers for correct abstract counterexamples, but nonetheless shows something
interesting about the code. Consider:

replicate :: n:Int -> a -> { xs:[a] | size xs == n }
replicate 0 x = []
replicate n x = x:replicate n x

replicate is supposed to return a list of the given length, but due to a mistake in
the implementation (the counter is never decreased) instead returns an infinite list.
However, classical symbolic execution would fail to find a concrete counterexample,
because the computation of size xs == n would never terminate. However, G2 finds
an abstract counterexample for replicate:

replicate 1 0 = [0, 0]
violating its refinement type , if

replicate 1 0 = [0]
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If the first recursive call to replicate 1 0 returns [0], the the outer call to
replicate 1 0 returns [0, 0], violating the refinement type.

Our primary motivation to develop abstract counterexamples was to aid in cases
where the specification was insufficient. Therefore, it was a surprising discovery that
it can also provide output in cases of non-termination.
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Function Con. Abs. Time Error Avg.
out Time (s)

prop_map 13 523 2 2 8.9
foldr1 607 0 0 2 10.1
kmeans1 0 875 22 0 120.5
prop_concat 877 217 0 5 5.7
replicate 8 7 2 2 17.9
mergeCluster 329 2 0 0 7.2
collapse 250 0 0 5 8.3
prop_zipWith 18 708 13 2 10.5
concat 181 80 53 8 58.3
nearest 80 0 0 6 10.5
prop_replicate 335 125 0 2 5.7
expand 49 74 0 0 8.3
length 16 0 7 0 40.8
zipWith 760 3 4 2 9.2
kmeans 0 18 2 0 120.5
centroid 594 0 0 0 6.4
prop_size 0 224 2 3 6.7
mapReduce 93 137 8 8 12.2
add 3 0 0 2 4.4
concat2 5 1 0 0 10.0
prop_concat2 36 2 0 0 5.9
distance 84 3 0 0 9.5
prop_concat_1 0 6 0 0 6.0
prop_join 0 6 0 0 5.6
Other 16 14 0 7 14.5
Total 4354 3025 115 56 17.6

Figure 4.5: Evaluation results for errors reported by LiquidHaskell on student homeworks.
Con. is the number of reported concrete counterexamples. Abs. is the number of abstract
counterexamples reported by G2. Timeout is the number of times G2 timed out before
returning counterexamples. Error is the errors encountered in G2 when generating coun-
terexamples. Avg. Time is the average amount of time taken by all runs of G2 reported in
the table.
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4.6 Related Work

Verification Techniques and Debugging An IDE for Dafny that helps debug
genuine and spurious failed verification conditions is described in [55]. Like our work,
it uses a symbolic execution based approach to find concrete counterexamples. How-
ever, for spurious errors, it simply displays the SMT model, which, unlike abstract
counterexamples, does not pinpoint any specific function whose specification needs
strengthening for verification to succeed.

CORRAL [126, 124, 125] is a reachability solver based on generating verifica-
tion conditions. CORRAL introduces the stratified inlining technique, which inlines
functions on demand if verification fails when just using the function contracts. As
opposed to counterfactual counterexamples, stratified inlining aims to improve the
underlying verification, rather than improve explainability of verification errors. As
such, stratified inlining can be seen as an orthogonal technique to G2’s counterfac-
tual counterexamples. Stratified inlining aims to minimize the number of inlined
functions, whereas counterfactual counterxample generation aims to minimize the
amount of abstraction.
Haskell Verification Xu’s work on static contract checking [203, 204], relies on a
symbolic simplifier, parts of which resemble our reduction rules (Section 2.3.3.) Simi-
larly, Halo [198] and LiquidHaskell [197] aim to verify properties of Haskell programs.
However, in contrast to G2, these tools aim for verification, as opposed to refuta-
tion which is the goal of our lazy reduction-based symbolic execution. None of them
produce abstract counterexamples when verification fails.

4.7 Conclusion

We presented counterfactual symbolic execution for non-strict languages, and used
it to find counterexamples that illustrate concretely or abstractly why a modular
checker fails to verify a program. Our evaluation on a large corpus of 7550 verification
errors from users of LiquidHaskell demonstrates that we can find counterexamples to
97.7% of errors. For 57.6% of the errors we find concrete counterexamples, and for
an additional 40.1% of the errors we find abstract counterexamples, which 96.1%
of the time correctly pinpoint the imprecision that precludes verification. Thus, our
results show that by generalizing the notion of counterexamples via counterfactual
execution, we can quickly, automatically, and accurately guide the puzzled developer
to the part of their code or specification that they need to fix.
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Chapter 5

Counterexample-Guided Inference of
Modular Specifications

This chapter describes work completed in collaboration with Ranjit Jhala and Ruzica
Piskac.

5.1 Introduction

Modular verifiers like Dafny [128], ESCJava [81], and LiquidHaskell [196]) let pro-
grammers specify and verify properties of their code by writing contracts : pre- and
postconditions specifying each function’s behavior. Unfortunately, modular verifiers
are often difficult to use when a function invokes one or more different functions. The
problem is caused by modularity: when verifying a function f , modular verifiers use
only the specifications of called functions and not their implementations. Thus, a
modular verifier may fail to verify f not because its specification is incorrect, but be-
cause the specification of some of its callees is too weak, i.e. does not capture enough
of the callee’s behavior to verify f .

For example, Dafny fails to verify the program in Figure 5.1 reporting, instead,
that it cannot prove the postcondition of main. While the postcondition of main always
holds at runtime, modular verification fails as the callee double has no specification,
and Dafny has no information about the value returned by calling double within main.
Some verifiers try to overcome this issue by inlining the callee [98], but this approach
is fruitless for recursive code.

We introduce a new algorithm that automatically synthesizes the specifications
needed for modular verification. Our algorithm works by traversing the call-graph
of the program in a top-down fashion as summarized in Figure 5.2. In addition
to our theoretical algorithm, we develop a practical tool, Lynx, capable of finding
specifications for the LiquidHaskell modular verifier.
1. Analyzing Single Calls Our first contribution is a method to synthesize a
specification for a single call-edge. Suppose the program has only two functions f
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method double(x : int) returns (r : int)
{ r := x + x; }

method main(x : int) returns (r : int)
ensures r = 2*x
{ r := double(x); }

Figure 5.1: A Dafny program, where verification of main fails due to double’s weak post-
condition.

Template-
based

Synthesizer

f specf

g specg
Verifier

X

×

Verified

calls

Counterexamples

new specg

Figure 5.2: An overview of Lynx’s inference algorithm.

and g, where f calls g. Our algorithm uses the two phases of a CEGIS loop [185] —
verification and synthesis — to find a specification for g that verifies f . The algorithm
starts in the verification phase, where it tries to verify the implementation of f against
its specification, modularly, using just the specification of g. If the verifier succeeds,
the process stops. However, if the verifier fails, we apply counterfactual symbolic
execution (as described in Chapter 4) to find a counterexample that explains the
failure. We use this counterexample to produce a constraint that the specification for
g must satisfy to successfully verify f . We add this constraint to the set of constraints
generated in the previous runs of the CEGIS loop. Next, the algorithm moves into
the synthesis phase where it invokes a template-based synthesizer [172, 91] which
uses the constraints to generate a candidate specification for g. We take this new
candidate specification and repeat the CEGIS loop, until we can verify f .
2. Analyzing Nested Calls Our second contribution is an interpolant based tech-
nique to generalize the above to nested calls. Returning to our example, after we
derive a specification for g that verifies f , g itself must be verified against the candi-
date specification. To do so, g now plays the same role as f before, while g’s callees
play the role previously played by g. The process continues until we reach the leaves
of the call graph. If at some point, some previously guessed specification is found to
be incorrect via a concrete counterexample, the algorithm backtracks and synthesizes
a different specification for the previous function in the call graph. When reverting,
we also pass back an interpolant which blocks the incorrect candidate specification,
thus ensuring we do not repeatedly traverse the same ineffectual parts of the search
space.
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3. Completeness We say an inference algorithm is complete if it (a) always returns
a set of specifications sufficient for verification to succeed, when such a set exists, and
(b) always find a counterexample showing that an input specification does not hold, if
such a counterexample exists. Our algorithm is parameterized by three components:
a verifier, counterexample generator and specification synthesizer. We prove that if
these components are sound and complete, then our inference algorithm is also sound
and complete over a finite set of possible specifications.
4. Bounded LIA Specification Synthesizer Of course, real-world programs do
not have a finite set of possible specifications. We extend our approach to handle
infinite sets of possible specifications, via our fourth contribution: a notion of size-
bounded synthesizers which support sound and complete synthesis of linear integer
arithmetic (LIA) specifications. We describe a translation of the synthesis constraints
that arise from our inference algorithm into a formula in decidable linear integer
arithmetic logic. In the case that the synthesis problem is unrealizable, we further
describe how to use the unsatisfiable core of the formula to construct an interpolant.
5. Evaluation Finally, we implemented a tool called Lynx, which automatically finds
specifications for the LiquidHaskell modular verifier. We evaluate Lynx on two sets
of benchmarks. The first is a variety of functions and function specifications (totaling
529 lines of code) over list-like data structures. We show that Lynx is automatically
finding specifications sufficient to prove correctness in several challenging benchmarks.
The second set of benchmarks is a collection of 46 programs over integers, originally
collected in [70]. This set of benchmarks allows us to compare to existing work. We
find Lynx can verify 30 of the benchmarks, including some benchmarks which none
of the existing tools can verify.

5.2 Overview

We start with an example that illustrates the problem of inferring modular specifi-
cations. At the same time, this example also outlines the basic ideas behind Lynx’s
algorithm.
Example 1. Consider the following function which concatenates a list of lists into
a single list. The function is defined recursively: it first takes the first two elements
(lists) and merges them into one list by appending the second list after the first list.
The result of this operation is again a list of the lists that has one element less. The
concat function proceeds recursively to repeat the process on the list until only zero
or one list remains:

concat :: [[a]] -> [a]
concat [] = []
concat [xs] = xs
concat (x1s:x2s:xss) = concat (( append x1s x2s):xss)

append :: [a] -> [a] -> [a]
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append [] ys = ys
append (x:xs) ys = x:append xs ys

Note that initially both functions do not have any specification.
Specification To specify the intended program behavior, the code also contains two
functions, size and sumSize, that respectively specify the number of elements in a
list and in a list of lists:

size :: [a] -> Int
size [] = 0
size (h:t) = 1 + size t

sumSize :: [[a]] -> Int
sumSize [] = 0
sumSize (h:t) = size h + sumSize t

To illustrate Lynx, we will try to verify the simple property that after applying concat
to a list contains two lists xs and ys, the size of the resulting list is the sum of the
sizes of xs and ys:

prop_concat :: [a] -> [a] -> {b:Bool | b}
prop_concat xs ys =

size (concat [xs, ys]) == size xs + size ys

The function prop_concat has a postcondition stating that the returned output must
be True.
Verification fails Unfortunately, modular verifiers like LiquidHaskell [197] or Daf-
ny [128] cannot prove this assertion as is. This is because such verifiers abstract the se-
mantics of each function call with their pre and postconditions. In this case, concat is
not annotated with any pre- or postconditions, which means the verifiers would use the
default postcondition, true, which is too weak to prove that size (concat [xs, ys])
is in fact equal to size xs + size ys.

5.2.1 Concrete and Abstract Counterexamples

Our algorithm for inferring suitable modular specifications uses a counterexample
guided inductive synthesis (CEGIS) loop [185]. A CEGIS loop generates code that
fits a set of requirements by switching between two phases: synthesis and verifica-
tion. In the synthesis stage of the CEGIS loop, Lynx uses concrete and abstract
counterexamples as an input to the synthesizer. In the verification stage we invoke
LiquidHaskell as an off-the-shelf verifier. Here, we briefly recall the descriptions of
concrete and abstract counterexamples from Chapter 4.
Concrete Counterexamples A concrete counterexample for a function consists of
an input and output pair that violates that function’s specification. For instance,
if concat from Example 1 is assigned the specification stating the output list has a
strictly larger size than the input list

concat :: xs:[[a]] -> { ys:[a] | sumSize xs < size ys}
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Then a concrete counterexample would be the input-output pair:
concat [[1, 1], []] = [1, 1]

since sumSize [[1, 1], []] == 2 which is not less than size [1, 1] == 2.
Abstract Counterexamples An abstract counterexample explains why a modular
verifier failed to verify a specification of a caller function, even if the specification is
actually true. In essence, the abstract counterexamples describe input-output pairs
that yield a violation of the specification of the caller function that (1) are not pro-
duced by the actual implementation, but (2) are allowed by the specification, thereby
indicating that the specification of a callee function is inadequate for verification. As
an illustration, suppose concat is annotated with a different specification:

concat :: xs:[[a]] -> { ys:[a] | sumSize xs <= size ys }

This specification is correct — the output ys returned by concat always has at least as
many elements as the input xs — but is too weak to verify prop_concat. The following
abstract counterexample illustrates why prop_concat cannot be verified using the
correct-but-weak specification:

prop_concat [] [1] = False if concat [[], [1]] = [1, 1]

The input-output pair ([[], [1]], [1, 1]) satisfies the given specification for concat, be-
cause sumSize [[], [1]] = 1 <= 2 = size [1, 1], but if concat [[], [1]] actually
returned [1, 1] then prop_concat [] [1] would evaluate to False, violating the as-
sertion that we aim to verify. Thus, these two pairs form an abstract counterexample
demonstrating that concat’s specification is inadequate to enable modular verification
of prop_concat.

5.2.2 Automating Modular Verification

We return to Example 1 to show how Lynx automatically derives the specifications
for concat and append needed to verify prop_concat.
Step 1: Verifying prop_concat We call LiquidHaskell to verify prop_concat, but the
verification process fails, due to concat’s inadequate (trivial) specification. We next
run counterfactual symbolic execution and it returns several abstract counterexamples
pinpointing the inadequate specification:

prop_concat [] [] = False if concat [[], []] = [1]
prop_concat [] [1] = False if concat [[], [1]] = []

Based on those counterexamples, our next goal is to find an adequate specification
for concat.
Step 2: Synthesizing concat’s specification : We use a template based synthesizer
to find a specification for concat. We introduce two uninterpreted predicates pre and
post to describe a specification of concat:

concat :: xs : {[[a]] | pre(xs)} -> {ys : [a] | post(xs, ys)}
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We use the previous counterexamples to define constraints on the specification. The
constraints state that if the input values satisfy the preconditions of concat, then
the input/output pairs should not satisfy the postconditions (because when they do,
prop_concat cannot be verified):

pre ([[], []]) =⇒ ¬post ([[], []], [1])

pre ([[], [1]]) =⇒ ¬post ([[], [1]], [])

Running a synthesizer on these constraints produces the following specification:
concat :: xs:{[[a]] | True} -> ys:{[a] | size xs ≤ size ys}

Step 3: Verifying prop_concat: Having a non-trivial specification for concat, we
repeat the verification step. Again, verification fails, because the function concat
could not be verified. We find the following concrete counterexample that does not
adhere to its specification:

concat [[], []] = []

If xs = [[], []] and ys = [] then size xs = 2, but size ys = 0. Thus, this coun-
terexample concretely violates the synthesized postcondition that size xs ≤ size ys.
Step 4: Synthesizing a new concat’s specification : Using this concrete coun-
terexample, we create a constraint on concat’s specification. If the input satisfies the
precondition, then the input/output pair must satisfy the postcondition:

pre ([[], []]) =⇒ post ([[], []], [])

With this added to the existing constraints, the synthesizer produces a new concat
specification:

concat :: xs:{[[a]] | True}
-> ys:{[a] | sumSize xs = size ys}

Step 5: Verifying prop_concat: We again check if we can verify prop_concat, using
the newly synthesized specification for concat. This time, the verifier succeeds. Note
that the verification process is not finished. We automatically derived a specification
for concat that was strong enough to verify prop_concat, but we did not verify concat.
Thus, when we can verify that concat adheres to the derived specification, only then
then we have verified prop_concat.
Step 6: Verification of concat: The function concat calls the append function. We
repeat the process described before and after a couple of steps, we derive the following
specification for append:

append :: xs:[a] -> ys:[a]
-> {zs:[a] | size xs + size ys = size zs}

This specification is sufficient for the verifier to prove concat. Moreover, the speci-
fication for append is sufficient for an inductive proof of its own correctness, so the
verifier just applies its standard verification techniques and proves it correct. At this
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point, Lynx terminates.

5.2.3 Reverting Incorrect Choices

In general, the describe technique can be applied to an arbitrary number of callee
functions. In our running example there was no need to backtrack, but it is also
possible that there is a need to in practice. Given a function f and its callee g, it can
happen that we derive a specification for g that is sufficient to verify f , but that is
not correct for g. In this case we find a concrete counterexample for g. We backtrack
one level, add this additional constraint derived from the counterexample to input of
the synthesizer, and we repeat the process of finding a specification for g that verifies
f , but which additionally precludes the found counterexample.

To illustrate that scenario, suppose that, starting from the original Example 1
(with a trivial specification for append) we need to prove the following property:

prop_append :: [a] -> [a] -> { v:Bool | v }
prop_append xs ys = size (append xs ys) >= size xs

Lynx starts by searching for a candidate specification for append that, if true, would
allow verifying prop_append. Suppose that we found the specification:

append :: xs:[a] -> ys:[a] -> { zs:[a] | size zs = size xs}

This specification is sufficient to verify prop_append. Thus, we proceed to the next
level to attempt to verify append. There, we find a concrete counterexample:

append [1] [1] = [1, 1]

If we change the specification of append on this level, we risk picking a new specification
that is insufficient to show the correctness of prop_append. Thus, we instead abandon
this level and backtrack. Then, we look for a new specification that both allows for
verification of prop_append, and accounts for this counterexample. Lynx then finds a
specification that satisfies both conditions:

append :: xs:[a] -> ys:[a]
-> { zs:[a] | size xs + size ys = size zs }

5.3 Formal Foundations

In this section we describe formal foundations of Lynx’s algorithms. Given a program
P , we formally define the terms described intuitively in the previous sections. Many
of those definitions are annotated by a program P , as a subscript. However, when
it is clear from context, for readability we leave out the subscript. In addition,
we describe a desired functionality of external functions used in Lynx’s inference
algorithm (verifier, synthesizer, symbolic execution).
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5.3.1 Functions and Counterexamples

Functions A program, P , is a set of functions {f, g, h, . . .} in a pure language. We
assume (without loss of generality) that functions take a single argument. We define
callsP (f) as the set of functions directly invoked in f ’s implementation.
Specifications A specification s is a predicate defined over the input and output of
a function. In general, a specification s is written in the form s(i, o) ≡ spre(i) ⇒
spost(i, o). The requirement on the inputs, spre, is called the precondition. The post-
condition of the function, spost, is a guarantee about the output.

An environment E = {(f1, s1), . . .} maps functions to specifications (but does
not indicate that the specifications are correct.) We write f ∈ E as a shorthand
for ∃s.(f, s) ∈ E. We assume that E is a total mapping, and if a function and
its specification are not explicitly listed in E, we assume that the function has the
trivial specification True, ie. True ⇒ True. To find f ’s specification in E, we use
the lookup(f , E) function. We define the union of two environments, E1 ∪ E2, as
follows: for a function g, let lookup(g, E1) = s1 and lookup(g, E2) = s2. Then,
lookup(g, E1 ∪E2) = s, where s(i, o) ≡ spre1 (i) ∧ spre2 (i)⇒ spost1 (i, o) ∧ spost2 (i, o). Note
that if g has a non-trivial specification s in only one of E1 or E2, then (g, s) ∈ E1∪E2.
Counterexamples Given a program P and environment E, modular verification
failures are explained by a counterexample cex. In general, we denote that cex is a
counterexample to the environment E by cex �P E (we provide more detailed defini-
tions below). Counterexamples can be either concrete or abstract, denoted cex �PC E
or cex �PA E, respectively.
Concrete Counterexamples Concrete counterexamples are concrete demonstra-
tions that a specification is violated. Given a function f and specification s there are
two varieties of concrete counterexamples: either the postcondition of f is violated,
or the precondition of some callee function of f does not hold.

The first case, a concrete postcondition counterexample, is probably the most stan-
dard definition of a counterexample. There is a concrete value i and the output value
f(i) that shows that although i satisfies the precondition of f , i and f(i) do not
satisfy the postcondition of f . In other words, f ’s precondition is insufficient for f ’s
postcondition to hold. Formally, this is stated as spre(i) ∧ ¬spost(i, f(i)). We denote
this as (f, i)postC � E.

The second case is a concrete precondition counterexample. This case involves two
functions, f and g, such that f calls g. This counterexample happens when there
is a concrete value if that satisfies f ’s precondition, and to compute f(if ) we need
to invoke g(ig), but the value ig violates g’s preconditions. Thus, f ’s preconditions
are too weak to ensure that the preconditions of g can holds. Formally, this is stated
spref (if ) ∧ ¬spreg (ig). We denote this as (f, if , g, ig)

pre
C � E.

Abstract counterexamples We have seen that concrete counterexamples are often
insufficient to explain modular verification errors. Thus, we use abstract counterex-
amples to establish a connection between a caller function and a too weak specification
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of a callee function.
The definition of an abstract counterexample has an additional parameter, which

we call the abstracted set. Formally, the abstracted set, F abs, is a set of triples
(h, ih, oh), such that h(ih) 6= oh, and the pair (ih, oh) satisfies the specification of h in
E. That is, the abstracted set is a set of triples where input/output pairs satisfy the
specification of h in E, but the output value is not the result of applying h to the
input value.

Example 2. In Section 5.2.2, in Step 1 there two abstracted sets

F abs
1 = { (concat, [[], []], [1]) }

and

F abs
2 = { (concat, [[], [1]], []) },

each a parameter for one of the two found abstract counterexamples.

Next, we define a modified version of the given program and its environment
so that the resulting new environment produces concrete counterexamples, instead of
abstract ones. The modified version will be annotated with a superscript, k. Consider
F abs = {(h1, i1, o1), . . . (hn, in, on)}. For each tuple (hj, ij, oj) ∈ F abs, we define:

hkj (x) = if x = ij then oj else hj(x)

Note that for simplicity of presentation we assume that each function hj appears only
once in F abs. If there are more instances of hj in F abs, the definition can trivially be
adapted.

We define the function fk = f [hk1/h1, . . . , h
k
n/hn], which substitutes each call to hj

in f for the corresponding hkj . Finally, we define a new environment that overwrites
the existing environment and maps each newly defined function to the specification
of the function that it is based on:

Ek = E[(fk, lookup(f, E))/(f, lookup(f, E)),

(hkj , lookup(hj, E))/(hj, lookup(hj, E))], ∀j.1, . . . , n.

Similarly as for concrete counterexamples, there are two types of abstract coun-
terexamples: precondition abstract counterexamples and postcondition abstract coun-
terexamples. For a function f , environment E and abstracted set F abs:

• A tuple (f, i, g, ig, F
abs)preA � E is a precondition abstract counterexample, if its

modified version is a precondition concrete counterexample, (fk, i, gk, ik)preC �Ek.
The value ik is a (potentially new) value that function fk computes that violates
the precondition of gk.
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• A tuple (f, i, o, F abs)postA � E is a postcondition abstract counterexample, if its
modified version is a postcondition concrete counterexample, (fk, i)postC � Ek.
The output value o is not needed for the definition, but we pass it as a parameter
nevertheless. It will be useful later in the inference algorithm, when when we
convert each counterexample into a constraint.

Example 3. Consider Example 1 described in Section 5.2 and F abs
1 defined in Ex-

ample 2. The tuple (prop_concat, [][], False, F abs
1 )postA � E is a postcondition abstract

counterexample, because (prop_concatk, [][])postC �Ek is a postcondition concrete coun-
terexample. We show now why is this the case. The original environment contained
the following specification for prop_concat: E ⊇ {(prop_concat, True ⇒ (output ↔
True)}. The modified function prop_concatk has the same specification. To evaluate
prop_concatk on [][], we first need to compute the output of concatk[[], []] which is [1].
This implies that prop_concatk on [][] returns False, which shows that the postcondi-
tion of prop_concatk is violated. Thus (prop_concatk, [][])postC � Ek is a postcondition
concrete counterexample, and (prop_concat, [][], False, F abs

1 )postA �E is a postcondition
abstract counterexample.

Other Definitions We use the following functions and predicates. We define the
predicate evalsP (f, if , g, ig) to be true iff evaluating f(if ) requires also evaluat-
ing g(ig). The predicates isConcrete(cex) and isAbstract(cex) are true iff cex

is concrete or abstract, respectively. For each of the counterexamples (f, i)postC ,
(f, if , g, ig)

pre
C , (f, i, o, F abs)postA , (f, if , g, ig, F

abs)preA we say the caller is f . We write
caller(cex) to get the caller of a counterexample.

5.3.2 Verification, Symbolic Execution, and Synthesis

We now describe the required functionality of the tools that our inference algorithm
is using.
Verification The verification function, verify(P,E), checks if the functions in P

satisfy the specifications in E. If the verifier proves that no specifications is violated,
it returns Verified. If it does not, it returns Errorerr, where err is a set of function
names that the verifier could not prove correct. A verifier is sound if, whenever there
is any type of counterexample, the verifier returns an error set. A verifier is complete
if it always either succeeds or returns a non-empty error set.

In this paper, we consider specifically modular verifiers. Due to modularity,
whether f is in an error set err is determined entirely by the specification of f ,
the definition of f , and the specification of functions called by f .
Counterfactual symbolic execution The goal of the counterfactual symbolic ex-
ecution function, symex(P, d, E, f), is to find concrete or abstract counterexamples
with the caller f . The output of the symex function is a set of counterexamples. The
depth argument, d, specifies how many times symex should unroll recursive function
definitions. The symex function is sound if it only returns correct counterexamples.

68



We call symex complete if, when verify(P,E) = Error err and f ∈ err, there is
some depth d such that symex returns a counterexample to f , and if whenever the
specifications admit a concrete counterexample, there is some depth such that one is
found.
Constraints and Theories We use counterexamples to determine the constraints
that the specifications should satisfy. Independently of their type, a counterexample
contains an arbitrary number of functions and some concrete values, meaning that
those constraints are always ground formulas. The process of deriving the constraints
will be described in detail in Section 5.4. In general, those constraints are ground
first order logic formulas defined over over uninterpreted predicates spref and spostf for
functions f appearing in a counterexample. An example of such a constraint is: from
a concrete counterexample (append, [1][1])postC � E, we construct a constraint c1:

spreappend(([1], [1]))⇒ spostappend(([1], [1]), [1, 1])

An environment E is a model for a constraint c, if instantiating each uninterpreted
predicate sf in c with its corresponding formula in E results in the formula that
evaluates to true. We write this as E |= c. If the environment E contains the pair
(append, True ==>size xs + size ys = size zs), then E |=c1. We lift this definition
to sets of constraint, C, in the obvious way, i.e. E |=C ⇔ ∀c ∈ C.E |=c.

Functions and predicates used to define specifications belong to a theory, or spec-
ification language, T . We say the environment E draws from the theory T , and write
E ⊂ T , if all specifications in E are also in T . We will particularly use a predicate
isSatT (EU , ES, C) which check if there exists some function specifications in the the-
ory T that could extend EU ∪ ES to satisfy the constraints C, without adding to or
modifying the constraints of functions already in ES:

isSatT (EU , ES, C)⇔ ∃EN ⊂ T .∀f.(f ∈ EN ⇒ f /∈ ES) ∧ EU ∪ ES ∪ EN |=C

One can think about this predicate as follows – there are two environments: one
containing the user defined specifications, EU , and the other containing the synthe-
sized functions and their specifications, ES. Given a set of constraints C, our goal is
to find a new environment EN such that the union of all three environments is a model
for C. We differentiate the environments EU and ES, because we cannot modify al-
ready synthesized specifications, and thus the requirement ∀f.(f ∈ EN ⇒ f /∈ ES).
We do not impose the same restriction on the user defined specification: a specifi-
cation of f , if f ∈ EU , can also appear in EN . This way, we do not overwrite, but
strengthen the user given specification. This predicate can be seen also as an indicator
whether we are on the right path towards fully verifying the program.
Synthesis A synthesis function, synthT (sf, EU , ES, C), takes as the input a set of
functions sf , environments EU and ES, and a set of constraints C. The goal of
the synthesis function is to find a specification for every function in sf , such that
isSatUF(EU , ES ∪ Esf , C) (where UF denotes the theory of uninterpreted functions)
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holds for the resulting environment Esf ⊂ T . If the synthesis process succeeds, it
returns SynthEnvEsf .When the synthesis process fails, it returns SynthFailI, where
I is an interpolant of EU , C and ES. Note that C is a formula, while ES and EU are
environments, so we need to adept the standard definition of an interpolant.

If the synthesis failed, we know that it holds that ¬isSatT (EU , ES, C): the en-
vironment EU ∪ ES cannot be extend to be a model for C. A typical view on an
interpolant, as an unsatisfiable core of a formula, can also be mimicked in these set-
tings, too. We can picture an interpolant as a subset of constraints in C that are the
root cause why the environments cannot be extended to be a model for C. In addition
to disjointness to EU ∪ ES, we need to specify that an interpolant also overapproxi-
mates C. If there would be no theory constraints and if C and I would belong to the
same theory, the overapproximation requirement could be simply stated as C ⇒ I.
In our setting, we express this requirement as follows: every environment that can be
extended to be a model for C can also be extended to be a model for I.

Formally, an interpolant of EU , C and ES is a constraint I that satisfies the
following formula:

∀EG.isSatT (EU , EG, C)⇒ isSatT (EU , EG, I) ∧ ¬isSatT (EU , ES, I)

We say a synthesis function synthT (sf, EU , ES, C) is sound if whenever it returns
an environemnt Esf , all specifications in Esf are in T , and isSatUF(EU , ES ∪Esf , C).
We say a synthesis function is complete if it always returns such an environment when
one exists.
Size-bounded theory For a theory T , we define a function size, mapping the
specifications in T to N. We require that, for all n ∈ N, there are only a finite
number of s ∈ T such that size(s) < n. Given some size, we overload <, so that
for s1, s2 ∈ T , s1 < s2 iff size(s1) < size(s2). We define a bounded theory T k to
consist of the specifications in T with size at most k.

This allows us to consider size-bounded synthesizers synthT k(sf, EU , ES, C) which
synthesizes specifications in a bounded theory. That is, a size-bounded synthesizer
synthT k will only synthesize an environment in which every specification has size
at most k. Formally, we can state this property as: synthT k(sf, EU , ES, C) =

SynthEnv Esf =⇒ ∀(f, s) ∈ Esf .size(s) ≤ k.
External and internal functions We split the functions into external and internal
functions. External functions represent interfaces provided by an API or module. In-
ternal functions are used to implement the external functions. We write external(P )

and internal(P ) to get the disjoint sets of external and internal functions in P .
During the inference algorithm, the specifications of external functions is fixed.

If the specifications are incorrect, a counterexample is reported. We allow adding
specifications only to internal functions. We assume (without loss of generality, since
functions could be duplicated) that external function are not called by any internal
or external function.
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Call Graph Consider the call graph of a program. We define a function level(f)
as the shortest distance from an external function to f .

5.4 Inference

Now, we describe the inference algorithm. In Section 5.4.1, we show the inference
algorithm, and prove its soundness and completeness for finite specification languages.
In Section 5.4.2, we will show how to apply iterative deepening to achieve completeness
for an infinite specification language.

5.4.1 Inference Algorithm

Algorithm 5.1 shows the inference algorithm. initInferT is provided as an easy
way to call the main loop. It takes a program P and user written specifications
(or the user environment) EU , and it returns either an additional environment ES,
which supplements EU to allow verification, or a concrete counterexample to the
specifications in EU .

traverseCGT and generateSpecT decompose finding a correct ES into two pieces.
traverseCGT walks over the levels of the program call graph, beginning at the external
functions (level 0), and continuing until we reach the functions furthest from the exter-
nal functions (the greatest level). At each level L, traverseCGT calls generateSpecT
to search for a set of specifications for the functions at level L+ 1 that, if true, would
be sufficient to verify the specifications of the functions at level L.
Inputs, Output, and Invariants In addition to P and EU , both traverseCGT
and generateSpecT take four additional arguments. fs is the set of functions at the
current level L. ES is a specification environment, containing specifications already
synthesized for functions in levels 0 to L. C and Csz are two sets of specification
constraints, which must be satisfied by any synthesized specifications. C is the coun-
terexample constraint set, and contains constraints from generated counterexamples.
Csz is the synthesizer constraint set, and contains constraints from the synthesizer
returning SynthFail. The need to separate these two sets of constraints will be
explained in Section 5.4.2. In addition to the arguments passed to traverseCGT ,
generateSpecT takes one additional argument: sf , the set of functions in the level
L+ 1, which must be assigned specifications.

Both functions return one of three constructs. First, they may return SEnvESCCsz.
When returned from traverseCGT this indicates that ES is sufficient to verify the
specifications in EU . When returned from generateSpecT , it indicates that, if the
specifications in ES could themselves be verified they would be sufficient to verify
the specifications in EU . C and Csz are the constraints used while synthesizing ES.
Second, the functions may return CEx cexs. This indicates that the counterexamples
in cexs are concrete counterexamples to a specification in EU with external functions
as callers. Finally, the functions may return Raise C Csz. This indicates that there
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1 initInferT (P,EU ) = case traverseCGT (P,EU , external(P ), {}, {}, {}) of
2 Raise _ _→ ∪f∈external(P )symex(P,E,∞, f)
3 r → r
4
5 traverseCGT (P,EU , fs, ES , C, Csz) =
6 sf = ∪f∈fs{g|g ∈ calls(f) ∧ g /∈ ES}
7 case generateSpecT (P,EU , fs, sf, ES , C, Csz) of
8 SEnv E′

S C
′ C ′

sz →
9 case sf of

10 {} → SEnv E′
S C

′ C ′
sz

11 _→ case traverseCGT (P,EU , sf, E
′
S , C

′, C ′
sz) of

12 Raise C ′′ C ′′
sz → traverseCGT (P,EU , fs, ES , C

′′, C ′′
sz)

13 r → r
14 r → r
15
16 generateSpecT (P,EU , fs, sf, ES , C, Csz) =
17 case synthT (sf,EU , ES , C ∪ Csz) of
18 SynthEnv EN →
19 E′

S = ES ∪ EN

20 case verifyCEx(P,EU ∪ E′
S , fs) of

21 {} → SEnv E′
S C Csz

22 cexs→ case evalCE(EU , cexs) of
23 Left cexs′ → CEx cexs′

24 Right C ′ → generateSpecT (P,EU , fs, sf, ES , C ∪ C ′, Csz)
25 SynthFail C ′

sz → Raise C (C ′
sz ∪ Csz)

26
27 verifyCEx(P,E, fs) = case verify(P,E) of
28 Verified→ {}
29 Error err → ∪f∈(err∩fs)symex(P,E,∞, f)

Algorithm 5.1: traverseCGT synthesizes specifications for use by a modular verifier.

is no specification environment drawn from T that would allow verification of the
current EU and ES, and thus we must back track and find a new ES. As in the
SEnv constructor, C and Csz are two constraint sets for use at the previous level- in
particular, Csz must always contain an interpolant, to block resynthesizing the same
environment.

At each call to traverseCGT and generateSpecT , we maintain an invariant:

Invariant 1. Let L be the level of f ∈ fs. Any functions in the verifier error set must
have a level greater than or equal to L. That is, verify(P,EU∪ES) = Errorerr =⇒
∀f ∈ err.L ≤ level(f).

To maintain this invariant, we never change a specification in ES. Instead, we
backtrack in traverseCGT to revert incorrect or inadequate specifications. If in
traverseCGT the functions in fs are at level L, then generateSpecT will assign
specification to exactly the functions at level L+ 1 of the call graph. By the verifier’s
modularity, these specifications cannot affect whether verify reports an error in any
function in levels 0 to L − 1. Further, we call traverseCGT with fs containing the
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functions in L+ 1 only if the verifier’s error set contains none of the functions at level
L. Thus, the invariant is maintained.

Thus, as traverseCGT walk over the call graph, we need only concern the algo-
rithm with synthesizing specifications that eliminate the errors at the current level.
Assuming a sound modular verifier, if we traverse all the level of the call graph, and
no functions in the final (largest) level are in the error set, we will have found a
specification environment ES that is sufficient to verify EU .

In the following, we detail the operation of both generateSpecT and traverseCGT .
Then, we will present soundness and completeness theorems.
traverseCGT - Top down search traverseCGT walks down the levels of the call
graph of the program. At each level, traverseCGT calls generateSpecT to try to
synthesize new specifications that eliminate all functions in fs from the error set
returned by the verifier. At line 6, traverseCGT sets sf to be the functions to
synthesize specifications for. It might seem tempting to include in sf all functions
called by a function fs. However, to maintain Invariant 1, we exclude functions
already in ES from sf . If this makes it impossible to find a set of specifications to
verify sf , we rely on the Raise constructor being returned.

We now consider what happens when generateSpecT at line 7 returns:
Synthesis Succeeds Assuming synthesis succeeds, we reach line 8 having found some
E ′S containing specifications for the functions in sf , such that, if the specifications of
sf in E ′S are true, so are the specifications in ES. We also have new constraint sets
C ′ and C ′sz, gathered while synthesizing E ′S. In order to verify the full program, we
must now verify the newly synthesized specifications in E ′S. To do this, we make a
recursive call, at line 11, to traverseCGT (P,EU , sf, E

′
S, C

′, C ′sz).
If this recursive call succeeds in producing a specification environment SEnvE ′SC ′C ′sz,

or produces concrete counterexamples CExcexs to EU , this result is directly returned.
If the recursive call returns Raise C ′′ C ′′sz, then we recall traverseCGT to find new
specifications for the functions in sf with the new constraint sets C ′′ and C ′′sz in place
of our previous constraint sets.
Synthesis Fails Now, suppose that synthesis failed, and generateSpecT returned
either a counterexample or a Raise constructor. Then, the result of generateSpecT
will be returned by traverseCGT , at line 14. Raise constructors may be caught
at some smaller level, at line 12, and, as previously described, returned concrete
counterexamples will be passed back to the user.
generateSpecT - Synthesizing Specifications To synthesizes specifications for the
functions in sf , we define generateSpecT (P,EU , fs, sf, ES, C, Csz). If an environ-
ment is returned, that environment is sufficient to eliminate the functions in fs from
the error set return by verify. At line 17, generateSpecT calls synthT (sf, EU , ES, C∪
Csz) to attempt to synthesize a specifications for the functions in ES. There are two
possibilities:
Synthesis Fails If synthT returns SynthFail C ′sz. then generateSpecT returns
RaiseC C ′sz. This will be caught in traverseCGT , allowing C ′sz to constrain a search
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Counterexample Constraint

(f, i, o, F abs)postA

spref (i) ∧ ¬spostf (i, o) =⇒∨
(g,ig ,og)∈F abs

(spreg (ig) =⇒ ¬spostg (ig, og))

(f, if , g, ig, F
abs)preA

spref (ig) ∧ ¬spreg (ig) =⇒∨
(h,ih,oh)∈F abs

(spreh (ih) =⇒ ¬sposth (ih, oh))

(f, i)postC

if f ∈ external(P ) Return Counterexample
otherwise sf (i, f(i))

(f, if , g, ig)
pre
C , sAg = lookup(g, EU)

if f ∈ external(P ) ∧ ¬sApreg (ig) Return Counterexample
if f ∈ external(P ) ∧ sApreg (ig) spreg (ig)
otherwise spref (if ) =⇒ spreg (ig)

Figure 5.3: evalCE(EU , cex) maps counterexamples to either constraints on the specifica-
tions, or returns a counterexample if it indicates a flaw in the users specification.

for a different environment in smaller levels. By definition of a synthesizer, C ′sz is an
interpolant of C ∪Csz and the specifications in EU ∪ES. Thus, we are guaranteed to
not every retry the same (incorrect) environment ES.
Synthesis Suceeds Now suppose synthT returns an environment EN . To main-
tain Invariant 1, the algorithm checks if the functions in fs are in the error set of
verify(P,EU ∪ES∪EN). If they are not, the algorithm returns ES∪EN . Otherwise,
it searches for counterexamples showing why verification failed.

To check sufficiency of EN , we define verifyCEx(P,E, fs). verifyCEx first calls
verify(P,E). If verify return Verified, there are no counterexamples, and the
empty set is returned. Otherwise, verify returns some Error err. Since we are
concerned only with errors at our current level (involving functions in fs) we run
symex on the functions in err ∩ fs. Assuming a complete symex function, if err ∩ fs
is nonempty, we can be sure at least one counterexample will be found.

If verifyCEx returns an empty set, then the synthesized specification environment
E ′S would be sufficient to verify the specifications of fs. Thus, we simply return E ′S.
Otherwise, we use evalCE to convert the counterexamples into constraints, to be used
in the next round of synthesis (or, to determine that show a specification in EU is
false, in which case they are reported to the user.)
Generating Constraints Figure 5.3 outlines evalCE, which turns counterexamples
into constraints. The constraints satisfy two keys properties. First, they are strong
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enough to block the synthesizer from ever resynthesizing the same specification envi-
ronment. This ensures we make progress, and do not loop with the same environment
in generateSpecT . Second, they are weak enough to not block any correct environ-
ments. That is, any environment that does not satisfy the constraint must also allow
either a concrete or abstract counterexample. This ensures that our synthesizer will
not miss a correct specification environment.

Soundness and completeness

We now give definitions of soundness and completeness for an inference algorithm.
We then state the soundness and completeness theorems for Algorithm 5.1

Definition 1 (Soundness). Consider a verifier verify, along with a program P and
environment EU . An inference function is sound if (1) when it produces an environ-
ment ES, verify(P,EU ∪ ES) = Verified, and (2) when it produces a counterex-
ample cex, caller(cex) ∈ external(P ) and cex � EU .

Definition 2 (Completeness). Consider a verifier verify and synthesis function
synthT , along with a program P and environment EU . An inference function is
complete if (1) when there exists a environment ES drawn from T such that n ∈
external(P ) =⇒ n /∈ ES and verify(P,EU ∪ ES) = Verified the inference
function terminates with an environment, and (2) when there exists a concrete coun-
terexample to an external function the inference function produces a concrete coun-
terexample.

Theorem 2 (Sound of initInferT ). Given sound verify, symex, and synthT func-
tions, initInferT (P,EU) is sound.

Proof Sketch. To return some E ′S, execution must reach line 10, so sf = {}, and we
have reached the highest level in the call graph. By Invariant 1, there are no errors in
a smaller level, and since generateSpecT returned an environment there are no errors
in the highest level. Thus, verify(P,E ′S) = Verified. If a concrete counterexample
is returned, the soundness of initInferT follows from the soundness of symex.

Theorem 3 (Completeness of initInferT ). Suppose there are a finite number of
specifications in T . Then, given sound and complete verify, symex, and synthT
functions, initInferT (P,EU) is complete.

Proof Sketch. The algorithm repeatedly blocks incorrect environments. Since all con-
straints come from evalCE or an unrealizable call to synthT , by evalCE’s properties
and the definition of an interpolant no correct environment will be blocked. Since
there are only a finitely many specifications, if there is an environment such that
verification can succeed, it is eventually returned.

If there is a concrete counterexample, the algorithm return it at line 23. Otherwise,
all environments will be blocked, and the complete symex function will run to an
infinite depth at line 2.

Full proofs of both Theorem 2 and 3 are provided in Appendix A.1.3.
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1 iterateInferT k(P,EU , d, C) =
2 case traverseCGT k(P,EU , external(P ), {}, C, {}) of
3 SEnv EN C ′ C ′

sz → SynthEnv ENC
′C ′

sz

4 CEx cexs→ CEx cexs
5 Raise CN _→ case ∪(f∈external(P ))symex(P,EU , d, f) of
6 {} → iterateInferT k+1(P,EU , d+ 1, CN )
7 cexs→ CEx cexs

Algorithm 5.2: iterateInferT k uses traverseCGT k to synthesize environments in ∪kT k.

5.4.2 Iteratively Deepening Inference Algorithm

initInferT is only complete for finite specification domains. In Figure 5.2, we show
the iteratively deepening iterateInferT k algorithm. This algorithm uses a size-
bounded synthesizer (Section 5.3.2) to search over an infinite set of specifications,
while preserving both soundness and completeness.
Input and Output As with initInferT , iterateInferT k takes a program P and
user environment EU as arguments. It also accepts a depth d, used by symex to search
for counterexamples, and a set of constraints, which should be initialized to empty.
The return values are the same as those of initInferT .
Finding specification environments iterateInferT k relies on traverseCGT k to
synthesize specifications. First, iterateInferT k calls traverseCGT k with some fixed
k. If T k is a size-bounded theory, there are a finite number of specifications in T k.
Thus, if there exists an environment drawn from T k such that verification would suc-
ceed, Theorem 3 guarantees that traverseCGT k will find it. Then, iterateInferT k

can simply directly return the found environment. Otherwise, if traverseCGT k

returns Raise, then iterateInferT k calls iterateInferT k+1 , increasing the syn-
thesizer’s size-bound. Thus, if an environment of some size enables verification,
iterateInferT k will eventually find it.
Preserving Constraints When iterateInferT k+1 is called, it is passed all coun-
terexample constraints from traverseCGT k . Thus, it does not start from scratch- it
uses constraints learned while searching environments of smaller sizes. This is sound,
because the process to turn counterexamples into constraints does not rely on the
theory being considered by the synthesizer.

Conversely, synthesizer constraints might depend on the theory, and therefore
be invalidated by an increased size bound. This is the motivation for the separate
tracking of synthesizer constraints Csz. When we call iterateInferT k+1 , we discard
the synthesizer constraints, as we do not know if they are still relevant.
Finding counterexamples Supposing there is a concrete counterexample to the
specifications in EU , there are two ways it may be found. First, it may be returned
from traverseCGT k . Second, each time traverseCGT k returns a Raise construc-
tor, symex is used to search to depth d. This depth is increased on each call to
iterateInferT k , which is sufficient to ensure (given a complete symex function)
eventually a concrete counterexample will be found.
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Theorems Theorems 4 and 5 follow from the corresponding theorems for initInferT :

Theorem 4 (Soundness of iterateInferT 1). Consider a size-bounded theory T .
Given sound verify, symex, and synthT k functions, iterateInferT 1(P,EU , 1, {})
is sound.

Theorem 5 (Completeness of iterateInferT 1). Consider a size-bounded theory T .
Given sound and complete verify, symex, and synthT k functions,
iterateInferT 1(P,EU , 1, {}) is complete over specification in ∪kT k.

Proofs of both Theorem 4 and 5 are provided in Appendix A.1.3.

5.4.3 Optimizations and Heuristics

Our completeness theorems rely on a complete symex function, but in practice symex
does not have a completeness proof. Fortunately, we can work around this, and so
generateSpecT and iterateInferT are still complete.
verifyCEx Level Descent Consider a function f at level L that calls a function
g at level L + 1. Suppose we are trying to verify the functions at level L. If we
have synthesized a candidate environment EN , but verify(P,EU ∪ ES ∪ EN) =

Error err; f, g ∈ err, then we call verifyCEx to attempt to find a counterexample
to f . Any symex function relies on heuristics to search through the state space of a
function. Thus, rather than searching for a counterexample to f , it might be quicker to
speculate that g’s newly synthesized specification is wrong, and try to find a concrete
counterexample to g. Despite g not being in level L, a concrete counterexample to
g is sufficient to block the environment EN at level L. Motivated by this, we use a
timeout when searching for counterexamples to f . If no counterexamples are found
within the timeout, we switch to searching for concrete counterexamples to functions
in the error set called by f .
Model negation As a last resort, we fall back on directly blocking the incorrect
specifications in the synthesizer. In Section 5.5 we will see that the LIA synthesizer
is based on an SMT encoding, so this is doable by adding the negation of the SMT
model as a constraint. In general, this is an impractically slow way to narrow the
specification space. However, we have found that it is occasional useful to jolt the
synthesizer out of a problematic area for the (incomplete) symex function. It is also
sufficient to maintain completeness of generateSpecT and iterateInferT .
Constraint Generation The inference algorithm relies on turning counterexamples
into blocking constraints, i.e. constraints that block some specific ES. These con-
straints ensure that we do not repeatedly synthesize the same environment. However,
we can also extract non-blocking constraints, which sometimes help in guiding syn-
thesis. For example, for an abstract counterexample, we generate extra constraints
by concretely executing each abstracted function on its input.
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5.5 Size-Bounded Linear Integer Arithmetic Synthe-
sizer

Completeness of the iterative synthesis in Section 5.4.2 requires a size-bound synthesis
function. In Section 5.5.1, we describe how we can build such a function, synthLIAk ,
for the infinite space of LIA specifications. We consider functions with inputs that
are a tuple of integers, (x1, . . . xk), and which output an integer r. In Section 5.5.2,
we will describe a synthesizer synthLHk for LiquidHaskell’s refinement types specifica-
tions (including features such as measures and specifications over polymorphic data
structures) via a reduction to a synthesis problem solvable by synthLIAk .

5.5.1 Synthesizing LIA specifications

Sizes of LIA formulas A size bounded synthesizer for LIA formulas requires a size
function for LIA formulas. size must map LIA formulas to the natural numbers, and
ensure that for all sizes s, only finitely many formulas have size less than s. Consider
a conjunction of i LIA formulas F with coefficients c0, c1, . . . , cn, We pick some d,
then let cm = max(d| c0

d
|e, d| c1

d
|e, . . . , d| cn

d
|e). We define the size of such a formula as

max(cm, i). Thus, we have a minimal size of 1, and the number of formulas less than
any size is finite.
Specification Templates We use templates to implement a size bounded synthe-
sizer, synthLIAk(sf, EU , ES, C). The constraints and templates are encoded in the de-
cidable linear integer arithmetic with uninterpreted functions logic [141] which is then
solved with an SMT solver. As described in Section 5.3.1 synthLIAk(sf, EU , ES, C)

synthesizes an environment EN
S for the functions in sf written in the language LIAk,

such that isSatUF(EU , ES ∪ EN
S , C). We introduce two uninterpreted functions for

each specification to capture its existing pre and postcondition, based on EU and
ES. In addition, we introduce multiple variables for each function in sf , to form a
template to synthesize its pre and postcondition.
Encoding Existing Specifications First, we encode the existing behavior of the
specification environments EU and ES. By definition of the synth function we are
looking for an environment EN such that isSatUF(EU , ES ∪ EN , C). Thus, we are
looking for some EN such that:

∃E ′N ⊂ UF.(n ∈ E ′N =⇒ n /∈ ES ∪ EN) ∧ EU ∪ ES ∪ EN ∪ E ′N |=C

Thus, in synthesizing EN , the specifications in ES are unchangeable. In contrast, the
specifications in EU for functions not already in ES are inflexible only where they
evaluates to false.

To capture this in the synthesizer, for each f ∈ EU ∪ ES we define uninterpreted
functions F f,pre

U and F f,post
U . Then, we concretely check each pre and postcondition

in EU and ES against each input/output pair in a constraint. If the condition- in
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either environment- evaluates to false, we assert that the appropriate uninterpreted
function is false for that input/output. If the specification is true and in ES we assert
that the functions are true for that input/output. Otherwise we make no assertion
about the functions, as their value will depend on some future synthesis query.
Synthesizing New Specifications Now, we consider synthesizing specifications for
functions f in sf , using LIA specifications templates of up to size k. Suppose f has
arity n. We must generate a template that can yield any conjunction of up to k LIA
formulas, with largest coefficient at most k/d, over the variables x1, . . . , xn, r. From
our examples, we know values for x1, . . . , xn, r, and we must find coefficients that
satisfy the constraints. We need to find a precondition and a postcondition. Each pre
or postcondition has an associated LIA specification template. We introduce integer
variables to represent the coefficients in each of the LIA formulas in our template. We
also introduce three boolean variables per LIA formula. One of the booleans, bioff ,
is or-ed with the formula, to control whether the formula is used in the specification
One, bieq controls whether we have an equality or inequality. The final boolean, bistr, is
used in the case of an inequality to control if that inequality is strict. As an example,
a postcondition formula’s equation will have the form

∧ki=1

(
bioff ∨

(
if bieq then (ci0 + ci1x1 + . . .+ cinxn + cin+1r = 0)

else if bistr then (ci0 + ci1x1 + . . .+ cinxn + cin+1r ≤ 0)

else (ci0 + ci1x1 + . . .+ cinxn + cin+1r < 0)
))

To apply the formula to an input/output pair, we plug the concrete input/output
values into the formula as x1, . . . , xn and r. Even though the coefficients are variables,
the inputs and outputs are known integers. Thus, this formula is in the LIA theory.
To enforce that each coefficient is not larger than allowed by d, we add an additional
constraint per coefficient that |ci,ja | ≤ d · k. Since d and k are both constants, d · k is
also a constant. Thus, these constraints also are in the LIA theory.
Translating Constraints Once we have the correct uninterpreted functions for each
specification, we can encode the constraints. As the constraints are already in first
order logic, this is straightforward. We replace each specification constraint, with an
appropriate combination of F f,pre

U and F f,post
U , and, in the case of a specification in

sf , a specification template.
Unrealizability and interpolants of LIA formulas We require that, if the pro-
vided synthesis problem is unrealizable, synthLIAk(sf, EU , ES, C) return SynthFailC ′,
where C ′ is an interpolant of C and EU ∪ ES. Determining that there is no solution
less than or equal to some given size is straightforward: we can check the satisfiability
of the LIA formula given solutions of at most that size. Once we have concluded that
a formula is unsatisfiable, we must obtain an interpolant of C and EU ∪ES. That is,
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we must find some C ′ such that

∀EG.isSatLIAk(EU , EG, C) =⇒ isSatLIAk(EU , EG, C
′)

¬isSatLIAk(EU , ES, C ∪ C ′).

We find C ′ by extracting the unsat core of the LIA formula, and negating the conjunc-
tion of the formulas in the unsat core that originated from the true or false assignment
to F f,pre

U and F f,post
U .

We now check that this satisfies the two requirements of an interpolant. Satisfying
the first requirement requires us to consider all EG such that isSatLIAk(EU , EG, C).
Clearly, all such EG must differ from EU ∪ES at one or more of the points that led to
¬isSatLIAk(EU , ES, C). Thus, the first requirement is satisfied. Regarding the second
requirement, we note that the negation of the conjunction of the unsat core is forced
to be false by EU ∪ ES (by construction.) Thus, ¬isSatLIAk(EU , ES, C

′) holds.
MaxSMT If unconstrained, the LIA synthesizer often overfits the counterexamples.
We use Z3’s [64] soft assertions to find formulas that are more likely to generalize.
Z3 finds a solution which satisfies all hard assertions, and as many soft assertions as
possible. We use this to minimize the number of non-zero coefficients, thus generating
simpler formulas. We also favor coefficients of -1, 0, or 1, as, in our experience, these
arise more in real world assertions.
Disjunctions Although the described synthesizer only finds conjunctions of LIA
formulas, extending it to also find disjunctions is straightforward. Theoretically, we
adjust the definition of size for LIA formulas, so that a LIA formula has size i if it is a
conjunction of i LIA i-clauses, where a LIA i-clause is a disjunction of i LIA formulas.
Practically, we adjust the template so that at size i, rather than having i conjoined
LIA formula templates, one has i conjoined LIA i-clause templates. Our practical
implementation, Lynx, finds both conjunctions and disjunctions of LIA formulas.

5.5.2 Refinement Types Synthesis

Now, we turn our attention to the design of synthLHk , which builds on the synthLIAk
synthesizer to construct refinement types. We begin with a (highly simplified) de-
scription of the LiquidHaskell refinement type syntax. Then, we will detail the design
of our synthesizer.

Figure 5.4 shows a limited subset of LiquidHaskell’s grammar [197]. A LiquidHaskell
type τ is either a refined type or a function type. A refined type {x : D τ | r} refines
a regular Haskell type (such as Int or [a]), with a predicate (or refinement) r. In
order to type check, values of the regular Haskell type are required to satisfy r. For
instance { x:Int | x > 0 } states that the Int value x is required to be postive. Func-
tion types, x : τ1 → τ2, assign refinement types to functions. The binding x on the
argument type can be used in the refinement in the return type τ2.
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τ ::= {v : D τ | r} refined type
| x : τ → τ function type

r ::= x variable
| m r measure application
| r == r equality comparison
| . . .

Figure 5.4: LiquidHaskell grammar

Integer specifications Consider a Haskell function taking n Int arguments, and
returning an Int. Each argument may be constrained by a separate predicate. For
example, consider an example function reqPos that requires two positive numbers
may be given the type:

reqPos :: { x:Int | x > 0 } -> { y:Int | y > 0 } -> Int

Thus, synthLHk creates n precondition templates, F f,pre
U1

, . . . , F f,pre
Un

, for a Haskell func-
tion with n Int arguments. The first precondition template, F f,pre

U1
has only a single

argument, for the leftmost Int argument. Each succesive template has one more
argument than the last, until F f,pre

Un
accepts all the Int’s as arguments.

This encoding requires minor changes to the synthLIAk synthesizer to support
having conjoined precondition templates for the same function in the original code.
This is easily achieved, by simply having the synthLIAk synthesizer conjoin all such
precondition templates together to form F f,pre

U :

F f,pre
U (x1, . . . , xn) = F f,pre

U1
(x1) ∧ F f,pre

U2
(x1, x2) ∧ . . . ∧ F f,pre

Un
(x1, . . . , xn)

Challenges Of course, real programs do not just use Ints: algebraic datatype are
essential to writing Haskell. LiquidHaskell allows types that apply measures to alge-
braic datatype and specifying refinements on type arguments of polymorphic types.
A usable synthesis tool for LiquidHaskell refinements must also account for these fea-
tures. However, this presents a clear challenge: how can we translate requirements
about algebraic data types into templates and constraints usable by synthLIAk? We
describe how we account for both these challenges in the following.
Measures The refinements may use measures, a restricted (as fully described in [?
]) class of functions. For our purposes, it is sufficient to note that measures take only
a single argument. Often, measures map algebraic datatypes, such as lists, to simple
types, such as Int, which can be directly used in refinements. The size and sumSize
functions from Section 5.2 are example of such measures. However, measures can also
map algebraic datatypes to other algebraic datatypes. For instance, fst and snd are
measures which extracts the first and second values in a tuple, respectively. Thus,
given a tuple t :: ([a], [b]), we can enforce that the two lists must have the same
length via the refinement size (fst t) == size (snd t).
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To convert problems with measures into problems over Ints we exploit having
a finite set of functions and constraints, with known function inputs and outputs.
Consider searching via synthLHk for a set of specifications with size at most k. Then,
we consider at most k measure compositions. We find all compositions of at most
k measurs that typecheck when applied to each argument in each specificaton, and
which evaluate to an Int. Then, we precompute applying each measure composition
to each applicable argument in each constraint, and replace the original argument
with new arguments, one for each measure composition. Thus, we obtain functions
that are simply over integers, and can be solved by the synthLIAk synthesizer. When
we find a solution, we translate it back to use measures, simply by reversing the
substitution.

Example 4. Consider the concat function, and the size and sumSize measures, as
introduced in Section 5.2. concat’s argument has the type [[a]]. Suppose we have a
constraint that spreconcat([[1], [5, 6]]) must be true. Both size and sumSize are applica-
ble to the type [[a]], so both size([[1], [5, 6]]) and sumSize([[1], [5, 6]]) will
be evaluated, yielding 2 and 3 respectively. Then, in the formula for synthLIAk , this
constraint will be translated to include the result of both evaluations as arguments:
that is, the constraint will be spreconcat(2, 3).

Polymorphic refinements Second, instantiations of polymorphic type arguments
may be refined. For instance, { xs:[{ x:Int | x > 0 }] | size xs > 0 } is a type
describing a non-empty list of postive Ints. As with measures, synthesizing these
polymorphic refinements relies on us having only constraints over known input and
output values. For each polymorphic type argument that is instantiated with an
Int, we introduce a new function template F f,poly

U in the problem for the synthLIAk
synthesizer. Then, we extract each value that the polymorphic refinement would be
applied to from the known inputs and outputs, and apply F f,poly

U to it in the synthLIAk
synthesizer.

Example 5. Consider the function f :: [Int] -> [Int]. Suppose we have a con-
straint that spref ([1, 4, 8]) must be true. Assuming the size measure is available, we
will search for a LIA function satisfying the specification spref (3). To search for a
specification for the values in the list, we introduce an additional function spref2

, and
require that spref2

(1) ∧ spref2
(4) ∧ spref2

(8) holds.

5.6 Evaluation

To evaluate Lynx, we ran it on two sets of benchmarks.
Our first benchmark set is mostly focused on verifying properties of list functions.

We refer to these benchmarks as the list benchmarks. We collected these bench-
marks from a variety of sources, including a homework assignment in a graduate class
where the students wrote code and modular specifications to verify properties. This

82



set of benchmarks requires synthesizing modular specifications needed to verify func-
tions over integers, lists, and sets. In addition to synthesizing LIA specifications (as
discussed in Section 5.5), we also implemented a simple synthesizer capable of finding
specifications involving sets and set operations. This is discussed further below. Fur-
thermore, we ran one larger LIA specification benchmark (kmeans1) as an interesting
case study of applying Lynx to a larger, more complicated code base.

The second set of benchmarks is 46 programs based on the benchmarks from [70].
We refer to these as the comparison benchmarks. As these benchmarks were orig-
inally written in C, we translated the programs into Haskell so they could be run
through Lynx. In Section 5.6.3 we explain the differences between verification in im-
perative and functional languages, and why a direct comparison between Lynx and
existing tools targeting C is challenging. However, our translation allows a compari-
sion, in broad strokes, to the existing tools Hola [70] and Horn-DT-CHC [79].

5.6.1 List Benchmarks

Our first benchmark set consists of 26 prorams containing functions that manipulate
lists. The largest benchmark, kmeans1, is an implementation of the inner loop of a
KMeans algorithm. Section 5.6.2 provides a more detailed overview of this bench-
mark.
Results Figure 5.5 shows the performance of Lynx on the list benchmarks. The
benchmarks were run with a timeout of 4 minutes, except kmeans1, which was given
18 minutes. Lynx successfully verified 23 of the 26 benchmarks.
Optimizations and Heuristics To measure the impact of the optimizations and
heuristic in Section 5.4.3, we reran each benchmark without non-blocking constraint
generation. We also reran each benchmarks which took advantage of level descent
with the level descent turned off.

The non-blocking constraints give a speed up of at least 5 seconds to 7 of the bench-
marks. Four benchmarks (takeRelaxed, halves,take/replicate, and nearest)
that terminate with non-blocking constraints timed out when this optimization was
turned off. Most other benchmarks are not significantly affected by the non-blocking
constraints. Interestingly, the largest decrease in run time from not using the extra
constraints occurs for kmeans1, which went from taking 804.9 seconds with the ex-
tra constraints to 749.1 seconds without the extra constraints. The second largest
decrease is for zipUnsafe, which dropped from taking 75.5 seconds to 71.4. Level
descent was used only twice: without it insertSortElems takes over twice as long to
terminate, and kmeans1 times out.
Set specifications In addition to the LIA specification synthesizer, we implemented
a synthesizer for specifiations about integer sets, using Z3’s extended theory of ar-
rays [65]. Sets can be used in LiquidHaskell specifications either by creating them via
a measure (often fromElts, which creates a Set from a list), or by applying a singleton
function, Set_sng to an Int. Set membership can be checked, or sets can be compared
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via equality or subset relations. Sets can be combined via union or intersection, using
functions called Set_cup and Set_cap, respectively.

As a simple example of sets in LiquidHaskell, consider add, which adds a single
element to a list:

add x xs = x:xs

add can be assigned the postcondition refinement:
{ r:[Int] | fromElts r == Set_cup (Set_sng x) (fromElts xs) }

to express that the output list r has the same elements as the input list xs, plus the
element x.

Like our LIA synthesizer, our set synthesizer works via an SMT formula template
that allows for various specifications, and uses MaxSMT to find the small solutions.
Perfomance of the SMT solver is much more of a challenge synthesizing set specifi-
cations than it is synthesizing LIA specifications. As a representative example, on
the halves benchmark, 107.6 seconds (72% of the total runtime) is spent running
the synthesizer. In contrast, for the LIA benchmark kmeans1, 213.3 seconds, only
26% of the total runtime, is spent on synthesis. In the future, we hope to explore
alternative synthesis techniques which might improve the runtime, such enumerative
SyGuS solvers [24].

5.6.2 Case Study: kmeans1

The kmeans1 benchmark implements the K-Means clustering algorithm [132]. We
define PointN N as N-dimensional values containing type Double, and Centers K N as
a collection of K-centers each of which is an N-dimensional point:

type PointN N = {v:List Double | size v = n}
type Centers K N = M.Map {v:Int |0<=v && v<K} (PointN N)

kmeans1 implements a single iteration of the clustering algorithm. kmeans1’s type says
it takes a collection of n-dimensional points, and a starting k-centering and returns
an updated k-centering:

kmeans1 :: k:Nat -> n:Nat -> List (PointN n) -> Centers k n
-> Centers k n

kmeans1 k n ps cs = normalize (mapReduce fm fr ps)
where normalize = M.map (\(sz, p) -> centroid n p sz)

fm p = singleton (nearest k n cs p, (1::Int , p))
fr wp1 wp2 = mergeCluster n wp1 wp2

When verifying kmeans1, 214 seconds, (about a fourth of the total time), is spent
symbolically executing kmeans1. This is attributable to kmeans1’s complexity. Veri-
fying kmeans1 requires synthesizing specifications for three of its direct callees, each
with multiple preconditions. For example, the specification synthesized for nearest,
which computes the center closest to a point p, is:

nearest :: k:Int -> n:Int
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-> Map {c:Int| 0 <= c && c < k} (PointN cs)
-> p:PointN n -> {r : Int|0 <= r && r < k}

Despite these specifications complexity, our inference approach scales to synthesize
them. Previously a user verifying kmeans1 would have had to tediously determine the
exact specifications to give to each of the functions, wheres with Lynx, the specifica-
tions can be automatically synthesized.

5.6.3 Comparison benchmarks

To compare the techniques implemented in Lynx to existing techniques, we took the
46 C benchmarks originally written or collected to evaluate Hola [70] and manually
rewrote them in Haskell. We will explain why these benchmarks may not be the best
fit for Haskell. Nevertheless, they allow us to compare and position Lynx relative to
Hola [70], and Horn-DT-CHC [79].
Translation, Limitations, and Compensations The [70] benchmarks are not a
natural fit for Haskell. The benchmarks are all single non-recursive functions con-
taining at least one while or for loop. In contrast, Haskell has no loops at all: instead
programs must be written with recursive functions. In Haskell a while loop can be
simulated via a higher order while function:

while :: (a -> Bool) -> (a -> a) -> a -> a
while cond body x = if cond x

then while cond body (body x)
else x

while is passed a value x of type a and two functions: cond, which has type a -> Bool
and corresponds to the loop conditional, and body, which has type a -> a and corre-
sponds to the body of the loop. The while function then calls body on x until cond x
is false. To use while to translate a C loop into Haskell, we pass all variables modified
in the C program in a tuple as x, and write appropriate functions for cond and body.
Figure 5.6 shows an example of one such translation.

Due to details of verification condition generation for imperative versus functional
code, this translation often makes verification harder for a functional tool than an
imperative tool. These differences arise from the fact that, in an imperative program,
loops are a language construct, with special handling during verification condition
generation. In a imperative program, an loop invariant I must be provided for each
loop. This loop invariant must be true at the inital call to the loop, and must be
maintained by each interation of the loop. Thus, the synthesizer knows it must
synthesize a single invariant.

In contrast, Lynx, working in a functional language, might try and synthesize
different specifications for the pre and postcondition of a body function. To control
for this, and try to focus our analysis on the difference in effectiveness of underly-
ing techniques (as opposed to the verification challenges posed by imperative versus
functional code) we passed a flag to Lynx when running the comparison benchmarks,
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which indicated that body functions should be assigned the same pre and postcondi-
tion.

Unfortunately, this is not always a viable method to address the additional chal-
lenge faced in a functional context. After a loop has terminated, an imperative verifier
knows not only that the loop invariant holds, but also that the negation of the loop
condition holds. But in our functional context, it is impossible (at least, given the
subset of LiquidHaskell specifications we consider) to communicate that after while
returns a value, cond evaluates to false. Thus, when translating benchmarks where
this is an important property, we create special versions of while with an appro-
priate cond and body inlined, and allow while to be assigned different pre and post
conditions. While this increases the search space (relative to the search space in an
imperative context), it does at least allow for the existence of a solution.
Results In total, Lynx succeeeds in verifying 30 benchmarks (with a timeout of 10
minutes.) Figure 5.7 shows the running times for Lynx to verify the benchmarks.

Horn-DT-CHC [79] is the most similar existing work to Lynx, as it synthesizes
invariants and specifications sufficient for verification using a CEGIS loop and coun-
terexamples. Horn-DT-CHC succeeds on 29 out of 45 benchmarks, with a timeout of
10 minutes (one benchmark is discarded, because a conversion to their input format,
CHCs, made it trivial.) The benchmarks solved by Horn-DT-CHC and Lynx are not
a perfect overlap. There are 7 benchmarks — in particular, 7, 9, 11, 13, 15, 33, and
38 — which we are able to verify and which Horn-DT-CHC cannot.

The tool in the original source of the benchmarks, Hola [70] works by using logical
abduction to find possible loop invariants. Hola verifies 43 of the 46 benchmarks
(with a 200 second timeout.) However, Lynx verifies benchmark 15, which Hola fails
to verify. Hola also timeouts when run on 19 and 34, which cause Lynx to timeout
as well. Hola performs better overall on these benchmarks than both Lynx and [79].
However, as will be elaborated in Section 5.7, Hola’s approach is restricted to logics,
such as LIA, in which quantifier elimination is possible.
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Main Lvl Negated
Function(s) LoC Funcs Lvls Time (s) Loops Dec. Models
LIA
zipUnsafe 14 3 2 75.5 20 0 0
takeRelaxed 8 2 2 51.8 36 0 0
take 12 4 3 5.0 0 0 0
drop 12 4 3 13.7 7 0 0
weightedAverage 30 12 5 54.0 23 0 0
risers 15 4 4 13.1 0 0 0
zipUnlessEmpty 13 6 4 TO N/A N/A N/A
quickSortSize 19 3 2 14.4 5 0 0
reverse 10 4 3 14.6 8 0 0
concat (1) 26 12 3 TO N/A N/A N/A
concat (2) 29 15 3 27.8 16 0 0
concat (3) 22 5 3 15.8 6 0 0
zipWith 24 10 3 19.2 6 0 0
size 22 13 5 15.9 5 0 0
map 17 9 3 11.8 3 0 0
replicate 22 10 3 13.9 2 0 0
drop/dropEnd 17 5 3 27.5 13 0 0
take/replicate 17 6 3 21.1 11 0 0
nearest 33 15 5 61.4 18 0 0
kmeans1 99 34 5 804.9 79 6 1
Sets
halves 12 3 2 147.9 10 0 0
append 9 3 2 7.0 0 0 0
elem 8 3 2 12.5 5 0 0
insertSortElems 10 2 2 23.9 2 1 0
mergeSortElems 22 4 2 TO N/A N/A N/A
reverse 8 2 2 17.4 4 0 0

Figure 5.5: Evaluation of Lynx: Main Function is the benchmark name; LoC and Funcs
are the number of lines of code and functions in the benchmark; Lvls is the maximum call-
graph depth in the benchmark; Time is the number of seconds needed to infer modular
specifications that verify the benchmark; Loops is the number of CEGIS loop iterations
needed to infer specifications; Lvl Dec and Negated Models is the number of times the
backtracking and negated models heuristics were used.
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while(x!=0) {
x--;
y++; }

(a) A C function

cond1 (x, y) = x /= 0
body1 (x, y) = (x - 1, y + 1)
use (x, y) = while cond1 body1 (x, y)

(b) The corresponding Haskell code

Figure 5.6: Translation of a C loop (in 5.6a) to a Haskell recursive function (in 5.6b.)

# Time (s)
01 9.4
02 TO
03 23.4
04 TO
05 74.2
06 132.3
07 139.8
08 28.0
09 48.4
10 23.8

# Time (s)
11 124.1
12 TO
13 42.5
14 147.6
15 35.1
16 28.6
17 113.5
18 TO
19 TO

# Time (s)
20 TO
21 TO
22 TO
23 13.2
24 63.4
25 67.3
26 259.9
27 16.9
28 32.3

# Time (s)
29 TO
30 8.9
31 49.2
32 TO
33 533.4
34 TO
35 25.6
36 TO
37 49.7

# Time (s)
38 99.2
39 57.5
40 TO
41 74.5
42 TO
43 18.9
44 224.9
45 TO
46 TO

Figure 5.7: Running times of Lynx on the benchmarks from [70] with a timeout of 10
minutes.
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5.7 Related Work

Modular Verification Specification Generators Houdini [82] automatically gen-
erates specifications for the ESC/Java modular verifier [81]. Houdini is a preprocessor,
which discovers specifications by generating a large number of candidate templates,
and then using ESC/Java to find a fix-point of valid specifications. LiquidHaskell uses
a similar scheme to infer specifications using user-supplied templates (qualifiers). Un-
fortunately, it can be slow to find a valid fix-point, so, the number of templates must
not be too large. Consequentally, the set of templates might be missing a specifica-
tion that is required to verify user-written code. In contrast, our work discovers and
proves specifications as needed by the verifier, allowing it to search for specifications
that are useful to verify specific user-written specifications.
Verification Techniques Inlining techniques [126, 125, 184, 98] are effective at
proving properties involving no loops, or checking properties up to a loop-unrolling
bound. In general, though, inlining is ineffective to verify functions with input-
dependent recursion, since the number of recursive calls might be unbounded.

[60, 59] describe precondition inference techniques based on shifting assertions
backwards, closer to the entry point of the program, and using widening to overap-
proximate loops. A distinction is drawn between preconditions that are sufficient and
preconditions which are necessary. A precondition is sufficient if it can be used to
prove that no assertion will be violated, while a precondition is necessary if it must
hold to avoid violating an assertion. [60, 59] focus on finding necessary preconditions
to avoid violating assertions, but makes no guarantees that the preconditions are suf-
ficent to avoid assertion violations. In contrast, our work finds (in their language)
necessary and sufficient specifications to verify a user provided specification.

Work such as [22, 165] synthesizes maximal specifications for undefined functions.
Such maximal specifications describe the largest set of allowable behaviors in order to
guarantee satsifying some specification for a known function. In contrast, our work
assumes all function procedures are known, and aims to find specifications for each
level of the call graph to fully verify user provided specifications. Techniques devel-
oped for maximal specification synthesis could possibly complement our approach to
synthesizing specifications for a particular call graph level.
(Counter)example Guided Inference Like our work, [176] synthesizes refinement
types for a higher order modular verifier, automating the process of modular verifi-
cation. Traces through the program (which can be seen, in our terminology, as a sort
of abstract counterexample, in which every called function is abstracted) are used to
guide the synthesizer. Specifications are synthesized all at once, rather than modu-
larly, as in our approach. [176] proves a progress property for their algorithm, which
is sufficient to show that it is complete for finite sets of possible specifications (along
the lines of our Theorem 3) however, it does not consider completeness in the case of
infinite possible specifications (as we do with Theorem 5.)

[79] finds specifications for modular verification using Horn-ICE and decision tree
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learning. Whereas in Lynx, specification synthesis is itself largely modular (only spec-
ifications for functions on the same call graph level must be synthesized together),
in [79] all specifications must be synthesized together. [79] and Lynx take different
tradeoffs when actually synthesizing specifications. [79]’s decision tree learning al-
gorithm finds specifications over an arbitrary set of predicates, whereas Lynx uses
synthesizers built to support specific theories. While [79] is more easily generalizable,
Lynx is able to benefit from SMT solvers domain specific reasoning and heuristics in
finding specifications. Our evaluation compares [79] and Lynx, and finds that both
are able to verify programs that the other can not.

PIE [151] generates preconditions and loop invariants. Counterexamples are gath-
ered when a specification is insufficient. Example-guided synthesis is used to learn
predicates dividing positive and negative examples. NumInv [144] and SymInfer [145]
search for loop invariants using symbolic execution (Klee [46] and Symbolic Path-
finder [154], respectively) to generate, in our parlance, concrete counterexamples.
PreInfer [34] collects path constraints from symbolic execution to generate precondi-
tions that prevent tests from failing. Provisio [33] uses machine learning techniques
and symbolic execution to learn preconditions that prevent failing tests from a test
generator. Alive-Infer [137] generates preconditions to ensure the correctness of LLVM
optimizations. LinearArbitrary [208] uses machine learning techniques to solve for
predicates in Constrained Horn Clauses, which can be used to verify safety properties
of programs. The techniques used are limited to numerical constraints. Hola [70]
strengthens loop invariants until they become inductive, by solving abduction prob-
lems over verification conditions. Quantifier elimination is used to find solutions to
abduction problems, thus applying Hola to specifications logics that do not admit
quantifier elimination (such as the theory of arrays) would require developing new
approaches to solving abduction problems.

Our work differs in its focus on modular verification. In a modular setting, we
contend with many specifications, for many separate functions. Whereas these ex-
isting tools synthesize invariants or preconditions for a single place in the code, we
face the problem of localizing which of several specifications need to be strengthened
or weakened. Lynx uses abstract counterexamples to determine which specifications
needs to be strengthened, and how to do so. With the exception of [79], none of
the existing work has a completeness result that applies to an infinite set of possible
specifications.

Finally, these existing techniques generally focus on problems where all inputs are
directly integers. In contrast, our synthesizer synthLHk also searches over measures
(including compositions of measures) and integer values nested in polymorphic types.
As this is done by a decomposition to a problem that is purely over integers, it is
largely orthogonal. If desired, we expect the decomposition could be used alongside
any of these other existing specification inference techniques.
Model Checking Lazy abstraction [102] is a model checking technique that refines
pieces of an abstract model using predicates learned by interpolating counterexample
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traces. Whale [23] uses craig interpolants to refine abstract reachability graphs, and
prove properties of recursive programs. Mochi [120, 177] applies counterexample-
guided predicate abstraction to verify numerical properties of higher-order functional
programs. All the above use interpolation on execution traces, as opposed to just
input-output values as in Lynx. The use of input-output counterexample values cru-
cially lets Lynx reliably synthesize specifications over functions like size, in contrast
to the purely numerical properties to which trace-based interpolation is limited [108].

5.8 Conclusions and Future Work

Modular verification tools suffer from the drawback that they cannot verify a pro-
gram unless all callee functions have explicitly stated strong enough specification. In
this work, we developed formal foundations and an accompanying implementation for
automatically inferring specifications for callee functions. To automate modular ver-
ification, we described a counterexample guided inference algorithm. We proved that
our algorithm is sound and complete for finite sets of specifications. Furthermore, we
introduced size-bound synthesizers to extend our soundness and completeness result
to infinite sets of specifications. We applied those general results and showed how
to build a size-bound synthesizer for linear integer arithmetic specifications. Finally,
our evaluation shows our techniques applicability to a range of benchmarks involving
integers, lists, and sets.

As future work, we aim to extend our techniques to synthesize more types of
specifications. We already have some preliminary work supporting set specification.
Many otherwise appealing synthesizers (such as SyGuS solvers) are currently inca-
pable of producing interpolants. In fact, often, synthesis techniques cannot determine
unrealizability at all. Thus, one intriguing direction is to extend existing techniques
to detect unrealizability and generate interpolants.

We believe that our results indicate that the automation of modular verification
can be significantly improved for certain classes of programs. By combining and
applying synthesis and automated reasoning techniques, we reduce the burden of
writing annotations for modular verification, thus making the verification process
more accessible for everyday programmers.

91



Chapter 6

Grammar Filtering For
Syntax-Guided Synthesis

This chapter describes work completed in collaboration with Kairo Morton, Elven
Shum, Ruzica Piskac, and Mark Santolucito. This work includes material originally
published in [139].

6.1 Introduction

The term “program synthesis” refers to automatically generating code to satisfy some
specification. That specification describes what the code should do, without going
into details about how it should be done. The specification could be given as a set of
constraints [134, 123], it can be deduced from the program and its environment [92,
80], or it can be inferred from a large corpus [37, 174].

One paradigm of program synthesis is called programming by example [61] (PBE).
In the PBE approach, a user only provides a set of pairs of input-output examples
that illustrate the desired behavior of the code. From these examples, the PBE engine
should then generate code that generalizes from the examples to create a program
which covers the unspecified examples as well.

The idea of automated code synthesis is an area of research with a long history
(cf. the Church synthesis problem [56]). However, due to the problem’s undecid-
ability and high computational complexity for decidable fragments, for almost 50
years the research in program synthesis was mainly focused on addressing theoretical
questions and the size of synthesized programs was relatively small. However, the
state of affairs has drastically changed in the last decade. By leveraging advances
in automated reasoning and formal methods, there has been a renewed interest in
software synthesis. The research in program synthesis has recently focused on devel-
oping efficient algorithms and tools, and synthesis has even been used in industrial
software [90]. Today, machine learning plays a vital role in modern software synthesis
and there are numerous tools and startups that rely on machine learning and big data
to automatically generate code [16, 37].
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With numerous synthesis tools and formats being developed, it was difficult to
empirically evaluate and compare existing synthesis tools. The Syntax Guided Syn-
thesis (SyGuS) format language [24, 167] was introduced in an effort to standardize
the specification format of program synthesis, including PBE synthesis problems. The
SyGuS language specifies synthesis problems through two components - a set of con-
straints (eg input-output examples), and a grammar (a set of functions). The goal
of a SyGuS synthesis problem is to construct a program from functions within the
given grammar that satisfies the given constraints. With this standardized synthesis
format and an ever expanding set of benchmarks, there is now a yearly competition
of synthesis tools [25], which pushes the frontier of scalable synthesis further.

The SyGuS Competition splits synthesis problems into tracks, for example PBE
Strings or PBE BitVectors, assigning a different grammar for each track - and some-
times even varying the grammar within a single track. As the grammar defines the
search space in SyGuS, this allows benchmark designers to ensure problems are rel-
atively in-scope of current tools. However, when synthesis is deployed in real-world
applications, we must allow for larger grammars that account for the wide range of
use-cases users require [173]. While larger grammars allow for more expressive power
in the synthesis engine, it also slows down the whole synthesis process.

In our own experimentation, we found that by manually removing some parts of
the grammar from the SyGuS Competition benchmarks, we can significantly improve
synthesis times. Accordingly, we sought to automate this process. Removing parts of a
grammar is potentially dangerous though, as we may remove the possibility of finding
a solution altogether. In fact, understanding the grammar’s impact on synthesis
algorithms is a complex problem, connected to the concept of overfitting [150].

In this paper, we utilize machine learning to automate an analysis of a SyGuS
grammar and a set of synthesis constraints. We generate a large number of SyGuS
problems, and use this data to train a neural network. Given a new SyGuS problem,
the neural network predicts how likely it is for a given grammar element to be critical
to synthesizing a solution to that problem. Our key insight is that, in addition to
criticality, we predict how much time we expect to save by removing this grammar
element. We combine these predictions to efficiently filter grammars to fit a specific
synthesis problem, in order to speed up synthesis times. Even with these reduced
grammars, we are still able to find solutions to the problems.

We implemented our approach in a modular tool, GRT, that can be attached to
any existing SyGuS synthesis engine as a blackbox. We evaluated GRT by running
it on the SyGuS Competition Benchmarks from 2019 in the PBE Strings track. We
found GRT outperformed CVC4, the winner of the SyGuS Competition from 2019,
reducing the overall synthesis time by 47.65%. Additionally, GRT was able to solve
a benchmark for which CVC4 timed out.

In summary, the core contributions of our work are as follows:

1. A methodology to generate models that can reduce time needed to synthesize
PBE SyGuS problems. In particular, our technique reduced the grammar by
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identifying which functions to try to eliminate to increase the efficiency of a
SyGuS solver. It also learns a model to predict which functions are critical for
a particular PBE problem.

2. A demonstration of the effectiveness of our methodology. We show experiments
on existing SyGuS PBE Strings track that demonstrates the speed up resulting
from using our filtering as a preprocessor for an existing SyGuS solver. Over the
set of benchmarks, our techniques decreases the total time taken by synthesis
by 47.65%.

6.2 Background

A SyGuS synthesis problem is a tuple (C,G) of constraints, C, and a context-free
grammar, G. In our case we restrict the set of constraints to the domain of PBE,
so that all constraints are in the form of pairs (i, o) of input-output examples. We
write G \ g to denote the grammar G, but without the terminal symbol g. The set
of terminal symbols are the component functions that can be used in constructing
a program (e.g. +, -, str.length). We also use the notation, π(G), to denote the
projection of G into its set representation, which is the set of the terminal symbols
in the grammar.

The problem statement of syntax-guided synthesis (SyGuS) is; given a grammar,
G, and a set of constraints C, find a program, P ∈ G, such that the program satisfies
all the constraints – ∀c ∈ C.P ` c. For brevity, we equivalently write P ` C. If
our synthesis engine is able to find such a program in t seconds or less, we write that
(G,C) t P . We use the notation TCG to indicate the time to run (G,C) t P . If the
SyGuS solver is not able to find a solution within the timeout (TCG > t), we denote
this as (G,C) 6 t P . We typically set a timeout on all synthesis problems of 3600
seconds, the same value of the timeout used in the SyGuS competition. We write
(G,C)  P and (G,C) 6 P as shorthand for (G,C)  3600 P and (G,C) 6 3600 P ,
respectively.

We defineG as the grammar constructed from the maximal set of terminal symbols
we consider for synthesis. We call a terminal, g, within a grammar, critical for a set of
constraints, C, if (G \ g, C) 6 P . For any given set of constraints, if a solution exists
with G, there is also a grammar, Gcrit, that contains exactly the critical terminal
symbols required to find a solution. More formally, Gcrit is constructed such that

(Gcrit, C) P ∧ ∀g ∈ Gcrit. (G \ g, C) 6 P

Note that Gcrit is not unique.
The goal of our work is to find a grammar, G?, where π(Gcrit) ⊆ π(G?) ⊆ π(G).

This will yield a grammar that removes some noncritical terminal symbols so that
the search space is smaller, but still sufficient to construct a correct program.
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Figure 6.1: GRT uses the grammar G and constraints C to predict how critical each
function is, and the amount of time that would be saved by eliminating it from the grammar.
Then, it outputs a new grammarG?, which it expects will speed up synthesis over the original
grammar (that is, it expects that TCG? < TCG ).

6.3 Overview

Our system, GRT, works as a preprocessing step for a SyGuS solver. The goal of
GRT is to remove elements from the grammar and thus, by having a smaller search
space, save time during synthesis. To do this we combine two metrics, as shown in
Figure 6.1: our predicted confidence that a grammar element is not needed, and our
prediction of how much time will be saved by removing that element. We focus on
removing only elements where we are both confident that the grammar element is
noncritical, and that removing the grammar element significantly impacts synthesis
times. By giving the constraints and the grammar definition to GRT, we predict
which elements of the grammar can be safely removed. By analyzing running times
we predict which of these elements are benefical to remove. We describe GRT in three
sections, addressing dataset generation, the training stage, and our evaluation.

6.4 Data Generation

In order to learn a model for GRT, we need to generate a labelled dataset that maps
constraints to grammar components in Gcrit. This will allow us to predict, given a
new set of constraints C ′, which grammar elements are noncritical for synthesis, and
accordingly prune our grammar. The generation of data for application to machine
learning for program synthesis is a nontrivial problem, requiring careful construction
of the dataset [181]. We break the generation of this dataset into two stages: first,
we generate a set of programs, P from G. Then, for each program in P , we generate
constraints for that program. We additionally need a dataset of synthesis times, in
order to predict how long synthesis takes for a given set of constraints.
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6.4.1 Criticality Data

To generate a set of programs P , that can be generated from a grammar G, we con-
struct a synthesis query with no constraints. We then run CVC4 with the command
–sygus-stream, which instructs CVC4 to output as many solutions as it can find.
With no constraints, all functions satisfy the specification, and CVC4 will generate
all permutations of (well-formed and well-typed) functions in the grammar, until the
process is terminated (we terminate after generating n programs). Because CVC4
generates solutions of increasing size, we collect all generated programs, then shuf-
fle the order to prevent data bias with respect to the order (size) in which CVC4
generated programs.

After generating programs, we generate corresponding constraints (in the form of
input-output examples for PBE) for these functions. To do this, for each program,
P , we randomly generate a set of inputs I, and compute the input-output pairs
C = {(i, P (i)) | i ∈ I}. We then form a SyGuS problem (G,C), where we know
that the program P satisfies the constraints, and is part of the grammar: P ` C and
P ∈ G. This amounts to programs that could be synthesized from the constraints
(i.e. (G,C)  ∞ P ). It is important that our dataset represent programs that could
be synthesized, as opposed to what can be synthesized (i.e. (G,C)  3600 P ). This
is important because we will use this data set to try to learn the “semantics” of
constraints, and we do not want to use this data set to additionally, inadvertently
learn the limitations of the synthesis engine.

At this point, we have now constructed a dataset of triples of grammars (fixed
for all benchmarks), constraints, and programs, D = {(G,C1, P1) . . . (G,Cn, Pn)}.
In order to use D to helps us predict Gcrit, we break up each triple by splitting
each constraint set C into its individual constraints. For a triple (G,C, P ), where
C = {c1 . . . cm}, we generate a new set of triples {(G, c1, P ) . . . (G, cm, P )}. The
union of all these triples of individual constraints form our training set, T Rcrit, that
will be used to predict critical functions in the grammar for a given set of constraints.

6.4.2 Timing Data

In addition to a training set for predicting Gcrit, we also need a separate training set
for predicting the time that can be saved by removing a terminal from the grammar.
This dataset maps grammar elements g ∈ G to the effect on synthesis times, R, when
g is dropped from the grammar. To do this we require synthesis problems that more
closely model the types of constraints that humans typically write. We collect these
set of benchmarks from users of the live coding interface for SyGuS [173]. Because
we had limited number of human-generated constraint examples, we augmented this
with constraints generated from T Rcrit.

We run synthesis for each problem with the full grammar, as well as with all
grammars constructed by removing one element, g. For every synthesis problem
benchmark, 1 ≤ i ≤ m, we record the difference in synthesis times between running
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with the full grammar, and removing g:

TCi
G − T

Ci

G\g

Thus, we create a training set, T Rtime, relating each terminal g ∈ π(G) and a set
of constraints, to the time it takes to synthesize a solution without that terminal.

6.5 Training

6.5.1 Predicting criticality

Our goal is to predict, given a set of constraints C, if a terminal g belongs to the
set of terminals π(Gcrit) for C. To do this, we use a Feedforward Neural Network
(Multi-Layer Perceptron), with an extra embedding layer to encode the string valued
input-output examples into feature vectors. We train the neural network to predict
the membership of each terminal g ∈ π(G) to the critical set π(Gcrit), based on
a single constraint c ∈ C. This prediction produces a 1D binary vector of length
|π(G)|, where 1 at position i in the binary vector indicates the terminal in position i
is predicted to belong to the critical set.

When a SyGuS problem has multiple (|C| ≥ 2) constraints, we run our predic-
tion on each constraint individually. We then use a voting mechanism to come to
consensus on the construction of G?. After computing |C| binary vectors across all
constraints, the vectors are summed to produce a final voting vector. The magnitude
of each element in this final voting vector represents the number of votes “from each
constraint” that the terminal represented by that element is in the critical set. We
then use this final voting vector in combination with our time predictions.

6.5.2 Predicting time savings

It is only worthwhile to remove a terminal symbol g from a grammar G if TCG\g is less
than TCG . If a g stands to only give us a small gain in synthesis times, it may not be
worth the risk that we incorrectly predicted its criticality.

To predict the amount of time saved by removing a terminal g we examine the
distribution of times in our training set T Rtime. For each terminal g, we calculate Ag,
the average time increase that results from removing g from the grammar. Denoting
the time to run (G,C) P as TCG , we can write Ag as:

Ag =

∑n
i=1 T

Ci
G − T

Ci

G\g

n

If a terminal g has a negative Ag, then removing it from the grammar actually
slows down synthesis, on average. As such, dropping the terminal from the grammar
is not generally helpful. Thus, we only consider those terminals with a positive Ag in
our second step.
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6.5.3 Combining predictions

With our predictions of the criticality a terminal g and of time saved by removing g,
we must make a final decision on whether or not we should remove g. To do this, we
take the top three terminals with the greatest average positive impact on synthesis
time over the training set, as computed with Ag. These tended to be terminals that
mapped between types which saved more time due to the internal mechanisms and
heuristics of the CVC4 solver. We then use the final voting vector from our criticality
prediction to choose only two out of the three to remove from G to form G?. We
chose to remove only two terminals from G in order to minimize the likelihood of
generating a G?, such that π(G?) ⊆ π(Gcrit). We conjecture that the number of
terminals removed is a grammar-dependent parameter that must be selected on a per
grammar basis, just as the number of terminals with Ag > 0 is grammar specific.

6.5.4 Falling back to the full grammar

There is some danger that G? will, in fact, not be sufficient to synthesize a program.
Thus, we propose a strategy that

• first, tries to synthesize a program with the grammar G?

• second, if synthesis with G? is unsuccessful, falls back to attempting synthesis
with the full grammar G.

We determine how long to wait before switching from G? to G by finding an x

that minimizes:

n∑
i=1

{
TCi
G? TCi

G? < x

min(x+ TCi
G , t) TCi

G? > x

}
where C1 . . . Cn are the constraints from the training set, and t is the timeout for
synthesis.

Ideally, as captured in the first line of the sum, (Ci, G
?)  x P will finish before

TCi
G? = x. However, if a benchmark does not finish in that time, it will fall back

on the full grammar. Then, either (Ci, G
?)  t−x P will succeed, and synthesize the

expression in total time x+TCi
G , or synthesis will timeout, in total time (t−x)+x = t.

6.6 Experiments

The SyGuS competition [26] provides public competition benchmarks and results
from previous years. In particular, the PBE Strings dataset provides a collection of
PBE problems over a grammar that includes string, integer, and Boolean manipulat-
ing functions. First, we describe our approach to generating a training set of PBE
problems over strings. Then, we present our results running GRT against the 2019
competition’s winner in the PBE Strings track, CVC4 [147, 39, 25]. We are able to
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Figure 6.2: The top 20 problems with longest synthesis time for CVC4 (excepting time-
outs), and the corresponding synthesis times for GRT+CVC4.

reduce synthesis time by 47.65% and synthesize a new solution to a benchmark that
was left unsolved by CVC4.

6.6.1 Technical details

The data triples generated during our initial data generation process of T Rcrit are
triples of strings. However, the neural network cannot process input-output pairs
of type string as input. Thus, this data must be encoded numerically before it can
be utilized to train the neural network. Each character in the input-output pairs
is converted to its ASCII equivalent integer value. The size of each pair is then
standardized by adding a padding of zeros to the end of each newly encoded input
and output vector respectively. This creates two vectors: the encoded input and
the encoded output, both of which have a length of 20. These two vectors are then
concatenated to give us a single vector for training. By the end of this process
the triples created in our first data generation step are now one vector of type N40

representing the input-output pair and a correct label P that will be predicted.
To generate the training set for predicting synthesis times, T Rtime, we combine

human generated and automatically generated SyGuS problems. Specifically, we
use 10 human generated SyGuS problems, and 20 randomly selected problems from
T Rcrit.

The overall architecture of our model can be categorized as a multi-layer percep-
tron (MLP) neural network. More specifically, our model is made up of five fully
connected layers: the input layer, three hidden layers, and the output layer. By us-
ing the Keras Framework, we include an embedding layer along with our input layer
which enables us to create unique vector embeddings of length 100 for any given
input-output pair in the dataset. This embedding layer learns the optimal weights
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used to create these unique vectors through the training process. Thus, we create an
encoding of the input-output pairs for training, while simultaneously standardizing
the scale of the vector before it reaches the first hidden layer. The hidden layers of
the model are all fully connected, and all use the sigmoid activation function. In
addition, we implement dropout during training to ensure that overfitting does not
occur. The size of the hidden layers was calculated using a geometric series to ensure
that there was a consistent decrease in layer size as the layers get closer to the output
layer. Specifically, the size of each hidden layer was calculated by:

HLsize(n) = input size
(output size
input size

) n
Lnum+1

where Lnum represents the total number of layers in the network. Our model used
the Adam optimization method and the binary-cross entropy loss function as it is
well suited for multi-label classification. Overall, our model was trained on 124928
data points for 15 epochs with a batch size of 200 producing a training time of 228
seconds.

6.6.2 Results

After generating our data sets and training our model, we wrote a wrapper script to
run GRT as a preprocessor for CVC4’s SyGuS engine. We compared the synthesis
results of GRT+CVC4 with the synthesis results of running CVC4 alone. All ex-
periments were run on MacBook Pro with a 2.9 GhZ Intel i5 processor with 8GB of
RAM. CVC4 uses a default random seed, and is deterministic over the choice of that
seed, so the results of synthesis from CVC4 on a given grammar and set of constraints
are deterministic. We note that our training data in no way used any of the SyGuS
benchmarks.

GRT+CVC4 outperformed directly calling CVC4 on 32 out of 64 benchmarks
(50%), with a reduction in total synthesis time over all benchmarks from 1304.87
seconds with CVC4 to 683.09 seconds with GRT+CVC4. On one benchmark, CVC4
timed out and was not able to find a solution (even when the timeout was increased
to 5000 seconds), while GRT+CVC4 found a solution within the timeout specified
by the SyGuS Competition rules (3600 seconds). On one benchmark, both CVC4
and GRT+CVC4 timeout (TO) and are not able to find a solution. On the other
31 benchmarks, CVC4 performed the same (within ±0.1s) with and without the pre-
processor. All the benchmarks for which CVC4 performed the same as GRT+CVC4
finish in under 2 seconds, and 28 of the 31 finish in under a second. In these cases
there was little room for improvement even with GRT+CVC4.

Figure 6.4 shows the exact running times with both the full and reduced grammars
from the benchmarks with the 30 largest running times with the full grammar. These
are the benchmarks for which the synthesis times and size of the solution diverge
most meaningfully, however all other data is available in the supplementary material
for this paper. Figure 6.4 also shows |P | and |P ∗|, the sizes of the programs found by
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Figure 6.3: When the GRT+CVC4 found a different solution than CVC4, it was on average
shorter than the solution found with the full grammar.

the CVC4 and GRT+CVC4, respectively. We define size of a program as the number
of nodes in the abstract syntax tree of the program. In terms of the grammar G, this
is the number of terminals (including duplicates) that were composed to create the
program.

In Figure 6.2, we present a visual comparison of the results for the 20 functions
that took CVC4 the longest, while still finishing in the 3,600 second time limit. We
note that we have the largest gains on the problems for which CVC4 is the slowest.
Problems that CVC4 already handles quickly stand to benefit less from our approach.

In order to get a better baseline to understand the impact of GRT on running
times, we ran a version of GRT with only the criticality prediction, which we call
GRTC. In this case, GRTC+CVC4 actually performed worse than CVC4 by itself,
increasing the running time on 53 out of the 62 benchmarks that did not timeout on
CVC4.

On all but 5 benchmarks, CVC4 synthesized the same program when running with
G and G?. The sizes of the programs (in terms of the number of terminal symbols
used) for the benchmarks on which CVC4 synthesized different programs are shown
in Figure 6.3. While on some benchmarks GRT+CVC4 produced a larger solution
than CVC4, as a whole the sum of the size of all solutions for CVC4 was 806, while
for GRT+CVC4 it was 789. Thus, overall, we were able to outperform CVC4 on size
of synthesis as well.

The SyGuS competition scores each tool using the formula: 5N + 3F + S, where
N is the number of benchmarks solved (non-timeouts), F is based on a “pseudo-
logarithmic scale” [26] indicating speed of synthesis, and S is based on a “pseudo-
logarithmic scale” indicating size of the synthesized solution. On all three of these
measurements, GRT+CVC4 performed better than CVC4. There are number of
other synthesis tracks available in the SyGuS competition, which do not involve PBE
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constraints. We note that our approach can selectively be applied as a preprocessing
step for input in the PBE track without incurring an overhead on other synthesis
tasks.

Although we implemented a strategy to manage a switch from the reduced gram-
mar back to the full grammar, we found in practice that the optimal strategy for our
system was to exclusively use the reduced grammar. Because we had conservatively
pruned the grammar, we had no need to switch back to the full grammar.
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id file TC
G TC

G? |P | |P ?|
34 lastname-small.sl 1.80 1.84 4 4
35 bikes-long.sl 1.97 1.76 3 3
36 bikes-long-repeat.sl 2.08 1.71 3 3
37 lastname.sl 2.31 1.83 4 4
38 phone-6-short.sl 3.23 1.22 11 11
39 phone-7-short.sl 3.26 1.26 11 11
40 initials-long-repeat.sl 3.33 2.54 7 7
41 phone-5-short.sl 3.72 1.51 9 9
42 phone-7.sl 4.57 2.03 11 11
43 phone-8.sl 4.72 2.17 11 11
44 phone-6.sl 4.85 1.97 11 11
45 phone-5.sl 4.88 2.20 11 11
46 phone-9-short.sl 4.88 4.73 52 52
47 phone-10-short.sl 8.81 8.28 49 49
48 phone-9.sl 12.08 4.86 56 52
49 phone-10.sl 31.23 8.49 97 49
50 lastname-long.sl 32.40 25.49 4 4
51 lastname-long-repeat.sl 32.49 24.92 4 4
52 phone-6-long-repeat.sl 83.59 25.31 11 11
53 phone-5-long-repeat.sl 84.77 33.68 11 11
54 phone-7-long.sl 87.83 26.15 11 11
55 phone-7-long-repeat.sl 89.13 26.23 11 11
56 phone-5-long.sl 90.81 30.01 11 11
57 phone-8-long-repeat.sl 91.04 35.64 11 11
58 phone-9-long-repeat.sl 91.19 77.02 47 50
59 phone-6-long.sl 98.15 24.75 11 11
60 phone-8-long.sl 108.06 29.94 11 11
61 phone-10-long-repeat.sl 149.53 129.43 49 65
62 phone-10-long.sl 153.32 133.22 49 65
63 initials-long.sl TO TO - -
64 phone-9-long.sl TO 3516.21 - 49

Figure 6.4: Synthesis results over the 30 longest running benchmarks from SyGuS Com-
petition’s PBE Strings track.
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6.7 Related

One approach to SyGuS is to directly train a neural network to satisfy the input/out-
put examples [30, 67, 88, 112, 114, 53]. However, such approaches struggle to general-
ize, especially when the number of examples is small [66]. Some existing work [199, 45]
aims to represent aspects of the syntax and semantics of a language in a neural net-
work. In contrast to these existing approaches, which aim to outright solve SyGuS
problems, our work acts as a preprocessor for a separate SyGuS solver. However, one
could also explore using our work as a preprocessor for one of these existing neural
network directed synthesis approaches. Other works have explored combining logic-
directed and machine learning guided synthesis approaches [148]. This work sought
to split synthesis tasks between generating high level sketches with neural networks,
and fill in the holes of the sketch with an enumerative solver. Our work could be
complementary to this, by assisting in pruning of the search space needed to fill in
the holes.

Like our work, DeepCoder [37] and Neural-Guided Deductive Search (NGDS) [115]
identify pieces of a grammar that should be removed from the grammar. However, in
our parlance, these works only consider criticality, which measures how important a
part of the grammar is to completing synthesis. Unlike our work, they do not consider
the time savings from removing or keeping a part of the grammar. NGDS [115]
does note that different models could be trained for different pieces of a grammar,
however, it provides no means of automating this process. Rather, the user would
have to manually elect to train individual neural networks for different grammatical
elements. Work by Si et al [182] aims to learn an efficient solver for a SyGuS from
scratch, rather than, as in our work, acting as a preprocessor for a separate solver.

6.8 Conclusions

In a way, by training on a dataset we generate from the output of the interpreter
of the language, we are encoding an approximation of the semantics into our neural
network. While the semantic approximation is too coarse to drive synthesis itself, we
can use it to prune the search space of potential programs. By predicting terminals
impact on synthesis time, we more conservatively remove only terminals likely to
have a positive impact. In conjunction with analytically driven tools, we can then
significantly improve synthesis times with very little overhead.

While we have presented GRT, which demonstrates a significant gain in perfor-
mance over all existing SyGuS solvers, we still have many opportunities for further
improvement. In our prediction of the potential time saved by removing a terminal
from the grammar, we have simply used the average expected value over all samples
in the dataset. By using a neural network here, we may be able to leverage some
property of the SyGuS problem constraints to have more accurate potential time
savings predictions. This would allow us, possibly in combination with a more ad-
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vance prediction combination strategy, to more aggressively prune the grammar. The
drawback to this approach is that we may then potentially remove too much from
the grammar. One of the key features of GRT is that it introduces no new timeouts,
that is, it does not remove any critical parts of the grammar.

Additionally, our prediction of criticality of a terminal uses a voting mechanism
to combine the prediction based on each constraint. While this worked well in prac-
tice, this strategy ignores the potential for interaction between constraints. In our
preliminary exploration, we were not able to construct a model that captures this
inter-constraint interaction in a useful way. This may be a path for future work. In
a similar vein, there exist a number of other works that define a criticality measure
for each terminal in the SyGuS grammar [37, 115]. It may be possible to leverage
these in place of our criticality measure, and in combination with our time savings
prediction, to achieve better results.

So far we have only explored the PBE Strings track of the SyGuS Competition.
The competition also features a PBE BitVectors track where our technique may have
significant gains as well. This would require a new encoding scheme, but the overall
approach would remain similar. In general, extending this work to allow for other
PBE types, as well as more general constraints, would broaden the potential real-
world application of SyGuS.
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Chapter 7

Automated Verification and Repair of
Firewalls

This chapter describes work completed in collaboration with Ennan Zhai and Ruzica
Piskac. This work includes material originally published in [96, 97].

7.1 Introduction

Firewalls play an important role in today’s individual and enterprise-scale networks.
A typical firewall is responsible for managing all incoming and outgoing traffic between
an internal network and the rest of the Internet by accepting, forwarding, or dropping
packets based on a set of rules specified by its administrators. Because of the central
role firewalls play in networks, small changes can propagate unintended consequences
throughout the networks. This is especially true in increasingly large and complex
enterprise networks.

A single line in a firewall could, for example, allow anyone to access production
services, and therefore it is critical to ensure the correctness of firewall rules. Broadly
speaking, a firewall is correct if the rules of that firewall meet the specification of its
administrator. There have been many efforts that aim to check the correctness of fire-
wall rules through techniques such as firewall analysis [136, 192], verification [131], and
root-cause troubleshooting [142, 200, 207]. For instance, systems like Margrave [142]
and Fang [136] build an event tree recording states of an observed error, and backtrack
through it to find the root causes.

While existing tools can identify the cause of an error, administrators still have
to manually find an effective repair to the firewall so that it meets the specification.
We propose a framework, called FireMason, that is the first to not only detects errors
in firewall behaviors, but also automatically repair the firewall. Specifically, a user
provides a list of examples of packet routing (e.g., all packets with a certain source
IP address should be dropped) to describe what the firewall should do. The current
firewall might or might not route the packets as specified in the examples. Given the
complexity of enterprise-scale networks, finding such a repair requires considerable
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expertise on the part of the administrator. To the best of our knowledge, there is no
existing effort that automates firewall repair.

The main challenge of firewall repair is to show that a generated firewall is indeed
repaired and that new rules do not change the routing of packets which are not
described by the given examples. We employ an SMT solver for this task. In a
nutshell, FireMason translates a given firewall into a sequence of first-order logic
formulas falling into the EUF+LIA logic [141], thus allowing us to use an SMT solver
for reasoning about the firewalls. By using SMT solvers, FireMason provides formal
guarantees that the repaired firewalls satisfy two important properties:

• Those packets described in the examples will be routed in the repaired firewall,
as specified.

• All other packets will be routed by the repaired firewall exactly as they were in
the original firewall.

Taken together, these two properties allow administrators confidence that the repairs
had the intended effect.

Furthermore, FireMason is also a stand-alone verification tool. The user specifies a
property of interest, and FireMason will either prove that the given property holds, or
if it does not hold, it produces counterexamples. As an illustration, if the user wants
to verify that all packets with the IP address 1.2.3.4 should be dropped, FireMason
either confirms that as correct, or it outputs an example of a packet with an IP
address of 1.2.3.4 that would be accepted by the firewall.

By having a description of a firewall as a set of first-order logic formulas we reduce
verification to the formula entailment problem, which we decide again using an SMT
solver. Additionally, this description is useful as a formal specification of the correct
behavior of a firewall implementation. The only existing specification for iptables is
a man page [6], which, as a textual description, is inherently imprecise.

Due to this imprecision, developing the set of first-order logic formulas in this
work required two steps. First, we careful read the man page specification. When the
man page was unclear, we turned to testing on actual implementations, to decide how
to resolve the ambiguously. By specifying the behavior as first-order logic formulas,
we provide future tool implementors with a precise description of iptables behavior.

Previous work has modeled firewalls using less expressive logics. For example,
Zhang et al. [207] use SAT and QBF formulas, while Margrave [142], uses first-order
relational logic (specifically, through the use of KodKod [192]). By using our formal-
ism we are able to check some important and widely used, but previously out-of-scope,
properties. In particular, the ability to reason about linear integer arithmetic with
an SMT solver is invaluable in handling rate limits. Rate limits, which are frequently
used in all modern firewalls, put a restriction on the number of packets matched in
a given amount of time. Using SMT solvers we are able to efficiently reason about
limiting rules. Due to the complexity of modeling limits, no previous work has con-
sidered firewalls with such rules. Such rules say, for example, that we can only accept
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6 packets per minute from a certain IP address. As before, the user provides a list of
examples, but with relative times. This requires reasoning about the priorities and
permissions of each firewall entry, as well as the temporal patterns of the incoming
packets.

We evaluated our tool using real-world firewall issues, and observed that FireMa-
son is able to efficiently generate correct firewalls meeting administrators’ examples,
without introducing any new problems. In addition, our evaluations show that Fire-
Mason scales well to enterprise-scale networks.

In summary, we make the following contributions:

• We describe a formalism to model firewalls and their behavior. This formalism
allows us to use SMT solvers to prove formal guarantees, which is useful both
for verification and repair.

• We explain the first method to automatically repair firewalls based on easily
specified examples. Administrators can conveniently specify their desired be-
haviors, and automate the repair process.

• We describe using SMT solvers to efficiently reason about limit rules, which are
not considered by any existing tool.

• We built a workable system that scales well with real-world examples and larger-
scale datasets.

7.2 Preliminaries

Repair by Example. In this paper, we introduce the repair by example paradigm,
which repairs faulty code so that it satisfies the given examples. In some ways, this
resembles the programming by example paradigm [61, 130]. However, in programming
by examples, the output is code which generalizes the given input examples. On the
other hand, in the repairing by example paradigm the input is both an existing
program and a set of examples. The goal is to adjust the input program to satisfy
the examples, but otherwise to have only a small effect on the programs behavior.
This allows a user to easily specify instances of faulty behavior, but have confidence
that the program will continue to function as it did before. With repair by example,
it is important that the effect of the changes is constrained, whereas in programming
by example there is no such restriction.
ACL-Based Firewalls. We focus on one of the most representative types of fire-
walls, Access Control List (ACL) firewalls, such as iptables [6], Juniper [113], and
Cisco firewalls [57], are widely used in practice. A typical ACL-based firewall con-
tains an ordered list of rules, each of which has criteria and an action. A criterion
describes which preconditions need to hold for the action to take place (e.g., dropping
or accepting a packet) [166]. When a network packet is received by an ACL-based
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firewall, the packet is evaluated against all the rules according to the order in which
they appear. After the firewall finds the first rule with criteria satisfied by the packet,
it performs the corresponding action. The criteria in a rule may refer to properties of
the packet that is currently being processed, or to information tracked by the firewall.
For instance

i p t a b l e s −A INPUT −p 16 −s 1 2 3 . 2 3 . 1 2 . 1 −j DROP

has criteria denoting packets that have a protocol of 16 and a source IP address of
123.23.12.1, and an action specifying those packets should be dropped.

Actions are either terminating or non-terminating. Terminating actions end the
packet’s traversal. For example, once a packet is accepted or dropped, it no longer
checks other rules in the ACL. Non-terminating actions (such as printing to a log file)
allow a packet to continue traversing the ACL rules and match more rules. An action
might also refer to another ACL, which then needs to be used to evaluate the packet.
We refer to this as a jump to a different ACL.

The ACL jumps cannot form a loop. That is, if ACL A1 contains a jump to
ACL A2, there can be no jumps from A2 back to A1. However, suppose a packet
is evaluated against all rules in an ACL A2 and does not match any rule with a
terminating action. The packet will then continue being evaluated at the next rule
in A1. If the packet started in A1, and the packet does not match any rule in A1

with a terminating action, the packet will be routed according to the policy of A1.
The policy is the default action on packets that start in a given ACL, and must be
to either accept or drop the packet [14].
Rate Limiting Rules. Rate limiting rules are used when an administrator wants
to restrict the amount of packets matching a certain rule, for example the amount of
packets arriving from some IP address. We call a firewall with such rules a rate limiting
firewall. In many firewalls, including iptables [14], Juniper [113], and Cisco [57]
firewalls, a limit is a criterion that specifies how frequently a rule can be matched. A
limit is implemented as a counter l, and a match is possible only if a packet satisfies
rule’s criteria and l > 0. A rate limiting behavior is specified through two parameters:
an average rate of packets per some time unit, ra, and a burst limit, b. Whereas other
criteria are based solely on evaluating a single packet, a limit requires the firewall to
maintain its counter, and hence warrants special consideration.

Rate limiting firewalls use the token bucket algorithm [187] to determine if a
packet should be dropped or further processed. The counter l decrements when a
packet matches the rule, and increments every 1/ra time units. The counter can
never exceed the burst limit b. The next example shows how limits work in practice:

Example. Suppose that we set a limit on incoming packets, with ra = 6 packet
/ minute and b = 3 packets. The firewall is initialized with l = b = 3. If we do not
exceed the limit, we will accept incoming packets. If we do exceed it, we will drop
them. As shown in Fig. 7.1 suppose that at times 0, 5, 9, and 17 seconds, we receive
1 packet, and at time 16 seconds we receive 2 packets.

At the end of the fifth second, l = 3− 1 = 2 since 1 packet arrives. Similarly, at
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Figure 7.1: An visualization of a limit, as packets try to match a rule.

the end of the ninth second, l = 2− 1 = 1 since 1 packet arrives. At the beginning of
the tenth second, l is incremented again to 2. At the sixteenth second, we receive two
packets. Both will be accepted, but it drains the limit completely. Therefore, since
l = 0 when the fourth packet arrives, that packet does not match the limit, and is
dropped.

7.3 Motivating Examples

Stateless Firewall Repairing Example 1. An example given in Figure 7.2 demon-
strates the basic functionality of FireMason. The example is inspired by a StackEx-
change post [2]. An administrator is maintaining firewall rules written in iptables [6],
one of the most representative firewall script languages. The firewall initially con-
tained rules labeled R1 to R5.

If the administrator wants to block TCP requests coming from the IP address
172.168.14.6, they may try expressing that as a rule and putting it at the end of
the current firewall, cf. rule R6 in Figure 7.2. Such an action is very common in
enterprise-scale firewall management, because administrators prefer appending a new
rule to the existing rules [129].

FireMason can be used as a standard firewall analysis tool. To test the changes,
the administrator can execute the query:

v e r i f y (INPUT, p ro to co l = tcp ,
source_ip = 172 . 1 68 . 1 4 . 6 => DROP)

FireMason reports to the administrator that the specification is violated, and gives
an example of a packet that will be incorrectly routed (For example, a TCP packet
with the SYN flag set, a source ip address of 172.168.14.6, and a destination port of
22. Such a packet would be accepted by R3 or R4).

Knowing that the repair does not work as intended, the administrator can also
use FireMason as a repair tool. They provide an example of what should be changed
in the firewall and invokes FireMason as shown in Figure 7.2 (b).

FireMason returns a repaired firewall, Figure 7.2 (c), to the administrator. The
new rule is positioned close to similar rules, namely, those rules related to the TCP
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Figure 7.2: An example of a firewall repair problem.

protocol. This positioning is very important. While one may argue that directly
appending a rule to the top of firewall can also make the firewall behave correctly
(in terms of functionality), this method would, unfortunately, destroy the structure
and organization of the firewall. Much like traditional code, keeping the firewall
rules organized is important to facilitate later understanding and maintaining. Most
importantly, the rule is positioned so that any packet matching the user provided
example is guaranteed to be dropped. Rule R1 specifies a protocol other than TCP,
and so never matches such a packet. A packet matching the example could match
rule R2, but rule R2 drops any matching packet anyway.

This whole example also showed that placing a rule at a wrong place can change
the behavior of a firewall. FireMason provides formal guarantees that for every packet,
which is not covered by the user provided examples, the original firewall and in the
repaired firewall will invoke the same action.
Stateless Firewall Repairing Example 2. Inspired by posts on ServerFault [8, 5],
consider an administrator who wants to ensure that the local host, and only the
local host, can access the web server at 1.2.3.4. Any traffic not from the local host,
but trying to access the ip address 1.2.3.4, should be dropped. To solve this with
FireMason, one approach would be to write two examples:

r e p a i r (INPUT, des t ina t i on_ip = 1 . 2 . 3 . 4 ,
source_ip = 12 7 . 0 . 0 . 1 => ACCEPT)

r epa i r (INPUT, des t ina t i on_ip = 1 . 2 . 3 . 4 ,
not source_ip = 12 7 . 0 . 0 . 1 => DROP)

Unfortunately, this is redundant and hard to read: it is easy to miss the not on
the second line. To make this sort of task easy, we introduce two keywords: onlyif
and unless. We can demonstrate the desired behavior in a single example, using the
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onlyif keyword, as follows:

r e p a i r (INPUT, des t ina t i on_ip = 1 . 2 . 3 . 4 => ACCEPT
on l y i f source_ip = 1 2 7 . 0 . 0 . 1 )

Equivalently, the administrator could write the example with the unless keyword:

r e p a i r (INPUT, des t ina t i on_ip = 1 . 2 . 3 . 4 => DROP
un l e s s source_ip = 1 2 7 . 0 . 0 . 1 )

In either case, FireMason will create and add two new rules:

i p t a b l e s −A INPUT −d 1 . 2 . 3 . 4 / 3 2 −s 1 27 . 0 . 0 . 1 /32 −j ACCEPT
ip t a b l e s −A INPUT −d 1 . 2 . 3 . 4 / 3 2 ! −s 1 27 . 0 . 0 . 1 /32 −j DROP

which ensure the firewall has the desired behavior.
Rate Limiting Rule Repairing Example. We next show how an administrator
can use FireMason to add/repair rate limiting rules. To the best of our knowledge no
existing firewall analysis tools can address this problem. Suppose an administrator
wants to allow TCP connections with the SYN flag set once every 10 seconds (a task
inspired by a forum post on StackExchange [9].) To do this, the administrator may
provide a sequence of example packets and relative times, in seconds:

r e p a i r (INPUT, SYN, time = 0 => ACCEPT;
INPUT, SYN, time = 5 => DROP;
INPUT, SYN, time = 10 => ACCEPT)

As a result FireMason creates and inserts two new rules:

i p t a b l e s −A INPUT −m l im i t −−l im i t 6/minute \
−−l im i t−burst 1 −p tcp −−tcp−f l a g s SYN SYN −j ACCEPT
ip t a b l e s −A INPUT −p tcp −−tcp−f l a g s SYN SYN −j DROP

This limit satisfies the administrator’s requirement. Only one TCP SYN packet
can be received every 10 seconds.

7.4 System Design

Figure 7.3 shows the overview of FireMason’s workflow. FireMason takes as input a
firewall and a user command, which can be either a verification command or a repair
command and contains a list of examples.

FireMason first translates the firewall and examples into a set of formulas be-
longing to a fragment of first-order logic. The translation (described in Sec. 7.4.1)
produces two sets of EUF+LIA formulas [141], which means we can use an SMT
solver to reason about firewalls.

The verification process (described in Sec. 7.4.2) checks if the rules specified in the
examples are violated by the new firewall. If there are such rules, FireMason reports
counterexamples to the user.
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Figure 7.3: The workflow overview of FireMason.

The repair process first checks consistency of the input examples and reports to
the user if they are contradictory (Sec. 7.4.4). This also allows us to detect sets of
examples that can be used to generate rate limiting rules. FireMason creates any
needed rate limiting rules to handle provided examples. (Sec. 7.4.6). FireMason
next runs the repair algorithm (Sec. 7.4.7). Finally, FireMason adds the rules to the
firewall (Sec. 7.4.3), checks if there are redundant rules in the newly generated firewall
(Sec. 7.4.8), and outputs a correct firewall.

7.4.1 Encoding Firewalls and Examples as FOL Formulas

Translating Examples. FireMason starts with a list of examples provided by the
user, either for a verification or a repair process. Those examples are expressed using
the grammar:

comm := verify({(acl, rule)}+) | repair({(acl, rule)}+)

rule := precon+ ⇒ action | precon+ ⇒ action cond
precon := protocol = Int | source_ip = IP_Address

| destination_port = Int | . . . | not precon
action := Accept | Drop | . . .
cond := onlyif precon | unless precon
acl := String \\ ACL Name

We represent every example by a tuple (n, r, t), where n is the name of the ACL
to which the rule r applies, and t is the time given in the example. If no time
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was given, we set t = ∅. This tuple is then used in FireMason’s algorithms. For
instance, the example repair(protocol = 16, time = 5 ⇒ Accept) is translated to
(INPUT, protocol = 16⇒ Accept, 5).

Adding a cond to a rule allows for stronger statements about the desired behavior.
On forums, we noticed users would often ask for rules that implement a certain
behavior only if (or, conversely, unless) some condition is met. To help users write
down these types of conditions, we introduce two keywords: onlyif and unless. To
define these precisely, we use a function on the actions:

flipAction(a) =

{
Accept a = Drop

Drop a = Accept

Then, we translate the example p⇒ a onlyif q1 . . . qn into the rules:

p ∧ q1 ∧ . . . ∧ qn ⇒ a

p ∧ ¬q1 ⇒ flipAction(a)

. . .
p ∧ ¬qn ⇒ flipAction(a)

and, similarly, translate p1 ⇒ a unless q1 ∧ . . . ∧ qn into the rules:

p1 ∧ ¬q1 ∧ . . . ∧ ¬qn ⇒ flipAction(a)

p1 ∧ q1 ⇒ a

. . .
p1 ∧ qn ⇒ a

Translating Firewall Scripts. Broadly speaking, FireMason describes a firewalls
behavior with a sequence of first-order logic formulas. The translation results in
formulas that are amenable for reasoning with a SMT solver. Such encoding has two
benefits: the computational burden of checking consistencies or finding redundant
rules is done by a solver. In addition, we can easily formalize that the repaired
firewall is indeed repaired and that only packets described by the examples will be
treated differently and according to the specification.

While the majority of the rules could be easily translated to first-order formulas,
one obstacle is when the firewall contains jumps. This becomes an issue especially
when the ACL also uses limits. Consider, for example, an ACL that has at least two
jumps to an ACL A1. Let us assume that the ACL A1 has some limit rules. If a
packet has to go through both the jumps, then when it reaches the limit in A1 the
second time, the limit in A1 will have counted the packet twice.

We introduce a data structure, called a FirewallMap, which simplifies modeling of
jumps and limits. A FirewallMapM maps unique IDs (we use natural numbers) to
tuples of ACL names and lists of the ACLs rules. A rule is modeled as an implication,
where a set of criteria implies an action. Possible actions are ACCEPT, DROP, and
GO(a). GO is parameterized by a natural number a, and represents a jump to the ACL
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Figure 7.4: In a FirewallMap, ACL’s are duplicated for each point that they can be jumped
to from.

with ID a. In the FirewallMapM there is at most one GO referring to a particular
ACL ID. Every rule in M is assigned a tuple (a, r), where a is an ID of the ACL
where the rule appears and r is an ID of the rule in that ACL. This way there exists
a single unique path through the FirewallMap to reach any individual rule. Without
this property, it would be significantly more difficult to correctly model the order in
which rules must be checked. Any ACL jumped to from more than one place in the
original firewall is duplicated and assigned multiple IDs, as shown in Figure 7.4. The
ACL mapped to by each of these IDs is identical, except any GOs in them must also
have different IDs. We refer to these duplicated ACLs as equivalent to each other.
Language for Encoding Firewall Behavior into Formulas. We now describe
a first-order language that we use to model firewalls and packets. Most of these
predicates take a FirewallMapM as an argument. One can think ofM as a firewall
script.

Table 7.1 lists a selection of those predicates, functions, and their meanings. Fire-
Mason uses these functions and predicates to encode the firewall.

For example, if rule r in ACL a in a FirewallMap M had criteria specifying
that it matched a packet p with protocol 17 and destination port 8, then FireMason
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translates that as follows:

matches_criteria(M, p, a, r)

⇔ (protocol(p) = 17 ∧ destination_port(p) = 8)

The predicates are designed to make it easy to write formulas with important prop-
erties. For example, reaches is used to described which rules a packet is evaluated
against, while matches_criteria indicates whether a packet would satisfy the criteria of
a rule. Building on these, matches_rule is true if and only if a packet both reaches a
rule and satisfies the rule.

Table 7.2 shows some axioms describing general relationships between the predi-
cates and functions, and encoding actual firewall behavior. All formulas in the table
are implicitly universally quantified, with additional guards 0 ≤ p < max_packets

and valid_rule(M, a, r). Since the sets of values for M, p, a, and r are finite, these
formulas (as well as the definitions of reaches_end, reaches_return, reaches_exit, and
matches_rule from Table 7.1) can be finitely instantiated. Thus, no universal quanti-
fiers are needed, and we encode the firewalls in the decidable EUF+LIA logic [141].

Largely, the axioms in Table 7.2 describe reachability, and how reaches interacts
with the other predicates. As an example, consider:

reaches(M, p, a, r) ∧ ¬matches_criteria(M, p, a, r) =⇒ reaches(M, p, a, r + 1

and
reaches(M, p, a, r + 1) =⇒ reaches(M, p, a, r)

The first axioms captures the property that, if a packet has reached a rule, and does
not match (satisfy) the criteria of that rule, the packet will reach the next rule. The
second axioms states that in order for a packet to reach a rule, a packet must have
also reached the rule that directly precedes it.
Modeling Limits. Limits have two attributes: an average rate ra in packets per time
unit, and a burst limit of b packets. Each limit also uses a counter to decide if a packet
can match the rule. Intuitively, it may seem one could easily model the behavior of a
limit using linear integer arithmetic. However, ra might not be an integer when the
units are converted to seconds. For example, 31 packets per minute is .516 packets
per second. Therefore, we introduce a new sub variable, which represents the time
unit used by the limit, converted to seconds. For example, a limit with an average
rate of 31 packets per minute and a burst of 10 will be assigned ra = 31, sub = 60,
and b = 600 in the formula. Essentially, this corresponds to multiplying the whole
formula by sub, to reduce the problem to integers. ra is now 31 tokens per second,
we have a maximum of 600 tokens, and we require 60 tokens to send a single packet.

To have a correct counter of the number of packets, in our model we assign to
each limit from the firewall two integer IDs, a main ID i and a secondary ID j. Limits
for the same rule in equivalent ACLs all have the same main ID. The secondary IDs
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Table 7.1: Partial list of predicates and functions used to model firewalls.

Pred/Func Meaning of the pred/func
valid_acl(M, a) There exists an ACL with ID ain FirewallMapM
valid_rule(M, a, r) valid_acl(M, a) and there exists a rule with ID r in a
matches_criteria Packet p satisfies the criteria of rule r in ACL a in

(M, p, a, r) FirewallMapM
reaches(M, p, a, r) Packet p reaches rule r in ACL a in FirewallMapM
starting_acl(M, a) Returns true if ACL a is not jumped to from some

other ACL
is_go(act) Returns whether the action act is GO(a) for some

arbitrary a
reaches_end(M, p, a) reaches(M, p, a, acl_length(M, a))
reaches_return(M, p, a) reaches(M, p, a, r)∧

rule_action(M, a, r) == RETURN
reaches_exit(M, p, a) reaches_end(M, p, a)∨ reaches_return(M, p, a)
matches_rule(M, p, a, r) matches_criteria(M, p, a, r)∧ reaches(M, p, a, r)
matches_example(p, e) Packet p matches the criteria of an example e
protocol(p) The protocol of packet p
acl_length(M, a) Returns the number of rules in ACL a
max_packets Returns the maximum number of packets to be

considered
terminates_with(M, p) Returns if the FirewallMapM would ACCEPT or

DROP packet p
rule_action(M, a, r) Returns the action of rule r in ACL a in

FirewallMapM
insert_rule(M, R, a, r) Returns FirewallMapM, but with rule R inserted in

ACL a as rule r
equivalent(M, n) Returns the set of IDs in FirewallMapM for the

ACL named n
go_acl(act) For act = GO(a) returns a, otherwise -1
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Table 7.2: Formulas to model a firewall, and packets that firewall is processing.

a1 6= a2∧ reaches(M, p, a1, 0)∧ starting_acl(M, a1)∧ starting_acl(M, a2) =⇒
¬reaches(M, p, a2, 0)

reaches(M, p, a, r)∧¬matches_criteria(M, p, a, r) =⇒ reaches(M, p, a, r+ 1)
reaches(M, p, a, r + 1) =⇒ reaches(M, p, a, r)

matches_rule(M, p, a, r) ∧ is_go(rule_action(M, a, r)) ≡
reaches(M, p, go_acl(rule_action(M, a, r)), 0)

matches_rule(M, p, a, r) ∧ is_go(rule_action(M, a, r)) =⇒
reaches_exit(M, p, go_acl(rule_action(M, a, r))) = reaches(M, p, a, r + 1)

reaches(M, p, a, r) ∧ ¬is_go(rule_action(M, a, r)) ∧ rule_action(M, a, r) 6=
RETURN ∧ ¬terminating(M, a, r) =⇒ reaches(M, p, a, r + 1)
reaches_return(M, p, a) =⇒ ¬reaches(M, p, a, r + 1)
matches_rule(M, p, a, r) ∧ terminating(rule_action(M, p, a, r)) =⇒
¬reaches(M, p, a, r + 1)
matches_rule(M, p, a, r) ∧ terminating(rule_action(M, p, a, r)) =⇒
terminates_with(M, p) = rule_action(M, p, a, r)

reaches_end(M, p, a, r) ∧ starting_acl(M, a) =⇒ terminates_with(M, p) =
policy(M, a)

Table 7.3: Logical formulas related to limits, all variables are implicitly universally quan-
tified with additional constraints that rule r in ACL a has a limit with main ID i and
secondary ID j, and 0 ≤ p < max_packets. We use j_max(i) to denote the maximum
secondary ID for the limit with main ID i.

∀p.p ≥ 1 =⇒ arrival_time(p) ≥ arrival_time(p− 1)

∆t(p) =

{
arrival_time(p)− arrival_time(p− 1) if 1 ≤ p < max_packets

0 otherwise
counter_pre(M, i, j, p) =

counter_post(M, i, j − 1, p) if j ≥ 1

min(counter_post(M, i, if p ≥ 1 and j = 0

j_max(i), p− 1) + ra ∗∆t(p), b)

b otherwise
counter_post(M, i, j, p) =

counter_pre(M, i, j, p)− sub if counter_pre(i, j, p) ≥ sub∧
matches_rule(M, p, a, r)

counter_pre(M, i, j, p) otherwise
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start from 0, and they increase every time a packet could meet that limit. We define
two functions, counter_pre(M, i, j, p) and counter_post(M, i, j, p), parameterized by
the limit’s main and secondary IDs, and the packet ids. They are used to track the
value of the counter at any given point in time. counter_pre(M, i, j, p) is the value
of counter (i, j) immediately before packet p reaches the rule containing that limit.
counter_post(M, i, j, p) is the value of that counter immediately after. To check if a
limit will allow a packet to match, we check if counter_pre(M, i, j, p) ≥ sub.

The SMT formulas related to computation of limits are given in Table 7.3 Note
that, since we multiply ra and ∆t(p), we must know one of their values for this
formula to be in LIA. Fortunately, when reading a limit from an existing firewall
script we know ra. In Sec. 7.4.6 we explain how ∆t(p) is known in advance from the
examples, so we can obtain ra from the SMT solver.

7.4.2 Firewall Verification

Since firewalls are not annotated with standard specifications, systems for verifying
firewalls, such as Margrave [142], verify firewalls against user provided queries. When
performing the verification process, FireMason also checks if the given examples vi-
olate the firewall rules. In particular, it is helpful to be able to check that packets
with certain attributes will be accepted or dropped by a firewall. For example, an
administrator might want to verify that any packet received from a certain IP address
will be dropped by the firewall.

We first explain the verification process for examples without time (limit) con-
straints. Given an example, e = (n, c ⇒ act, ∅) (as described in Sec. 7.4.1), and a
firewallM, we verify e againstM by showing that the following formula F is valid:

∀p, a. a ∈ equivalent(M, n) ∧ reaches(M, p, a, 0)

∧matches_example(p, e)⇒ terminates_with(M, p) = act

Formula F states that every packet arriving to ACL n and satisfying criteria c ter-
minates with action a. Note that when negated, the formula is only existentially
quantified.

To verify a list of examples with times, ek = (nk, ck ⇒ actk, tk), for 0 ≤ k ≤ N we
apply a similar procedure. After setting up all packets with appropriate times, the
verification condition states that at least one packet does not terminate as desired
(expressed already in the negated form):

∀k∃a.0 ≤ k ≤ N ∧ a ∈ equivalent(M, nk)

∧ reaches(M, pk, ak, 0) ∧matches_example(pk, ek)

∧ (
∨

0≤j≤N

terminates_with(M, pj) 6= actj)
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7.4.3 Adding Rules

Here we outline how to create firewall rules from the provided examples. We first
focus on stateless rules. Generating rate limiting rules is described in Sec. 7.4.6. The
repair algorithm, Algorithm 2 from Sec. 7.4.7, assigns each rule a position where it
should be placed. After positions are assigned, translating user provided examples to
to the iptables language is rather straightforward. For example, the tuple

(INPUT, protocol = 6, source_ip = 1.2.3.4 => ACCEPT, ∅)

translates to a rule

iptables -A INPUT -p 6 -s 1.2.3.4 -j ACCEPT.

7.4.4 Consistency Checking

The purpose of consistency checking is both to let the administrator know whether the
provided examples contradict each other, and to detect when to invoke the algorithm
for addressing limits. Consider the two examples below:

r e p a i r (INPUT, p ro to co l = 17 => ACCEPT) ,
r e p a i r (INPUT, source_ip = 1 . 1 . 0 . 0 / 1 6 => DROP)

If a packet with protocol = 17 and a source IP address of 1.1.1.1 enters the
INPUT ACL, it is not clear whether such a packet should be accepted or dropped.
We consider these examples rule inconsistent.

Formally, we say two examples, (n1, c1 ⇒ act1, t1) and (n2, c2 ⇒ act2, t2) are rule
inconsistent if n1 = n2, c1∧c2 is satisfiable by a single packet, and act1 6= act2. We find
the contradictory examples by using an SMT solver and we inform the administrator
about ambiguities. Note that this definition makes no reference to time, and handling
of rule inconsistent examples with different times will be covered in Sec 7.4.6.

7.4.5 Formal Guarantees for Repaired Firewalls

FireMason offers two guarantees on the behavior of repaired firewalls. The first guar-
antee is the packets or sequences of packets described by the examples are correctly
routed in the repaired firewall. The second guarantee is that the routing of every
packet not described by the examples is the same as it was in the original firewall.
Together, these guarantees allow an administrator to be confident that the repairs
had the intended effect, and only the intended effect.

Here we give formulas which can be used by an SMT solver to check if the formal
guarantees hold.
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For given examples of the form ek = (nk, critk ⇒ actk, ∅), for 0 ≤ k < N , the first
guarantee can be written with Formula (7.4.5),

∀k, a.0 ≤ k < N ∧ a ∈ equivalent(M, nk)∧
matches_example(k, ek) ∧ reaches(M′, k, a, 0)

=⇒ terminates_with(M′, k) = actk

Now suppose we have examples with relative times, ek = (nk, critk ⇒ actk, tk).
Without loss of generality, assume that for k1 < k2, we have tk1 < tk2 . In this case we
ensure that packets arriving at the appropriate times, with the appropriate criteria,
are correctly routed, given that no other packets matching the examples criteria are
processed before their arrival. Formally, we write:

∀k, a.0 ≤ k < N ∧ a ∈ equivalent(M, nk)∧
0≤m≤k

(
arrival_time(m) = tm ∧matches_example(m, em)

∧ reaches(M,m, a, 0)
) ∧
m′>k

nonexample(M,m′, k)

=⇒ terminates_with(M, k) = actk

where we use the predicate nonexample to determine if the packet p either does not
correspond to or arrives after the last relevant example.

nonexample(M, p, e) =

∀k, a.0 ≤ k < e ∧ a ∈ equivalent(M, nk) =⇒
te < arrival_time(p) ∨ ¬reaches(M, p, a, 0)

∨
( ∧
0≤m≤k

¬matches_example(p, em)
)

The second guarantee, that the changes we make do not affect more packets than
intended, is stated as Formula (7.4.5):

∀p.terminates_with(M, p) = terminates_with(M′, p)

∨
(
∃k, a.0 ≤ k < N ∧ a ∈ equivalent(M, nk)

∧matches_example(p, ek) ∧ reaches(M, k, a, 0)
)

7.4.6 Rate Limiting Rules Generation

After the consistency checking, some examples may have to be resolved via rate
limiting. Specifically, this is required for rules that are rule inconsistent, but have
relative times. Algorithm 1 generates rate limiting rules satisfying these examples.
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input : E, the list of examples, all with relative times, optional parameters
minRulesAndLimits and minTotalSub (both default to ∅)

output: r a list of rules
E ′ ← [];
foreach (n, r, t) ∈ E do

r2 ← r, with a limit template, consisting of symbolic values for ra, b, sub,
and useLimit, and a Boolean enableRule added to the criteria
E ′.append((n, r2, t));

end
sortByNameByTime(E ′);
if minRulesAndLimits 6= ∅ and minTotalSub 6= ∅ then

Assert rulesAndLimits < minRulesAndLimits
∨(rulesAndLimits = minRulesAndLimits ∧ totalSub < minTotalSub)

end
Convert E ′ to SMT formulas, create formulas defining score and totalSub, run
SMT Solver;
sat← getSat;
if sat = UNSAT then

r ← getRulesFromModel(model);
return r;

end
else

model ← getModel;
(rulesAndLimits, totalSub)← getScore(model);
call this recursively, to lexicographically minimize
(rulesAndLimits, totalSub);

end
Algorithm 1: Limit Generating Algorithm
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Our algorithm takes a list of rule inconsistent examples, E, each with a time. It
returns an ordered list of satisfying rules, which are later inserted into the firewall
using Algorithm 2.

Recall that we may express an example as consisting of an ACL name, a rule, and
a time. We create E ′ from E, by adding two criteria to each examples rule. The first
is a limit template, which uses variables in place of actual integers for ra, b, and sub.
It also has a Boolean variable useLimit, which enables and disables the limit. The
second criterion is a Boolean, enableRule. Packets can match the rule if and only if
enableRule is true. We will use this template with an SMT solver to search for the
solution that requires the fewest limits and rules.

We sort E ′ into distinct groups according to which ACL the rules are meant to
be added to, and then sort each group by ascending time, at line ??. We extract the
rules from E ′ into lists (ACLs) to form a templated FirewallMap M. This allows
us to convert to an SMT formula, using exactly the same formulas and logic as in
Sec. 7.4.1.

For each original example, ep = (np, cp ⇒ actp, tp), we pick a ∈ equivalent(M, np)and
assert that the packet with ID p matches the requirements of that example:

arrival_time(p) ∧matches_example(p, ep) (7.1)
∧ reaches(M, p, a, 0) ∧ terminates_with(M, p) = actp

For all the pairs 0 ≤ r, q < length(E ′), r 6= q, we check if cr ∧ ¬cq is satisfiable by
a single packet. For each pair which is, we assert:

¬matches_example(r, eq) (7.2)

The SMT solver can then find values for each ra, b, sub, u, and enableRule that
guide the packets as required by the examples. Formula (7.1) ensures that the found
solution satisfies the requirements of the examples sequence. Formula (7.2) ensures
that the SMT solver does not make assumptions about packets criteria that the user
likely does not intend. For example, if the administrator provided the examples:

r e p a i r (
INPUT, p ro to co l = 17 , time = 0 => ACCEPT;
INPUT, p ro to co l = 17 , time = 5 => DROP;
INPUT, source_ip = 1 . 1 . 0 . 0 / 1 6 , time = 10 => ACCEPT;
INPUT, source_ip = 1 . 1 . 0 . 0 / 1 6 , time = 15 => DROP)

Formula (7.2) would prevent the SMT solver finding a solution that required any
of the packets satisfying protocol = 17 AND source_ip = 1.1.0.0/16.

Such a model is always possible to find. One valid solution is to set all the
enableRule to true, all the bursts to 1, and all the rates and subs such that the limit
recharging even once takes longer than the total time between the first and last packet
arriving. Then, each packet will be sorted according to the rule that came from its
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modified example.
To make our solution capable of handling more general cases, we assign a lexi-

cographic score to our formula. The first value is calculated by adding the number
of limits and the number of non-ignored rules, which we call rulesAndLimits. The
second value is the sum of the limit’s sub values, which we call totalSub. We aim to
make this score as small as possible. This can be done by repeatedly asserting there
exists a formula with a better score. If (minRulesAndLimits, minTotalSub) is the
current best score, we assert:

rulesAndLimits < minRulesAndLimits ∨ (rulesAndLimits =

minRulesAndLimits ∧ totalSub < minTotalSub)

When the SMT solver returns UNSAT, we can guarantee we found the solution which
minimizes the number of rules plus the number of limits used.

There are two small potential problems with this approach, and luckily, both have
straightforward solutions. First, recall from Sec. 7.4.1 that the model involves the
value of ra ∗∆t(p), but to stay in the theory of LIA, we must avoid multiplying two
variables. In that section, there was an assumption that the value of ra was known,
whereas here it clearly is not. Fortunately, while we do not know the value of ra,
we can precompute, and fix as a constant, the time difference between neighboring
packets, ∆t(p).

Second, some firewalls languages constrain the value of sub to a fixed list of possible
values s1, . . . sv. This can be handled through one additional assertion per sub value,
∨vu=1sub = su. This occasionally leads to cases where there is no valid way to generate
the limits, but such cases can be detected when the first call to the SMT solver is
UNSAT.

7.4.7 Repair Algorithms

Given the formulas representing the target firewall and examples, we need to run
a repair algorithm to generate a correct firewall based on the examples. We will
first consider rule insertion for non-rule inconsistent examples. Then, we will explain
how this same algorithm can be used to insert the rate limiting rules found by Algo-
rithm 1. Suppose we have N non-rule inconsistent examples, e1 = (n1, r1 = (c1 ⇒
act1), t1), ..., eN = (nN , rN , tN). Given a firewall represented by a FirewallMapM, our
goal is to to find a new FirewallMapM′ which ensures all the examples are satisfied,
but that guarantees all non-described packets maintain the same behavior. We also
wantM′ to be well organized, meaning that “similar rules" all appear together. Our
procedure (omitted due to space restrictions) to decide the similarity assigns a score
based on the number and kinds of criteria used in the rules, but could be replaced by
any desired scoring algorithm.

Consider the kth example, 1 ≤ k ≤ N . We express the desired condition with
respect to example ek by instantiating k in Formulas 7.4.5 and 7.4.5. We then
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input : E, the list of examples;M, a FirewallMap
output: a FirewallMap with a rule for each e ∈ E added
foreach (n, newR, t) ∈ E do

a′ ← ACL id of an arbitrary representation of the ACL n inM;
res ← SAT ;
maxR← acl_length(a′)− 1;
while res = SAT do

Pick r′ ≤ maxR , using a similarity measure to newR;
M’ ← insertRule(M, newR, a′, r′) ;
res ← SMTCheckCorrectness(M,M’, e);
if res = SAT then

maxR ← r′− 1;
end

end
M←M’

end
Algorithm 2: Rule Adding Repair Algorithm

show that Algorithm 2 outputs a firewall which satisfies this condition. For each
example ei = (ni, ri, ti), we take some a′ ∈ equivalent(M, ni) and find the ID r′ of
the existing rule most similar to ri in ACL a′. Next we set M′ = M, and run
insert_rule(M′, ri, a

′, r′) to insert ri in all ACLs equivalent to a′ at position r′ inM′.
We convert bothM andM′ to SMT formulas, and use an SMT solver to check

that Formulas 7.4.5 and 7.4.5 are valid. To do this, we must eliminate the two univer-
sal quantifiers that remain after instantiating k. There are only a finite number of val-
ues that amay attain - namely, it can only be the values in equivalent_to_name(M, a′).
Using this observation, we can easily eliminate the universal quantifier using finite
instantiation. Once the formula is only universally quantified by p, we negate it, and
try to show that its negation is unsatisfiable.

If the SMT solver does find the formula to be unsatisfiable, we know that the
original formula was valid, i.e. the firewall satisfies the considered example. However,
if the formula is satisfiable, we search for a different place to insert the rule, that
comes before rule r′ in ACL a′. We do not consider any rule after this rule, as any
route along which M and M′ could incorrectly diverge would also exist if the new
rule was inserted after a′. Also note that the condition is guaranteed to hold if the
new rule is inserted as rule 0 in ACL a′; and although this placement is often not
ideal for the structure of the firewall, it does guarantee termination.

When rules are from consistent examples, we can insert them in any order. By
definition, two consistent examples cannot describe any of the same packets, so it
does not matter which corresponding rule comes before the other in the firewall.
However, the rules found by Algorithm 1 are rule inconsistent. In this case, insertion
of the rules must be done in reverse order of the corresponding example’s times. This
ensures that the inconsistent rules have the same relative order in E ′ (from Sec. 7.4.6)
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as inM′, and thus we can expect the same behavior from the examples in both E ′

andM′.

7.4.8 Redundant Rule Detection

The final step in repairing the firewall is removing redundant rules – that is, rules
which cannot be matched by any packet. An existing approach to redundant rule
detection [207] can be adapted to and implemented in our SMT model. We briefly
summarize this approach here.

As before, the firewall is converted to an SMT formula. Then, for each ACL name
and rule ID, n and r, respectively, check that there exists a packet that matches the
rule, or some equivalent rule by asserting

∃a′.a′ ∈ equivalent(M, n) ∧matches_rule(M, p, a′, r)

If this call returns SAT, then clearly there exists some packet that matches the rule,
and the rule is therefore not redundant. If it returns UNSAT, then there was no
packet that matched the rule, and it is therefore redundant. In this case, it can be
commented out. This does involve a large number of calls to the SMT solver, but
these calls tend to be fast.

7.5 Implementation and Evaluation

FireMason is developed in Haskell and fully implements the design described in
Sec. 7.4. The default firewall language that we support is the iptables language [6],
but the framework can be easily extended to other firewall languages, such as Ju-
niper [113] and Cisco firewalls [57]. The syntax of these languages varies, but the
semantics are largely the same. Therefore, only the translation step (essentially a
parser) needs to be rewritten for a particular language, which means that FireMason
can easily be adapted to repair firewalls written in other languages. As an SMT solver
we used Microsoft’s Z3 [64]. The source code for our implementation is available at
https://github.com/BillHallahan/FireMason.

The evaluation was conducted with an Intel Xeon Quad Core HT 3.7 GHz.
Scalability Evaluation. We first evaluated the scalability of FireMason with regard
to real-world network sizes by using three examples as specification, and varying the
number of rules in the target firewall between 100 and 500. These firewalls were
randomly generated. As shown in Figure 7.5, FireMason scales well to large-scale
firewalls.

One might expect the rate limiting rules insertion to be slower than the non rate
limiting rules insertion, due to the additional runtime of Algorithm 1. However,
Algorithm 1’s runtime depends only on the number of examples, and not on the
number of rules in the original firewall, its runtime is constant across the rate limiting
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Figure 7.5: Scalability for number of rules.

tests. In the rate limiting case our three examples result in only two rules to insert,
whereas in the non rate limiting case, we insert three rules. Thus, the additional
runtime is due to Algorithm 2.

We also evaluated the performance of FireMason for different numbers of provided
examples, as shown in Table 7.7. In the stateless case this scales linearly. In the rate
limiting case, the time required increases rather sharply as the number of examples
generating a single limit increases. However, this is not a major concern, as we have
found that a small number of examples is typically sufficient to find an appropriate
limit.
Case Study: Repairing Real-World Firewalls. We next demonstrate that Fire-
Mason can repair real-world firewalls. To do that, we found firewall repair problems
on Server Fault [11] and Stack Overflow [12]. We recreated each scenario, and gener-
ated corrected firewalls using FireMason.

Tables 7.4, 7.5, and 7.6 present ten such problems. We list the examples which an
administrator may provide to clarify how the firewall should be repaired and present
the resulting repairs to the firewall. We also include the running time, the number of
calls to the SMT solver, and the number of rules in the original iptables script.

We manually checked the correctness of each result and compared them to the
repairs suggested on the forums. We found that the output returned by FireMason
not only fixed the problems, but also avoided any side effects. Furthermore, we
manually confirmed the “minimality” of the repairs, in terms of the impact on the
firewalls overall behavior. In some cases, FireMason outputs a different solution from
the posted solution. After manual comparison, we found that both solutions work
correctly, but FireMason’s output required adding fewer new rules.

Interestingly, two of the case studies involving rate limits took significantly longer
than those only involving stateless examples. This is not at odds with the results of
the scalability evaluation. As shown in table 7.7, for a small number of examples,
rate limit rule generation is generally faster, whereas for a larger number of examples,
stateless rule generation is faster.
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Table 7.4: Case study: Sampled stateless firewall repair problems and our solutions, bench-
marks 1 to 4.

Case Study 1 [2] An administrator appended a rule iptables -A INPUT -s
73.143.129.38 -j DROP but can still receive packets from
73.143.129.38.

Input example 1. repair(INPUT, source_ip = 73.143.129.38 => DROP)
Results Remove the appended rule, and insert a new rule iptables -A INPUT

-s 73.143.129.38/32 -j DROP in front of an original rule iptables -A
INPUT -i lo -j ACCEPT.

Original Rule Count 11
Repair Time .109 s

SMT Solver calls 26
Case Study 2 [3] An administrator wants to allow SSH access from the IP address

71.82.93.101, but does not know how.
Input examples 1. repair(INPUT, protocol = 22, source_ip = 71.82.93.101

=> ACCEPT)
2. repair(INPUT, protocol = 22, not source_ip = 71.82.93.101

=> DROP)
Results Insert new rules iptables -I INPUT 0 -p 22 -s 71.82.93.101/32 -j

ACCEPT and iptables -I INPUT 0 -p 22 ! -s 71.82.93.101/32 -j
DROP in front of an original rule iptables -I INPUT -p icmp –icmp-type
time-exceeded -j ACCEPT.

Original Rule Count 11
Repair Time .088 s

SMT Solver calls 23
Case Study 3 [7] An administrator has the IP address 192.168.1.99, and wants

to SSH to the IP address 192.168.1.15. She appended a
rule iptables -A INPUT -p tcp -i eth0 –dport 22 -m state –state
NEW,ESTABLISHED -j ACCEPT but still cannot SSH 192.168.1.15.

Input examples 1. repair(OUTPUT, destination_ip = 192.168.1.15 => ACCEPT)
2. repair(INPUT, source_ip = 192.168.1.15 => ACCEPT)

Results Insert two new rules iptables -A INPUT -s 192.168.1.15/32 -j
ACCEPT and iptables -A OUTPUT -d 192.168.1.15/32 in front of the
fourth and fifth rules in the original firewall, respectively.

Original Rule Count 4
Repair Time .054 s

SMT Solver calls 14
Case Study 4 [8] An administrator wants to allow only the localhost to have access to

a given port, but is having trouble figuring out the right iptables com-
mands.

Input example 1. repair(INPUT, destination_port = 44344 => ACCEPT
onlyif destination_ip = 127.0.0.1)

Results Inserted four new rules iptables -A INPUT -p 17 –dport 44344 -d
127.0.0.1/32 -j ACCEPT, iptables -A INPUT -p 6 –dport 44344 -d
127.0.0.1/32 -j ACCEPT, iptables -A INPUT -p 17 –dport 44344 !
-d 127.0.0.1/32 -j DROP, and iptables -A INPUT -p 6 –dport 44344
! -d 127.0.0.1/32 -j DROP in the firewall.

Original Rule Count 6
Repair Time .204 s

SMT Solver calls 14
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Table 7.5: Case study: Sampled stateless firewall repair problems and our solutions, bench-
marks 5 to 7.

Case Study 5 [5] An administrator wants to prevent all other users from using HTTP or
HTTPS connections.

Input example 1. repair(INPUT, protocol = 6, destination_port = 80 => DROP
unless source_ip = 10.1.1.2)

2. repair(INPUT, protocol = 6, destination_port = 443 => DROP
unless source_ip = 10.1.1.2)

Results Inserted four new rules iptables -A INPUT -p 6 –dport 443 !
-s 10.1.1.2/32 -j DROP, iptables -A INPUT -p 6 –dport 443 -s
10.1.1.2/32 -j ACCEPT, iptables -A INPUT -p 6 –dport 80 ! -s
10.1.1.2/32 -j DROP, and iptables -A INPUT -p 6 –dport 80 -s
10.1.1.2/32 -j ACCEPT in the firewall.

Original Rule Count 6
Repair Time .246 s

SMT Solver calls 13
Case Study 6 [13] An administrator wants to accept connections on a range of ports, but

does not know how to do so.
Input example 1. repair(INPUT, protocol = 17, 1000 <= destination_port <=

2000
=> ACCEPT)

Results iptables -A INPUT -p 17 –dport 1000:2000 -j ACCEPT
Original Rule Count 6

Repair Time .057 s
SMT Solver calls 5
Case Study 7 [1] An administrator wants to block a range of ip addresses, rather than a

specific ip address.
Input example 1. repair(INPUT, source_ip = 116.10.191.* => DROP))

Results iptables -A INPUT -s 116.10.191.0/24 -j DROP
Original Rule Count 6

Repair Time 0.106 s
SMT Solver calls 7
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Table 7.6: Case study: Sampled rate limiting firewall repair problems and our solutions.

Case Study 8 [4] An administrator is trying to limit the number of inbound SSH packets,
but it just seems to lock her out.

Input examples 1. repair(INPUT, protocol = 22, time = 0 => ACCEPT)
2. repair(INPUT, protocol = 22, time = 20 => ACCEPT)
3. repair(INPUT, protocol = 22, time = 30 => ACCEPT)
4. ... (In total, this repair uses 8 examples.)

Results Insert new rules iptables -A INPUT -m limit –limit 2/minute
–limit-burst 4 -p 22 -j ACCEPT and iptables -A INPUT -p 22 -j
DROP at the beginning of the original firewall.

Original Rule Count 9
Repair Time 21.10 s

SMT Solver calls 44
Case Study 9 [9] A server is attacked by TCP SYN flooding, so the administrator wants

a limit on SYN packets per second.
Input examples 1. repair(INPUT : source_ip = 192.132.209.0/24, SYN, time = 10

=> ACCEPT)
2. repair(INPUT, source_ip = 192.132.209.0/24, SYN, time = 11

=> ACCEPT)
3. repair(INPUT, source_ip = 192.132.209.0/24, SYN, time = 12

=> ACCEPT)
4. repair(INPUT, source_ip = 192.132.209.0/24, SYN, time = 13

=> DROP)
5. repair(INPUT, source_ip = 192.132.209.0/24, SYN, time = 19

=> DROP)
6. repair(INPUT, source_ip = 192.132.209.0/24, SYN, time = 21

=> ACCEPT)
Results Append two new rules, iptables -I INPUT 0 -s 192.132.209.0/24

-p 6 –tcp-flags SYN -j DROP and iptables -I INPUT 0 -m limit
–limit 6/minute –limit-burst 3 -s 192.132.209.0/24 -p 6
–tcp-flags SYN SYN -j ACCEPT, to the original firewall.

Original Rule Count 11
Repair Time 6.046 s

SMT Solver calls 42
Case Study 10 [10] An administrator wants to rate limit the number of new TCP connections

to there server.
Input examples 1. repair(INPUT, protocol = 6, destination_port = 22, SYN,

time = 0 => ACCEPT)
2. repair(INPUT, protocol = 6, destination_port = 22, SYN,

time = 0 => ACCEPT)
3. repair(INPUT, protocol = 6, destination_port = 22, SYN,

time = 0 => ACCEPT)
4. repair(INPUT, protocol = 6, destination_port = 22, SYN,

time = 1 => DROP)
Results Append two new rules, iptables -A INPUT -m limit –limit

54/minute –limit-burst 3 -p 6 –dport 22 –tcp-flags SYN SYN
-j ACCEPT and iptables -A INPUT -p 6 –dport 22 –tcp-flags SYN
SYN -j DROP, to the original firewall.

Original Rule Count 6
Repair Time 0.509 s

SMT Solver calls 10
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Table 7.7: Scalability for number of examples (when inserting into a firewall with 100
rules).

Number of examples Stateless Time (s) Rate Limiting Time
3 3.567 2.177
6 4.545 2.004
9 5.804 36.37

7.6 Related Work

This section presents existing efforts on firewall analysis, verification and generation,
and discusses why these efforts are not helpful to our target.
Firewall Repair and Synthesis. Chen et al. [52] describes an approach to repair
stateless firewalls. The paper develops techniques to localize specific forms of faulty
rules, as opposed to our approach of building a general model. Unlike our approach,
rate-limiting rules are not considered.

Zhang et al. [207] proposed a symbolic firewall synthesis approach such that the
synthesized firewall has the same behavior as a given firewall, but with the smallest
possible number of rules. As this approach focuses on automatically simplifying
redundant rules, rather than repairing an observed error, it is not applicable to our
goal.

As software defined networks (SDN) have become increasingly popular, automatic
programming approaches for SDN have been proposed [163, 206]. Yuan et al. [206]
proposed an automatic SDN policy generation approach, named NetEgg, based on
a scenario-based programming technique. NetEgg can only generate a new policy,
it cannot account for the effect of a new policy on existing policies in the network.
Furthermore, NetEgg cannot synthesize rate limiting rules.
Firewall Analysis and Verification. Mayer et al. [136] developed the first sys-
tematic firewall analysis engine, Fang, to analyze diverse properties of firewalls. Fang
and its sequel Lumeta [200] allow checking the correctness of firewall configurations
by sending their analysis engines queries. Other efforts [76, 19] propose packet-filter
based schemes to detect conflicting or violated rules. Frantzen et al. [83] and Kamara
et al. [116] proposed different data-flow based approaches to analyze vulnerability
risks in firewalls. Yuan et al. [205] used BDDs to detect policy violations and mis-
configurations in firewalls. Wool [201] conducted a case study on understanding and
classifying the configuration errors of firewalls.

The Margrave firewall verification tool [142] encodes firewall rules and queries into
first-order logic. It uses KodKod [192] to search for finite state models. Compared
with another firewall verification tool, NoD [131], Margrave cannot produce all dif-
ferences between policies in a compact way, and does not scale for large firewall rule
sets.
Firewall Testing. El-Atawy et al. [74] proposed targeting test packets for better
fault coverage. Al-Shaer et al. [21] developed a system-wide framework to generate
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targeted packets and obtain good coverage during firewall testing. Brucker et al. [44]
proposed a formal firewall conformance testing approach, which uses Isabelle/HOL
to generate test-cases from constraint satisfaction problems.

7.7 Conclusion

In this chapter, we have presented FireMason, a tool for verification and repair of
firewalls. To this end, we use a first-order intermediary language to model firewalls,
which allows us use of an SMT solver to obtain formal guarantees on the correctness
of verification and repair. We showed that FireMason not only generates correctly
repairs real-world firewall scripts, but also is able to scale to large-scale firewalls. Our
empirical evaluation suggests that FireMason could be both practical and effective
in assisting administrators with firewall management. Our goal is to inspire further
work on reasoning about firewalls in the formal methods community.
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Chapter 8

Conclusion

We have explored how the use of analysis, verification, and synthesis techniques can be
eased, automated, and scaled. We have examined a variety of use cases, ranging from
debugging and automation of modular verification, repair and analysis of firewalls,
and scalability of synthesizers.

By augmenting lazy semantics with symbolic variables and the definition of sym-
bolic weak head normal form, we introduced the first symbolic execution engine tar-
geting non-strict functional languages, such as Haskell. Using symbolic execution as
a backend technique enables a variety of applications. We developed a library, G2Q,
that enables easier access to constraint solvers by directly writing Haskell code. We
also introduced concrete and abstract counterexamples, and the counterfactual sym-
bolic execution technique that allows finding both types of counterexamples to ease
debugging of modular verifiers. Finally, we introduced an inference technique to auto-
matically generate specifications enabling modular verification. This technique builds
on counterfactual symbolic execution by using concrete and abstract counterexamples
to guide a specification synthesizer.

We also describe a machine learning based technique to improve the efficiency of
SyGuS solvers by filtering the grammar. This allows the solver to more quickly solve
challenging problems, and scale to problems that were previously out of reach. We
demonstrated the effectiveness of this technique on benchmarks from SyGuS-Comp.

Finally, we explore the use of automated repair and analysis in the domain of
firewalls, via the development of FireMason. FireMason relies on a formal semantics
defined for the iptables language via a translation to first order logic with uninter-
preted functions and linear integer arithmetic. This allows encoding of firewalls into
first order logic, enabling use of an SMT solver for analysis and sketch-based repair.
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8.1 Future Directions

8.1.1 Automated verification

Modular Verifiers Chapter 5 explores techniques to automatically infer specifica-
tions that are needed for the purpose of modular verification. Further, it establishes
a complete method to infer needed specifications, given an underlying synthesizer
with specific properties- namely the synthesizer must be a complete, size-bounded,
interpolant producing synthesizer. A technique to design such a synthesizer for linear
integer arithmetic specifications is also described in Chapter 5. Making this technique
applicable to a wider variety of programs requires developing synthesizers capable of
producing a wider variety (or at least, different variety) of specifications. As briefly
discussed in Chapter 5, some preliminary work has already begun experimenting with
specifications over sets, however it is not yet as performant as one would like. Syn-
thesizing specifications over strings and bit vectors also seem like clear targets.

An obvious approach to synthesizing specifications in a variety of domains is to
make use of SyGuS solvers. However this is not without its challenges. The solving of
SyGuS problems with limitations on the size of the solution, as is required for a size-
bounded synthesizer, is challenging. Existing work on this topic [105] is successful
on only 15 out of 26 evaluated benchmarks. Similarly, state of the art techniques
to determine unrealizability of SyGuS problems [103, 104] are currently only able
to successfully prove unrealizablity on slightly over half of benchmarks. Further,
existing techniques do not produce the interpolants required by our algorithm. Since
automated specification inferences requires many synthesis calls, each of which must
succeed, practical application of SyGuS solvers will depend on advances in SyGuS
solvers capabilities.
Fancy Types Long term, I envision investigating techniques to automate verification
mechanisms besides modular verifiers. Advanced typing features, such as GADTs and
type families, allow programmers to specify and prove properties of their code. For
example, such features allow checking at compile time that matrix operations are ap-
plied to matrices of appropriate dimensions [175] and that abstract syntax trees in an
interpreter or compiler represent only correctly typed programs [72]. Unfortunately,
adding additional safety properties via types is not a trivial process, especially if the
existing code base is large. Further, writing new code that passes the typechecker
can be tricky- in a mailing list discussion, this concern was cited by Simon Peyton
Jones as a reason to not use stronger types in the internals of a widely used Haskell
compiler, GHC [159]. Thus, the development of techniques to automatically- or at
least, semiautomatically- update programs with stronger types would aid both new
and experienced programmers.
DeepSpec The DeepSpec project [31] proposes the use of deep specifications to verify
programs. Specifications made available by modular verifiers such as LiquidHaskell
capture properties of the code, such as the size or unordered contents of lists. In con-
trast, deep specifications are typically precise enough to ensure that any two programs
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satisfying the specification are contextually equivalent- that is, one program can be
seamlessly replaced with the other in any context [89]. Proving deep specifications is
typically done using a manual theorem prover such as Coq. Exploring techniques to
automatically generate such proofs (or sections of such proofs) in a counterexample
guided way would be an interesting direction.

8.1.2 Formal Methods via Machine Learning

The Grammar Reduction Tool (GRT), as discussed in Chapter 6, explores how ma-
chine learning techniques could be helpful to formal methods tools. Many formal
methods problems are fundamentally about searching large spaces. In synthesis, one
is searching over a large space of programs for a particular program that satisfies a
specification. In symbolic execution, one is searching over a large number of possible
states, for a particular state that corresponds to a counterexample. Using machine
learning techniques to help direct such searches is a natural direction to explore.

Such techniques would also benefit from a deeper integration with the logic driven
techniques traditionally used in formal methods. Every time the GRT is run, a risk
is taken- if the grammar is filtered too much, the synthesis problem will become
unrealizable. Integrating the predictions into the solver and using them to guide
which solutions to search through first- without ruling out other solutions entirely-
would eliminate this risk. Of course, this is likely more engineering effort, but the
fact that even the somewhat crude application of machine learning techniques in the
GRT produced positive results is an indication that the added effort is worth it.

8.2 Remarks

Wide spread adoption of formal methods techniques requires that they be accessible
to mainstream programmers- not only domain experts. In this dissertation, we have
explored how formalized language semantics, used in combination with SMT solvers,
enable us to automatically analyze or repair programs.
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Appendix A

Proof of Mathematical Theorems

A.1 Appendix

A.1.1 verify properties

If a verifier is modular, whether f is in an error set err is determined entirely by the
specification of f , and the specification of functions called by f :

∀P,E,E ′,err, f.
verify(P,E) = Error err

∧f ∈ err
∧lookup(f, E) = lookup(f, E ′)

∧∀g ∈ calls(f).lookup(g, E) = lookup(g, E ′)

=⇒ ∃err′.verify(P,E ′) = Error err′

∧f ∈ err′

Similarly, when using a modular verifier, if the environment is held steady, but
aspects of the program besides the definition of f change has no affect on whether f
is in a returned error set

∀P, P ′, E,err, f, f ′.
verify(P,E) = Error err

∧f ∈ err
∧lookup(f, P ) = lookup(f, P ′)

=⇒ ∃err′.verify(P ′, E) = Error err′

∧f ∈ err′

A.1.2 symex properties

A symex function is complete if the following two conditions are met:
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• whenever a set of specifications allows for a concrete postcondition to a function
or precondition counterexample to a pair of functions, there is some depth such
that a concrete counterexample for that function or pair of functions is in the
returned set.

∀P,E, f, sf .∃i.sf = lookup(f, E) ∧ ¬sf (i, f(i))

=⇒ ∃cexs, d, i′.symex(P, d, E, f) = cexs ∧ (f, i′)postC ∈ cexs

∀P,E, f, sf , if , g, sg, ig.∃if , ig.
sf = lookup(f, E) ∧ g = lookup(g, E)

∧ spref (if ) ∧ ¬spreg (ig) ∧ evals(f, if , g, ig)

=⇒ ∃cexs, d, i′f , i′g.symex(P, d, E, f) = cexs

∧(f, i′f , g, i
′
g)

pre
C ∈ cexs

• when verify(P,E) = Error err, and f ∈ err, there is some depth such that
symex returns a non-empty counterexample set:

∀P,E.verify(P,E) = Errorerr ⇐⇒ ∀f ∈ err.∃d, cex.|symex(P, d, E, f)| ≥ 1

If symex returns a set containing a counterexample, increasing the depth results
in it returning a set with that same counterexample:

∀P, d, d′, E, f, cexs.symex(P, d, E, f) = cexs

∧cex ∈ cexs ∧ d < d′

=⇒ ∃cexs′.symex(P, d′, E, f) = cexs′

∧cex ∈ cexs′

If when called with environments E and E ′ symex returns sets of counterexamples
cexs and cexs′, respectively, calling symex on the union of those two environments
will return all counterexamples in cexs and cexs′ that still apply:

∀P, d, E,E ′, f, cexs, cex.
symex(P, d, E, f) = cexs

∧ cex ∈ cexs ∧ cex � E ∪ E ′

=⇒ ∃cexs′.symex(P, d, E ∪ E ′, f) = cexs′ ∧ cex ∈ cexs′

A.1.3 Proofs

We prove the following lemma about verify:

155



Lemma 1.

∀P, P ′, E, E ′,err, f, f ′.
verify(P,E) = Error err

∧f ∈ err
∧lookup(f, P ) = lookup(f ′, P ′)

∧∀g ∈ calls(f).lookup(g, P ) = lookup(g, P ′)

∧lookup(f, E) = lookup(f ′, E ′)

∧∀g ∈ calls(f).lookup(g, E) = lookup(g, E ′)

=⇒ ∃err′.verify(P,E ′) = Error err′

∧f ′ ∈ err′

Proof. We assume the left hand side of the implication holds.
By verify’s property A.1.1, we know there is some err′ such that verify(P ′, E) =

Error err′ and f ′ ∈ err′. Then, by verify’s property A.1.1, we know there is some
err′′ such that verify(P ′, E ′) = Error err′′ such that f ′ ∈ err′′.

We prove the following lemma’s about symex:

Lemma 2. If symex is sound and complete then

∀P,E,E ′, f.
|symex(P, 1, E, f)| ≥ 1

∧lookup(f, E) = lookup(f, E ′)

∧∀g ∈ calls(f).lookup(g, E) = lookup(g, E ′)

=⇒ |symex(P, 1, E ′, f)| ≥ 1

Proof. We assume the left hand side of the implication.
Since |symex(P, 1, E, f)| ≥ 1 and since symex is complete there exists some err

such that verify(P,E) = Error err and f ∈ err. Then by verify’s property A.1.1,
there is some err’ such that verify(P,E ′) = Error err′ and f ∈ err′. Then again by
symex’s completeness we have |symex(P, 1, E ′, f)| ≥ 1, so the lemma is satisfied.

156



Lemma 3. If symex is sound then

∀P, d, E,E ′, f, sf , cex, cexs, cexs′.
sf = lookup(f, E)

∧ f /∈ E ′

∧ symex(P, d, E, f) = cexs

∧ cex ∈ cexs ∧ isConcrete(cex)

=⇒ symex(P, d, E ∪ E ′, f) = cexs′

∧ cex ∈ cexs′

Proof. We consider the case where cex is a precondition counterexample, and where
cex is a postcondition counterexample.

• cex = (f, if , g, ig)
pre
C Since f /∈ E ′, we have sf = lookup(f, E) = lookup(f, E ∪

E ′). By the definition of union of environments, if sg = lookup(g, E) and
s′g = lookup(g, E ′), and s∪g = lookup(g, E ∪E ′), then s∪preg (i) = spreg (i)∧ s′preg (i).
Since symex(P, d, E, f) = cexs and (f, if , g, ig)

pre
C ∈ cexs, by the definition of

a concrete precondition counterexample and the soundness of symex spref (if ) ∧
¬spreg (ig). Thus, we have that spref (i) ∧ ¬(spreg (i) ∧ s′preg (i)). Then, by symex’s
property A.1.2, (f, if , g, ig)

pre
C ∈ cexs′.

• cex = (f, i)postC Since f /∈ E ′, we have sf = lookup(f, E) = lookup(f, E ∪ E ′).
Since symex(P, d, E, f) = cexs and (f, i)postC ∈ cexs, by the definition of a
concrete postcondition counterexample and the soundness of symex spre(i) ∧
¬spre(i). Then, by symex’s property A.1.2, (f, i)postC ∈ cexs′.

Lemma 4.

∀d, P,EU , ES, f, C.cexs = symex(P, d, EU ∪ ES, f)

∧Right C = evalCE(EU , cexs)

=⇒ ¬isSatUF(EU , ES, C)

Proof. We assume the left hand side of the implication, and show it implies the right.

• Consider cex = (f, i, o, F abs)postA . evalCE returns a constraint c:

spref (i) ∧ ¬spostf (i, o) =⇒
∨

(g,ig ,og)∈F abs

(spreg (ig) =⇒ ¬spostg (ig, og))

By the definition of an abstract postcondition counterexample, in EU ∪ ES we
have spref (i) ∧ ¬specpostf (i, o) and ∀(g, i, o) ∈ F abs.sg = lookup(g, EU ∪ ES) =⇒
sg(i, o). Thus, when instantiated with EU ∪ ES, the left hand side of c is true,
but the right hand side is false. Thus c ∈ C =⇒ ¬isSatUF(EU , ES, C).
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• Consider cex = (f, if , g, ig, F
abs)preA . evalCE returns a constraint c:

spref (ig) ∧ ¬spreg (ig) =⇒
∨

(h,ih,oh)∈F abs

(spreh (ih) =⇒ ¬sposth (ih, oh)

By the definition of an abstract precondition counterexample in EU∪ES we have
spref (if ) ∧ ¬spreg (ig) and ∀(h, i, o) ∈ F abs.sh = lookup(h,EU ∪ ES) =⇒ sh(i, o).
Thus, when instantiated with EU ∪ ES, the left hand side of c is true, but the
right hand side is false. Thus c ∈ C =⇒ ¬isSatUF(EU , ES, C).

• Consider cex = (f, i)postC . In the case where evalCE returns a constraint, that
constraint is c = sf (i, f(i)) = spref (i) =⇒ spostf (i, o). By the definition of a
concrete postcondition counterexample, in EU ∪ES we have spref (i)∧¬spostf (i, o).
Thus c ∈ C =⇒ ¬isSatUF(EU , ES, C).

• Consider cex = (f, if , g, ig)
pre
C . There are two cases where evalCE returns a

constraint.

In one case, the constraint is c = spreg (ig). By definition of a precondition
counterexample in EU ∪ES we have ¬spreg (ig). Thus c ∈ C =⇒ EU ∪ES 6|= C.

In the second case, the constraint is c = spref (if ) =⇒ spreg (ig). By the definition
of a precondition counterexample, we have spref (if )∧¬spreg (ig). Thus c ∈ C =⇒
¬isSatUF(EU , ES, C).

Corollary 1.

∀P, d, EU , ES, E ′S, f, C.cexs = symex(P, d, EU ∪ ES, f)

∧Right C = evalCE(EU , cexs)

∧∃(f, i)postC ∈ cexs
∧lookup(f, ES) = lookup(f, E ′S)

=⇒ EU ∪ E ′S 6|= C

Corollary 2.

∀P, d, EU , ES, E ′S, f, g, i, ig, C.cexs = symex(P, d, EU ∪ ES, f)

∧Right C = evalCE(EU , cexs)

∧∃(f, i,g, ig)preC ∈ cexs
∧lookup(f, ES) = lookup(f, E ′S)

∧lookup(g, ES) = lookup(g, E ′S)

=⇒ EU ∪ E ′S 6|= C
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Lemma 5. Given a sound verify and some theory T ,

∀P, d, EU , EB
S , f, E

G
S ⊂ T .cexs = symex(P, d, EU ∪ EB

S , f)

∧Verified = verify(P,EU ∪ EG
S )

∧Right C = evalCE(EU , cexs)

=⇒ isSatT (EU , E
G
S , C)

Proof. We assume the left hand side of the implication, and show it implies the right.
We consider each c ∈ C, and in each case show that ¬isSatT (EU , E

G
S , {c}) leads to

a contradiction.

• Consider cex = (f, sf , i, o)
post
A F abs. evalCE returns a constraint c:

spref (i) ∧ ¬spostf (i, o) =⇒
∨

(g,ig ,og)∈F abs

(spreg (ig) =⇒ ¬spostg (ig, og))

Suppose ¬isSatT (EU , E
G
S , {c}). Then, we must have:

isSatT (EU , E
G
S , {s

pre
f (i) ∧ ¬spostf (i, o) ∧

∧
(g,ig ,og)∈F abs

(spreg (ig) ∧ spostg (ig, og))})

But then (f, i, o, F abs)postA � EU ∪EG
S , so Verified = verify(P,EU ∪EG

S ) con-
tradicts the soundness of verify. Thus we have a contradiction, and it must
be that isSatT (EU , E

G
S , {c}).

• Consider cex = (f, if , g, ig, F
abs)preA . evalCE returns a constraint c:

spref (ig) ∧ ¬spreg (ig) =⇒
∨

(h,ih,oh)∈F abs

(spreh (ih) =⇒ ¬sposth (ih, oh)

Suppose ¬isSatT (EU , E
G
S , {c}). Then, we must have:

isSatT (EU , E
G
S , {s

pre
f (ig) ∧ ¬spreg (ig) ∧

∧
(h,ih,oh)∈F abs

(spreh (ih) ∧ sposth (ih, oh)})

But then (f, if , g, ig, F
abs)preA � EU ∪ EG

S , so Verified = verify(P,EU ∪ EG
S )

contradicts the soundness of verify. Thus we have a contradiction, and it must
be that isSatT (EU , E

G
S , {c}).

• Consider cex = (f, i)postC . In the case where evalCE returns a constraint,
that constraint is c = sf (i, f(i)) = spref (i) =⇒ spostf (i, o). Suppose that
¬isSatT (EU , E

G
S , {c}). Then we must have

isSatT (EU , E
G
S , {s

pre
f (i) ∧ ¬spostf (i, o)}).

159



But then (f, i)postC � EU ∪ EG
S so Verified = verify(P,EU ∪ EG

S ) contradicts
the soundness of verify. Thus we have a contradiction, and it must be that
isSatT (EU , E

G
S , {c}).

• Consider cex = (f, if , g, ig)
pre
C . There are two cases where evalCE returns a

constraint.

In one case, if f ∈ external(P ), the constraint is c = spreg (ig). Let sAf =

lookup(f, EU). Because we generated the counterexample, we know that sAf (i),
and evals(f, if , g, ig). Suppose ¬isSatT (EU , E

G
S , {c}). Then we must have

isSatT (EU , E
G
S ,¬spreg (ig)). But then (f, if , g, ig)

pre
C � EU ∪ EG

S so Verified =

verify(P,EU ∪ EG
S ) contradicts the soundness of verify. Thus we have a

contradiction, and it must be that isSatT (EU , E
G
S , {c}).

In the second case, the constraint is c = spref (if ) =⇒ spreg (ig). Because
we generated the counterexample, we know that evals(f, if , g, ig). Suppose
¬isSatT (EU , E

G
S , {c}). Then we must have isSatT (EU , E

G
S , s

pre
f (if )∧¬spreg (ig)).

But then (f, if , g, ig)
pre
C � EU ∪ EG

S so Verified = verify(P,EU ∪ EG
S ) contra-

dicts the soundness of verify. Thus we have a contradiction, and it must be
that isSatT (EU , E

G
S , {c}).

The following invariant holds for generateSpecT , when it is called from traverseCGT :

Invariant 2. sf = ∪f∈fs{g|g ∈ calls(f) ∧ g /∈ ES}

Proof. Trivial, by initial definition of sf at line 6. Note that fs, sf , and ES are never
changed inside of generateSpecT .

Lemma 6. Consider a call to generateSpecT (P,EU , fs, sf, ES, C, Csz) such that
Invariant 2 holds. As defined at line 19, E ′S satisfies the following two properties:

• ∀f ∈ fs.∀g ∈ calls(f).g ∈ E ′S

• ∀f ∈ ES.lookup(f, ES) = lookup(f, E ′S)

Proof. By Invariant 2,

sf = ∪f∈fs{g|g ∈ calls(f) ∧ g /∈ ES}.

Thus,
∀f ∈ fs.g ∈ calls(f).g ∈ sf ⇐⇒ g /∈ ES.

At line 17, synthT (sf, EU , ES, C) synthesizes EN . By definition of synth, ∀g.g ∈
sf ⇐⇒ g ∈ EN . Thus,

∀f ∈ fs.g ∈ calls(f).g ∈ EN ⇐⇒ g /∈ ES.
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At line 19, E ′S is defined as ES ∪ EN . Thus we have the first property,

∀f ∈ fs.g ∈ calls(f).g ∈ ES ∪ EN = E ′S.

Since g ∈ ES =⇒ g /∈ EN , we have the second property:

∀f ∈ ES.lookup(f, ES) = lookup(f, E ′S).

We show that all further Invariants are satisfied by an initial call

traverseCGT (P,EU , fs, ES, C, Csz)

such that fs = external(P ), ES = {}, and ∀EG
S ⊂ T .verify(P,EU ∪ EG

S ) =⇒
isSatT (EU , E

G
S , C) and are maintained by traverseCGT and generateSpecT . Note

that the calls in initInferT and in iterateInferT k both satisfy all the required
initial conditions.

Invariant 3. ∀g ∈ fs.g ∈ external(P ) ∨ g ∈ ES

Proof. Initalization At line 1, fs is initialized to external(P ), trivially satisfying
the invariant.
Maintenance The call to traverseCGT at line 12 and the calls to generateSpecT
at lines 7 and 24 trivially maintain the invariant, since fs and ES are passed directly.

Now consider the call to traverseCGT at line 11. By lemma 6,

∀f ∈ fs.∀g ∈ calls(f).g ∈ E ′S.

At line 11 we call traverseCGT with sf as the new value of fs. At line 6, sf was
defined as

∪f∈fs{g|g ∈ calls(f) ∧ g /∈ ES}.

Thus, we have:
∀f ∈ sf.∀g ∈ calls(f).g ∈ E ′S.

Therefore, the call to traverseCGT (P,EU , fs
′, E ′S, C, Csz) maintains the invariant.

Invariant 4. ∀g ∈ external(P ).g /∈ ES

Proof. Initalization In initInfer, ES is initialized to empty, so the invariant is
trivial.
Maintenance The calls to traverseCGT at line 12 and the call to generateSpecT
at lines 7 and 24 trivially maintain the invariant, since ES is passed directly.

Now consider the call at line 11. traverseCGT is recursively called with E ′S,
which must have come from line 19 of generateSpecT . Thus, E ′S = ES ∪ EN . ES
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trivially satisfies the invariant. EN is the result of synthT (sf, EU , ES, C), where
sf = ∪f∈fs{g|g ∈ calls(f) ∧ g /∈ ES}. Since sf contains only functions called
by functions in fs, and by definition external functions cannot be called by other
functions in P , the invariant is maintained.

Invariant 5.

∀f ∈ P.(f ∈ external(P ) ∨ f ∈ ES) ∧ f /∈ fs =⇒ ∀g ∈ calls(f).g ∈ ES

Proof. Initalization At line 1, traverseCGT is called with fs = external(P ) and
ES = {}. Thus, the left hand side of the implication is false for all f , so the invariant
is satisfied.
Maintenance The calls to traverseCGT at line 12 and to generateSpecT at lines 7
and 24 trivially maintain the invariant, since fs and ES are passed directly.

Now consider the call to traverseCGT at line 11. Consider some f ′ satisfying:

(f ′ ∈ external(P ) ∨ f ′ ∈ E ′S) ∧ f ′ /∈ fs′

E ′S must have come from line 19 of generateSpecT . By construction of E ′S, either
f ′ ∈ ES or f ′ ∈ EN . Consider these two cases separately:

• f ′ ∈ ES. Consider two further cases.

If f ′ /∈ fs, then by this invariant ∀g ∈ calls(f ′).g ∈ ES. Thus, since E ′S =

ES ∪ EN , ∀g ∈ calls(f ′).g ∈ E ′S.
If f ′ ∈ fs, then by lemma 6,

∀g ∈ calls(f ′).g ∈ E ′S.

Thus, the invariant is satisfied.

• f ′ ∈ EN . By construction of EN , we know f ′ ∈ sf . At line 11, traverseCGT
is called recursively with fs = sf . Thus, in the new call, f ′ ∈ fs. Thus, if
f ′ ∈ EN , the left hand side of the implication is false. Therefore, the invariant
is satisfied.

Thus, in either case, the invariant is satisfied.

Lemma 7. Given a complete symex function, verifyCEx(P,E, fs) will always ter-
minate. If verify(P,E) = Error err, the returned set will have at least one coun-
terexample per function in err ∩ fs.

Proof. This is trivial if verify returns Verified. If it returns an error set, the lemma
follows from the completeness of symex.
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Invariant 6.

verify(P,EU ∪ ES) = Error err =⇒
∀f ∈ err.(f /∈ external(P ) ∧ f /∈ ES) ∨ f ∈ fs

Proof. Initalization Initially, fs = external(P ) and ES = {}, so the invariant is
trivial.
Maintenance The calls to traverseCGT at line 12 and to generateSpecT at lines 7
and 24 trivially maintain the invariant, since fs and ES are passed directly.

Now consider the call at line 11. We proceed via proof by contradiction. Assume
there is some f ′ ∈ err satisfying:

verify(P,EU ∪ E ′S) = Error err′

∧(f ′ ∈ external(P ) ∨ f ′ ∈ E ′S)

∧f ′ /∈ sf

(Note that, in the new call, fs is initialized to the current sf .)
E ′S must have come from line 19 of generateSpecT . By construction of E ′S, either

f ′ ∈ ES or f ′ ∈ EN . Consider these two cases separately:

• f ′ ∈ ES. Consider two further cases.

If f ′ /∈ fs, then by Invariant 5, ∀g ∈ calls(f ′).g ∈ ES. By lemma 6,

∀g ∈ calls(f ′).lookup(g, ES) = lookup(g, E ′S).

Then by verify’s property A.1.1 it must be that verify(P,EU∪ES) = Errorerr
and f ′ ∈ err. However, this contradicts our invariant, since it implies that:

verify(P,EU ∪ E ′S) = Error err′ ∧ f ′ ∈ err ∧ f ∈ ES ∧ f ′ /∈ fs

and thus our assumption must be wrong.

Now consider if f ′ ∈ fs. Then, by lemma 6, ∀g ∈ calls(f ′).g ∈ E ′S. To
reach the recursive call at line 11 of traverseCGT , verifyCEx must return an
empty set at line 20 of generateSpecT , which by lemma 7 will only happen if
f ′ /∈ err. But this is a contradiction to our assumption, and so it must be that
our assumption is wrong, and f ′ /∈ err.

• f ′ ∈ EN ∧ f ′ /∈ ES. In this case, it must be that f ′ ∈ sf , and therefore, in
the call to traverseCG, f ′ ∈ fs. Thus, the right hand side of the invariant’s
implications is trivially true, so the invariant is true.

Thus in either case, the invariant is satisfied.
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Invariant 1 1. Let L be the level of the functions in fs. Then:

verify(P,EU ∪ ES) = Error err =⇒ ∀f ∈ err.L ≤ level(f)

Proof. Initalization Initially, fs = external(P ), which is the set of functions at
level 0. Thus, the invariant is trivial.
Maintenance The calls to traverseCGT at line 12 and to generateSpecT at lines 7
and 24 trivially maintain the invariant, since fs and ES are passed directly.

Now consider the call at line 11. Note that, by construction of E ′S, every function
of level less than or equal to L must either be external or have a specifiation in E ′S.
Then this Invariant follows from Invariant 6.

Invariant 7. Consider a call to either the function traverseCGT (P,EU , fs, ES, C, Csz)

or the function generateSpecT (P,EU , fs, sf, ES, C, Csz), using some synthT and
some specification language T ’ such that T ’ is a superset of T . Then:

∀EG
S ⊂ T .verify(P,EU ∪ EG

S ) = Verified =⇒ isSatT ′(EU , E
G
S , C)

Proof. Initalization By assumption, initially ∀EG
S ⊂ T .verify(P,EU ∪ EG

S ) =⇒
isSatT (EU , E

G
S , C). Since T ′ is a superset of T , trivially we also have ∀EG

S ⊂
T .verify(P,EU ∪ EG

S ) =⇒ isSatT ′(EU , E
G
S , C).

Maintenance We assume the left hand side of the invariant, since otherwise the
invariant is trivial.

The call to generateSpecT at line 7 maintains the user environment EU and
constraint set C. Thus the invariant is clearly maintained.

Now consider the recursive call to traverseCGT at line 11. We will reach this
line only if the call to generateSpecT at line 7 returned SEnvE ′S C

′ C ′sz. In turn, we
can see that when generateSpecT returns such a constructor, C’ is exactly the set
of constraints it was passed. Thus, the invariant must hold for this set of constraints,
and is therfore maintained at line 11.

Now consider the recursive call to generateSpecT at line 24. We must show
the invariant is true for the constraint set C ∪ C ′. Since C ′ is the result of apply
evalCE to counterexamples from symex, by lemma 5, for all EG

S ⊂ T such that
verify(P,EU ∪ EG

S ) = Verified, we have isSatT (EU , E
G
S , C

′). Because T ′ is a
superset of T , trivially isSatT ′(EU , E

G
S , C ∪ C ′). Thus the invariant is maintained.

Finally, consider the call to generateSpecT at line 12, with the constraint set
C ∪ C ′. We will reach this only if the call to traverseCGT at line 11 returns some
Raise C ′ C ′sz. Note that the Raise constructor must have come from some call
to generateSpecT (P,EU , fs

′, sf ′, E ′S, C
′, C ′sz). By the invariant, this means that if

verify(P,EU ∪ EG
S ) = Verified then isSatT ′(EU , E

G
S , C

′). Therefore, it must also
be the case that isSatT (EU , E

G
S , C ∪ C ′). Because T ′ is a superset of T , trivially

isSatT ′(EU , E
G
S , C ∪ C ′). Thus, the invariant is maintained.
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Invariant 8. Consider a call to the function traverseCGT (P,EU , fs, ES, C, Csz),
or the function generateSpecT (P,EU , fs, sf, ES, C, Csz), where Invariant 7 initially
holds, and we are using some synthT . Then:

∀EG
S ⊂ T .verify(P,EU ∪ EG

S ) = Verified =⇒ isSatT (EU , E
G
S , C ∪ Csz)

Proof. Initalization By assumption, initially ∀EG
S ⊂ T .verify(P,EU ∪ EG

S ) =⇒
isSatT (EU , E

G
S , C).

Maintenance Throughout, we assume the left hand side of the implication is true,
since otherwise, the whole invariant is trivially true.

The call to generateSpecT at line 7 maintains the user environment EU and
constraint sets C and Csz. Thus the invariant is clearly maintained.

Now consider the recursive call to traverseCGT at line 11 We will reach this only
if the call to traverseCGT at line 11 returns some SEnv E ′S C

′ C ′sz. We can see that
when generateSpecr eturns such a constructor, C’ and Csz’ are exactly the sets of
constraints it was passed. Thus, the invariant must hold for this set of constraints,
and is therfore maintained at line 11.

Second, we consider the recursive call to traverseCGT at line 12. We will reach
this only if the call to traverseCGT at line 11 returns some RaiseC ′ C ′sz. By Invari-
ant 7, for all EG

S such that verify(P,EU ∪EG
S ) = Verified, isSatT (EU , E

G
S , C∪C ′).

Now, consider the call to generateSpecT (P,EU , fs
′, sf ′, E ′S, C

′, C ′′sz) that returned
Raise C ′ C ′sz, and which satisfies our invariant. In order for the call to return
Raise C ′ C ′sz, it must be that the call to synthT at line 17 returned SynthFail C ′sz.
By the definition of synthT , this means ∀EG ⊂ T .isSatT (C ′ ∪ C ′′sz, EG, =⇒
)isSatT (C ′ ∪ ∪C ′′szC ′sz, EG,). By our invariant, it must be that for all EG

S such that
verify(P,EU ∪EG

S ) = Verified, isSatT (EU , E
G
S , C ∪ C ′ ∪ C ′′sz). Thus, it must also

be that isSatT (EU , E
G
S , C ∪ C ′ ∪ C ′sz)

Finally, we consider the call to generateSpecT at line 24. Since Csz is not changed,
we simply refer to Invariant 7. Thus, the invariant is maintained.

Lemma 8. Consider a call to generateSpecT (P,EU , fs, sf, ES, C, Csz), using some
synthT , where there are a finite number of specifications in T , with a sound and
complete symex function and a sound verifier. Then, generateSpecT will terminate.

Proof. At line 17, we synthesize an environment for the functions in sf . By the
finiteness of T , there are a finite number M > 0 of such environments. We will now
show that every call to generateSpecT satisfying the conditions in the lemma either
makes another such call to generateSpecT reducing M , or directly returns either
a SEnv, CEx or Raise constructor. If synthT fails to synthesize a model, a Raise
constructor is returned at line 25, satisfying the lemma. Thus, M is a variant.

Now, we show thatM does indeed decrease. Suppose execution reaches line 10. In
this case, we return a SEnv constructor, and the lemma is satisfied. Now, suppose we
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instead reached line 22. If a counterexample is directly returned at line 23, the lemma
is satisfied. Otherwise, we add a constraint based on the generated counterexamples at
line 24, which by lemma 4 must block the current synthesized EN , and thus decreases
M . Thus, the lemma is satisfied.

To prove lemmas 9 and 11, we proceed by induction on the levels of recursion
through traverseCGT at line 11 which correspond to levels of the call graph.

Lemma 9. Consider a call to traverseCGT (P,EU , fs, ES, C, Csz), using some synthT ,
where there are a finite number of specifications in T , with a sound and complete
symex function and a sound amd complete verifier. Then, if 6 ∃EG

S ⊂ T .verify(P,EU∪
ES∪EG

S ) = Verified, traverseCGT will terminate with some CExcexs or RaiseC ′C ′sz.

Proof. Consider the levels of the program, 0, . . . n. We will begin by showing that the
lemma is true when at level k = n, and then showing that, if the lemma is true when
at level k, the lemma is also true when at level k − 1.

Base case - k = n: Because we are at the base level of the call graph, sf , as
defined at line 6 of traverseCGT , must be empty. Consider the call to generateSpecT
at line 7. By lemma 8, this call is guaranteed to terminate. If it returns a Raise
or CEx constructor, traverseCGT returns that same constructor, and the lemma is
satisfied. Otherwise, it must have returned a SEnv constructor. This means that,
at line 20, generateSpecT must have returned an empty set of counterexample.
However. lemma 7 and the fact that verify must return an error set guarantees that
we will generate a nonempty set of counterexamples cexs. So this is a contradiction,
and the lemma is satisfied in the base case.

Inductive step - True for k implies true for k − 1: At line 7, we call
generateSpecT . By lemma 8, this call is guaranteed to terminate. If it terminates
with a CEx or Raise constructor, that same constructor is immediately returned by
traverseCGT , and the lemma is satisfied.

Now, suppose generateSpecT instead returns a SEnv constructor. Since we are in
the inductive step, sf is nonempty, so we will reach line 11. Since 6 ∃EG

S .verify(P,EU∪
ES ∪ EG

S ) = Verified it must also be that (for E ′S as defined in generateSpecT )
6 ∃EG

S .verify(P,EU∪E ′S∪EG
S ) = Verified. Thus, by induction, this recursive call to

traverseCGT will return either some CExcexs or RaiseC ′C ′sz. In the former case, the
initial call to generateSpecT will also return CEx cexs, immediately satisfying the
lemma. In the latter case, generateSpecT (P,EU , fs, sf, E

′
S, C

′, C ′sz) is recursively
called. C ′sz must include some CF

sz that came from a SynthFail CF
sz in some call to

generateSpecT .
At line 17, we synthesize an environment for the functions in sf . By the finiteness

of T , there are a finite number M > 0 of such environments. We will now show that
every call to generateSpecT satisfying the conditions in the lemma either makes
another such call to generateSpecT reducing M , or directly returns either a CEx or
Raise constructor. Thus, M is a variant.
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First, suppose execution reaches the recursive call to generateSpecT at line 24.
If we reach line 23 or 25, a CEx or Raise constructor will be directly returned. Notice
that if we return RaiseCCsz∪C ′sz, then by the the definition of synth, ¬isSatT (EU∪
E ′S, C

′
sz,). Therefore when in the future our synthesis is guided by C ′sz, we know that

E ′S will not be returned, thus decreasing M .
Otherwise we will reach line 24 and add a constraint based on the generated

counterexamples at line 24. By lemma 4 this constraint blocks the current synthesized
EN , decreasing M . Thus, the lemma is satisfied.

Lemma 10. Suppose we are using some synthT , where there are a finite number
of specifications in T , and that we have a complete symex function. Consider a
call to generateSpecT (P,EU , fs, sf, ES, C, Csz), where Invariant 8 holds. Then, if
∃EG

S ⊂ T .verify(P,EU ∪ ESES ∪ EG
S ) = Verified, such that ES and EG

S are
disjoint, generateSpecT will terminate with some SEnv E ′S C

′ C ′sz.

Proof. We will show that generateSpecT (P,EU , fs, sf, ES, C, Csz) either directly re-
turns some SEnv value, or it will eventually make a recursive call to generateSpecT
which will return return some SEnv value. In either case the theorem is satisfied.

By Invariant 2, sf = ∪f∈fs{g|g ∈ calls(f) ∧ g /∈ ES}. By the finiteness of
our specification language, there is a finite number M of possible environments for
the functions in sf satisfying the constraints in C ∪ Csz. Note that M > 0, since
by assumption there is at least one environment EG that will allow verification to
succeed, and by Invariant 8, we must have isSatT (EU , E

G, C ∪ Csz). In the rest of
the proof, we will show that:

• At each call to generateSpecT (P,EU , fs, sf, ES, C ∪ C ′, Csz) at line 24, the
value of M decreases.

• Each call to generateSpecT will always recursively call itself at line 24 with
inputs that satisfy our lemma.

Thus, M acts as a variant- it will continually decrease, but not drop below 1, until
we eventually return a specification environment.

Now, we will justify the above statements, and thus complete the proof:

• We will show that at each call to generateSpecT (P,EU , fs, sf, ES, C ∪C ′, Csz)
at line 24, the value of M decreases.

At line 17, we synthesized some new EN . By definition of synth, EN |= C.
Then, C ′ is the result of calling evalCE on counterexamples generated from
calling synthT with EU ∪ ES ∪ EN . (the set is not empty, by the pattern
match.) By lemma 4, EU ∪ ES ∪ EN 6|= C ′. Thus, on at subsequent calls to
generateSpecT , where C ′ is included in the constraint set, EN will not be
synthesizable, this decreasing M .
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• Now we will see that each call to generateSpecT will always eventually recur-
sively call itself at line 24 with inputs that satisfy our lemma.

This is mostly straightforward from inspection. Note that the call to verifyCEx
at line 20 is guaranteed to terminate by lemma 7.

Thus, the lemma is satisfied.

Lemma 11. Suppose we are using some synthT , where there are a finite number
of specifications in T , and that we have a complete symex function. Consider a call
to traverseCGT (P,EU , fs, ES, C, Csz), where Invariant 8 holds. Then, if ∃EG

S ⊂
T .verify(P,EU ∪ ESES ∪ EG

S ) = Verified, and such that ES and EG
S are disjoint

traverseCGT will terminate with some SEnvE ′SC ′C ′sz such that verify(P,EU∪EG
S ) =

Verified.

Proof. We will show that traverseCGT (P,EU , fs, ES, C, Csz) either directly returns
some SEnv value, or it will eventually make some recursive call to traverseCGT which
will return return some SEnv value. In either case the theorem is satisfied.

Consider the levels of the program, 0, . . . n. We will begin by showing that the
lemma is true when at level k = n, and then showing that, if the lemma is true when
at level k, the lemma is also true when at level k − 1.

Base case - k = n: At line 6, we define sf = ∪f∈fs{g|g ∈ calls(f)∧g /∈ ES}. By
lemma 10, the call to generateSpecT at line 7 will terminate with some SEnvE ′SC ′C ′sz.
Because we are at level n of the call graph, ES must contain all the internal functions
in P . Thus, sf will be the empty set, and so we will reach line 10, and return
SEnv E ′S C

′ C ′sz. This satisfies the theorem.
Inductive step - True for k implies true for k − 1: Consider sf as defined

at line 6 of generateSpecT . By the finiteness of our specification language, there
is a finite number M of possible environments for the functions in sf satisfying the
constraints in C ∪ Csz. Note that M > 0, since by assumption there is at least one
environment EG that will allow verification to succeed, and by Invariant 8, we must
have isSatT (EG, C ∪ Csz,). In the rest of the proof, we will show that:

• At each call to traverseCGT (P,EU , fs, ES, C ∪C ′, Csz) at line 12, the value of
M decreases.

• Each call to traverseCGT will always eventually either recursively call itself at
line 12, or it will call itself at line 11 with inputs that satisfy our lemma.

Thus, M acts as a variant- it will continually decrease, but not drop below 0, until
we eventually make a call satisfying our inductive hypothesis to generateSpecT at
line 11.

Now, we will justify the above statements, and thus complete the proof:

• We will show that at each call to traverseCGT (P,EU , fs, ES, C ∪ C ′, Csz) at
line 12, the value of M decreases.
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If we reach line 12, it means that we synthesized some E ′S, then recursively
called traverseCGT (P,EU , fs

′, E ′S, C, Csz). This recursive call returned some
Raise CF CF

sz. This means that, there was a call to generateSpecT in which
a call to synthT with the environment EU ∪ E ′S returned SynthFail CF

sz. By
the definition of synth, this means that ¬isSatT (EU , E

′
S, C

F
sz). CF

sz is returned
to our initial call to generateSpecT in the Raise constructor, and added to
our set of size constraints in the recursive call. Thus, on at subsequent calls to
generateSpecT , E ′S will not be synthesizable, this decreasing M .

• Now we will show that each call to traverseCGT will always eventually either
recursively call itself at line 12, or it will call itself at line 11 with inputs that
satisfy our lemma.

This is mostly straightforward from inspection. The only tricky point is that
we must show that if we recursively call traverseCGT at line 11 with inputs
that do not satisfy our lemma, this call will return with some Raise that will
result in a recursive call to traverseCGT at line 12. Lemma 9 is sufficient to
establish that the call will either return some CEx or Raise constructor. Our
soundness lemma 13 shows that, given these two possibilities it must in fact
return a Raise constructor, as a CEx constructor would be directly returned,
violating soundness. Thus, we will recursively call generateSpecT at line 12 in
this case.

Thus, the lemma is satisfied.

Theorem 6 (Completeness of initInferT ). Consider a call to initInferT (P,EU),
where there are a finite number of specifications in T , using sound and complete
verify, symex, and synthT functions. Then, initInferT (P,EU) is complete.

Proof. Follows from lemma 11, and the observation that, if there is a counterexample
but traverseCGT returns Raise, we will fall into a loop searching for the counterex-
ample at line 2.

Lemma 12 (Soundness of environments). Assuming a sound verify function verify
and a sound counterfactual symbolic execution engine symex, and inputs satisfying In-
variant 6, if traverseCGT (P,EU , fs, ES, C, Csz) = SEnvE ′SC

′C ′sz, then verify(P,EU∪
E ′S) = Verified.

Proof. In order to terminate with a SEnv constructor, traverseCGT must reach
line 10. In order for a specific call to generateSpecT to directly reach this line,
sf = {}. By our assumption that all functions are reachable from an external func-
tion, and the definition of sf at line 6, this implies that every function is either external
or in ES. If we instead executed line 11, calling traverseCGT (P,EU , fs

′, E ′S, C, Csz)

(where fs′ = sf = {},) Invariant 6 would tell us that:

verify(P,EU ∪ E ′S) = Error err =⇒ ∀f ∈ err. (f /∈ external(P ) ∧ ¬f ∈ E ′S)
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Suppose the left hand side of the implication was true. Then, there must be some
f that is not external and is not in E ′S. But this is a contradiction, so it must be
that, so following the same logic as in the proof of the invariant, verify(P,EU ∪
E ′S) = Verified. Thus our algorithm soundly returns only environments that allow
verification.

Lemma 13 (Soundness of counterexamples). Assuming we have a sound verify func-
tion verify and a sound counterfactual symbolic execution engine symex, if

traverseCGT (P,EU , fs, ES, C, Csz) = CEx cexs′,

then cexs′ contains concrete counterexamples contradicting the specifications in EU .

Proof. Note that the user environment EU is never changed between recursive calls to
traverseCGT or generateSpecT . Thus, it is sufficient to consider the only place that
CExC ′ is constructed in generateSpecT , at line 23. Thus, we need only show that all
counterexamples returned from that line contradict the specifications in EU . Indeed,
this property is trivial from the soundness of symex and the definition of evalCE, which
returns counterexamples only if they are concrete postcondition counterexample to a
external function, or if they are a precondition counterexamples, where the caller is
an external function, and the callee specification being violated is in EU .

Theorem 7 (Soundness of initInferT ). Consider a call to initInferT (P,EU),
using sound verify, symex, and synthT functions. Then, initInferT (P,EU) is
sound.

Proof. Follows from lemmas 12 and 13.

Theorem 8 (Soundness of iterateInferT 1). Consider a call to

iterateInferT 1(P,EU , 1, {}),

for a size-bounded theory T . using sound verify, symex, and synthT k functions.
Then, iterateInferT 1(P,EU , 1, {}) is sound.

Proof. iterateInferT 1 will return an SEnv only if line 3 is reached in (for some
k′) iterateInferT k′ , and will return a CEx only if line 4 or line 7 is reached in
iterateInfer. These will be only returned from iterateInferT k′ if they are returned
from (for some k′′) traverseCGT k′′ , or directly returned from the sound symex func-
tion. Thus, the soundness of traverseCGT k′ , as established in lemmas 12 and 13, and
the soundness of the symex function, ensures the soundness of iterateInferT 1 .

Lemma 14. Consider a call to traverseCGT (P,EU , fs, {}, C, {}) using some synthT
and some specification language T ’ such that T ’ is a superset of T . Suppose that:

∀EG
S ⊂ T .verify(P,EU ∪ EG

S ) = Verified =⇒ isSatT (EU , E
G
S , C)
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If the call to traverseCGT returns Raise C ′ C ′sz, then

∀EG
S ⊂ T .verify(P,EU ∪ EG

S ) = Verified =⇒ isSatT ′(EU , E
G
S , C

′)

Proof. Follows from the construction of a Raise in generateSpecT at line 25 and
Invariant 7.

Theorem 9 (Completeness of iterateInferT 1). Consider a call to

iterateInferT 1(P,EU , 1, {}),

for a size-bounded theory T . using sound and complete verify, symex, and synthT k

functions. Then, iterateInferT 1(P,EU , 1, {}) is complete over specification in ∪kT k.

Proof. First we show part 1 of the definition of completeness. Consider a call to
iterateInferT 1(P,EU , 1, {}) assuming there exists some ES satisfying the require-
ments for part 1 of the definition of completeness. Suppose the minimal such envi-
ronment is Em

S , and size(Em
S ) = m.

For all k < m, by lemma 9 and the soundness of traverseCGT k (lemma 13),
generateSpecT k(P,EU , fs, sf, {}, C, {}) will terminate with some Raise CN _. By
the soundness of symex, at line 6 the calls to symex must produce empty sets, and
so we will call iterateInferT k+1(P,EU , d + 1, CN) By lemma 14, and by induction
over 1 . . .m, we must have that isSatT k(EU , E

m
S , CN). Thus, we will eventually

call traverseCGT m(P,EU , d, {}, C ′N , {}) with inputs satisfying Invariant 8, and so by
lemma 11 we will return a specification environment from iterateInferT m (and thus,
also from the initial call to iterateInferT 1 .) Thus iterateInferT k satsifies part 1
of the definition of completeness.

Next, we show part 2 of completeness. By the soundness of verify, since there
exists a concrete counterexample 6 ∃EG

S ⊂ T .verify(P,EU ∪ EG
S ) = Verified.

Thus, by lemma 9, every call to traverseCGT k will terminate with some CEx cexs or
RaiseC ′C ′sz. In the former case, we directly return CExcexs, meeting the requirement
of completeness. In the latter case, we call symex at line 5 with increasingly large
depths on each iteration of iterateInferT k . By the definition of completeness of
symex, whenever the exists a concrete counterexample cex�EU with caller(cex) = f

there is some depth d such that symex(P,EU , d, f) returns a concrete counterexample.
Thus, we are guaranteed to eventually find a concrete counterexample once the depth
is large enough. Therefore, iterateInferT k(s, a, t, i)sfies part 2 of the definition of
completeness.

Thus, we have shown that given a a sound and complete verify function verify,
a sound and complete counterexample generator symex, and a complete synthesizer
synthT , iterateInferT k is complete.
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